The name "ftrace" really refers to the function hook infrastructure. It
is not about the trace_events. The structures ftrace_event_call and
ftrace_event_class have nothing to do with the function hooks, and are
really trace_event structures. Rename ftrace_event_* to trace_event_*.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently we're hiding mod->sig_ok under an ifdef in open code.
This patch adds a module_sig_ok accessor function and removes that
ifdef.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
of the TRACE_DEFINE_ENUM() macro that can be used by tracepoints.
Tracepoints have helper functions for the TP_printk() called
__print_symbolic() and __print_flags() that lets a numeric number be
displayed as a a human comprehensible text. What is placed in the
TP_printk() is also shown in the tracepoint format file such that
user space tools like perf and trace-cmd can parse the binary data
and express the values too. Unfortunately, the way the TRACE_EVENT()
macro works, anything placed in the TP_printk() will be shown pretty
much exactly as is. The problem arises when enums are used. That's
because unlike macros, enums will not be changed into their values
by the C pre-processor. Thus, the enum string is exported to the
format file, and this makes it useless for user space tools.
The TRACE_DEFINE_ENUM() solves this by converting the enum strings
in the TP_printk() format into their number, and that is what is
shown to user space. For example, the tracepoint tlb_flush currently
has this in its format file:
__print_symbolic(REC->reason,
{ TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" },
{ TLB_REMOTE_SHOOTDOWN, "remote shootdown" },
{ TLB_LOCAL_SHOOTDOWN, "local shootdown" },
{ TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" })
After adding:
TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH);
TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN);
Its format file will contain this:
__print_symbolic(REC->reason,
{ 0, "flush on task switch" },
{ 1, "remote shootdown" },
{ 2, "local shootdown" },
{ 3, "local mm shootdown" })
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJVLBTuAAoJEEjnJuOKh9ldjHMIALdRS755TXCZGOf0r7O2akOR
wMPeum7C+ae1mH+jCsJKUC0/jUfQKaMt/UxoHlipDgcGg8kD2jtGnGCw4Xlwvdsr
y4rFmcTRSl1mo0zDSsg6ujoupHlVYN0+JPjrd7S3cv/llJoY49zcanNLF7S2XLeM
dZCtWRLWYpBiWO68ai6AqJTnE/eGFIqBI048qb5Eg8dbK243SSeSIf9Ywhb+VsA+
aq6F7cWI/H6j4tbeza8tAN19dcwenDro5EfCDY8ARQHJu1f6Y3+DLf2imjkd6Aiu
JVAoGIjHIpI+djwCZC1u4gi4urjfOqYartrM3Q54tb3YWYqHeNqP2ASI2a4EpYk=
=Ixwt
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Some clean ups and small fixes, but the biggest change is the addition
of the TRACE_DEFINE_ENUM() macro that can be used by tracepoints.
Tracepoints have helper functions for the TP_printk() called
__print_symbolic() and __print_flags() that lets a numeric number be
displayed as a a human comprehensible text. What is placed in the
TP_printk() is also shown in the tracepoint format file such that user
space tools like perf and trace-cmd can parse the binary data and
express the values too. Unfortunately, the way the TRACE_EVENT()
macro works, anything placed in the TP_printk() will be shown pretty
much exactly as is. The problem arises when enums are used. That's
because unlike macros, enums will not be changed into their values by
the C pre-processor. Thus, the enum string is exported to the format
file, and this makes it useless for user space tools.
The TRACE_DEFINE_ENUM() solves this by converting the enum strings in
the TP_printk() format into their number, and that is what is shown to
user space. For example, the tracepoint tlb_flush currently has this
in its format file:
__print_symbolic(REC->reason,
{ TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" },
{ TLB_REMOTE_SHOOTDOWN, "remote shootdown" },
{ TLB_LOCAL_SHOOTDOWN, "local shootdown" },
{ TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" })
After adding:
TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH);
TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN);
TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN);
Its format file will contain this:
__print_symbolic(REC->reason,
{ 0, "flush on task switch" },
{ 1, "remote shootdown" },
{ 2, "local shootdown" },
{ 3, "local mm shootdown" })"
* tag 'trace-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (27 commits)
tracing: Add enum_map file to show enums that have been mapped
writeback: Export enums used by tracepoint to user space
v4l: Export enums used by tracepoints to user space
SUNRPC: Export enums in tracepoints to user space
mm: tracing: Export enums in tracepoints to user space
irq/tracing: Export enums in tracepoints to user space
f2fs: Export the enums in the tracepoints to userspace
net/9p/tracing: Export enums in tracepoints to userspace
x86/tlb/trace: Export enums in used by tlb_flush tracepoint
tracing/samples: Update the trace-event-sample.h with TRACE_DEFINE_ENUM()
tracing: Allow for modules to convert their enums to values
tracing: Add TRACE_DEFINE_ENUM() macro to map enums to their values
tracing: Update trace-event-sample with TRACE_SYSTEM_VAR documentation
tracing: Give system name a pointer
brcmsmac: Move each system tracepoints to their own header
iwlwifi: Move each system tracepoints to their own header
mac80211: Move message tracepoints to their own header
tracing: Add TRACE_SYSTEM_VAR to xhci-hcd
tracing: Add TRACE_SYSTEM_VAR to kvm-s390
tracing: Add TRACE_SYSTEM_VAR to intel-sst
...
Update the infrastructure such that modules that declare TRACE_DEFINE_ENUM()
will have those enums converted into their values in the tracepoint
print fmt strings.
Link: http://lkml.kernel.org/r/87vbhjp74q.fsf@rustcorp.com.au
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull livepatching fix from Jiri Kosina:
- fix for potential race with module loading, from Petr Mladek.
The race is very unlikely to be seen in real world and has been found
by code inspection, but should be fixed for 4.0 anyway.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: Fix subtle race with coming and going modules
There is a notifier that handles live patches for coming and going modules.
It takes klp_mutex lock to avoid races with coming and going patches but
it does not keep the lock all the time. Therefore the following races are
possible:
1. The notifier is called sometime in STATE_MODULE_COMING. The module
is visible by find_module() in this state all the time. It means that
new patch can be registered and enabled even before the notifier is
called. It might create wrong order of stacked patches, see below
for an example.
2. New patch could still see the module in the GOING state even after
the notifier has been called. It will try to initialize the related
object structures but the module could disappear at any time. There
will stay mess in the structures. It might even cause an invalid
memory access.
This patch solves the problem by adding a boolean variable into struct module.
The value is true after the coming and before the going handler is called.
New patches need to be applied when the value is true and they need to ignore
the module when the value is false.
Note that we need to know state of all modules on the system. The races are
related to new patches. Therefore we do not know what modules will get
patched.
Also note that we could not simply ignore going modules. The code from the
module could be called even in the GOING state until mod->exit() finishes.
If we start supporting patches with semantic changes between function
calls, we need to apply new patches to any still usable code.
See below for an example.
Finally note that the patch solves only the situation when a new patch is
registered. There are no such problems when the patch is being removed.
It does not matter who disable the patch first, whether the normal
disable_patch() or the module notifier. There is nothing to do
once the patch is disabled.
Alternative solutions:
======================
+ reject new patches when a patched module is coming or going; this is ugly
+ wait with adding new patch until the module leaves the COMING and GOING
states; this might be dangerous and complicated; we would need to release
kgr_lock in the middle of the patch registration to avoid a deadlock
with the coming and going handlers; also we might need a waitqueue for
each module which seems to be even bigger overhead than the boolean
+ stop modules from entering COMING and GOING states; wait until modules
leave these states when they are already there; looks complicated; we would
need to ignore the module that asked to stop the others to avoid a deadlock;
also it is unclear what to do when two modules asked to stop others and
both are in COMING state (situation when two new patches are applied)
+ always register/enable new patches and fix up the potential mess (registered
patches order) in klp_module_init(); this is nasty and prone to regressions
in the future development
+ add another MODULE_STATE where the kallsyms are visible but the module is not
used yet; this looks too complex; the module states are checked on "many"
locations
Example of patch stacking breakage:
===================================
The notifier could _not_ _simply_ ignore already initialized module objects.
For example, let's have three patches (P1, P2, P3) for functions a() and b()
where a() is from vmcore and b() is from a module M. Something like:
a() b()
P1 a1() b1()
P2 a2() b2()
P3 a3() b3(3)
If you load the module M after all patches are registered and enabled.
The ftrace ops for function a() and b() has listed the functions in this
order:
ops_a->func_stack -> list(a3,a2,a1)
ops_b->func_stack -> list(b3,b2,b1)
, so the pointer to b3() is the first and will be used.
Then you might have the following scenario. Let's start with state when patches
P1 and P2 are registered and enabled but the module M is not loaded. Then ftrace
ops for b() does not exist. Then we get into the following race:
CPU0 CPU1
load_module(M)
complete_formation()
mod->state = MODULE_STATE_COMING;
mutex_unlock(&module_mutex);
klp_register_patch(P3);
klp_enable_patch(P3);
# STATE 1
klp_module_notify(M)
klp_module_notify_coming(P1);
klp_module_notify_coming(P2);
klp_module_notify_coming(P3);
# STATE 2
The ftrace ops for a() and b() then looks:
STATE1:
ops_a->func_stack -> list(a3,a2,a1);
ops_b->func_stack -> list(b3);
STATE2:
ops_a->func_stack -> list(a3,a2,a1);
ops_b->func_stack -> list(b2,b1,b3);
therefore, b2() is used for the module but a3() is used for vmcore
because they were the last added.
Example of the race with going modules:
=======================================
CPU0 CPU1
delete_module() #SYSCALL
try_stop_module()
mod->state = MODULE_STATE_GOING;
mutex_unlock(&module_mutex);
klp_register_patch()
klp_enable_patch()
#save place to switch universe
b() # from module that is going
a() # from core (patched)
mod->exit();
Note that the function b() can be called until we call mod->exit().
If we do not apply patch against b() because it is in MODULE_STATE_GOING,
it will call patched a() with modified semantic and things might get wrong.
[jpoimboe@redhat.com: use one boolean instead of two]
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
MODULE_DEVICE_TABLE() macro used to create aliases to device tables.
Normally alias should have the same type as aliased symbol.
Device tables are arrays, so they have 'struct type##_device_id[x]'
types. Alias created by MODULE_DEVICE_TABLE() will have non-array type -
'struct type##_device_id'.
This inconsistency confuses compiler, it could make a wrong assumption
about variable's size which leads KASan to produce a false positive report
about out of bounds access.
For every global variable compiler calls __asan_register_globals() passing
information about global variable (address, size, size with redzone, name
...) __asan_register_globals() poison symbols redzone to detect possible
out of bounds accesses.
When symbol has an alias __asan_register_globals() will be called as for
symbol so for alias. Compiler determines size of variable by size of
variable's type. Alias and symbol have the same address, so if alias have
the wrong size part of memory that actually belongs to the symbol could be
poisoned as redzone of alias symbol.
By fixing type of alias symbol we will fix size of it, so
__asan_register_globals() will not poison valid memory.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
James Bottomley points out that it will be -1 during unload. It's
only used for diagnostics, so let's not hide that as it could be a
clue as to what's gone wrong.
Cc: Jason Wessel <jason.wessel@windriver.com>
Acked-and-documention-added-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Reviewed-by: Masami Hiramatsu <maasami.hiramatsu.pt@hitachi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Replace module_ref per-cpu complex reference counter with
an atomic_t simple refcnt. This is for code simplification.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The within_module*() functions return only true or false. Let's use bool as
the return type.
Note that it should not change kABI because these are inline functions.
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It is just a small optimization that allows to replace few
occurrences of within_module_init() || within_module_core()
with a single call.
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
a staging driver; fix included. Greg KH said he'd take the patch
but hadn't as the merge window opened, so it's included here
to avoid breaking build.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABAgAGBQJTQMH9AAoJENkgDmzRrbjxo4UP/jwlenP44v+RFpo/dn8Z8E2n
SREQscU5ZZKvuyFD6kUdvOz8YC/nTrJvXoVkMUF05GVbuvb8/8UPtT9ECVemd0rW
xNy4aFfv9rbrqRLBLpLK9LAgTuhwlbTgGxgL78zRn3hWmf1hBZWCY+cEvKM8l/+9
oEQdORL0sUpZh7iryAeGqbOrXT4gqJEvSLOFwiYTSo6ryzWIilmdXSUAh6s8MIEX
PR1+oH9J8B6J29lcXKMf8/sDI1EBUeSLdBmMCuN5Y7xpYxsQLroVx94kPbdBY+XK
ZRoYuUGSUJfGRZY46cFKApIGeF07z1DGoyXghbSWEQrI+23TMUmrKUg47LSukE4Y
yCUf8HAtqIA3gVc9GKDdSp/2UpkAhTTv5ogKgnIzs1InWtOIBdDRSVUQXDosFEXw
6ZZe1pQs2zfXyXxO4j0Wq36K4RgI0aqOVw+dcC+w5BidjVylgnYRV0PSDd72tid7
bIfnjDbUBo+o4LanPNGYK474KyO7AslgTE50w6zwbJzgdwCQ36hCpKqScBZzm60a
42LrgTVoIHHWAL1tDzWL/LzWflZGdJAezzNje0/f2Q3bGMiNHWoljAvUphkTZ7qt
E8+jWqmM+riH3e8Y5wKpO1BKt7NGHISEy//bUlnqTwisjIzVILZ6VjfugQ1AI+0x
llTXPBotFvfvXqxunBg7
=yzUO
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Nothing major: the stricter permissions checking for sysfs broke a
staging driver; fix included. Greg KH said he'd take the patch but
hadn't as the merge window opened, so it's included here to avoid
breaking build"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
staging: fix up speakup kobject mode
Use 'E' instead of 'X' for unsigned module taint flag.
VERIFY_OCTAL_PERMISSIONS: stricter checking for sysfs perms.
kallsyms: fix percpu vars on x86-64 with relocation.
kallsyms: generalize address range checking
module: LLVMLinux: Remove unused function warning from __param_check macro
Fix: module signature vs tracepoints: add new TAINT_UNSIGNED_MODULE
module: remove MODULE_GENERIC_TABLE
module: allow multiple calls to MODULE_DEVICE_TABLE() per module
module: use pr_cont
MODULE_DEVICE_TABLE() calles MODULE_GENERIC_TABLE(); make it do the
work directly. This also removes a wart introduced in the last patch,
where the alias is defined to be an unknown struct type "struct
type##__##name##_device_id" instead of "struct type##_device_id" (it's
an extern so GCC doesn't care, but it's wrong).
The other user of MODULE_GENERIC_TABLE (ISAPNP_CARD_TABLE) is unused,
so delete it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Commit 78551277e4: "Input: i8042 - add PNP modaliases" had a bug, where the
second call to MODULE_DEVICE_TABLE() overrode the first resulting in not all
the modaliases being exposed.
This fixes the problem by including the name of the device_id table in the
__mod_*_device_table alias, allowing us to export several device_id tables
per module.
Suggested-by: Kay Sievers <kay@vrfy.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Tom Gundersen <teg@jklm.no>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There's nothing in the module.h header that requires tracepoint.h to be
included, and there may be cases that tracepoint.h may need to include
module.h, which will cause recursive header issues.
But module.h requires seeing HAVE_JUMP_LABEL which is set in jump_label.h
which it just coincidentally gets from tracepoint.h.
Link: http://lkml.kernel.org/r/20140307084712.5c68641a@gandalf.local.home
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The option to wait for a module reference count to reach zero was in
the initial module implementation, but it was never supported in
modprobe (you had to use rmmod --wait). After discussion with Lucas,
It has been deprecated (with a 10 second sleep) in kmod for the last
year.
This finally removes it: the flag will evoke a printk warning and a
normal (non-blocking) remove attempt.
Cc: Lucas De Marchi <lucas.de.marchi@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Additional and optional dependencies not found while building the kernel and
modules, can now be declared explicitly.
Signed-off-by: Andreas Robinson <andr345@gmail.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We have CONFIG_SYMBOL_PREFIX, which three archs define to the string
"_". But Al Viro broke this in "consolidate cond_syscall and
SYSCALL_ALIAS declarations" (in linux-next), and he's not the first to
do so.
Using CONFIG_SYMBOL_PREFIX is awkward, since we usually just want to
prefix it so something. So various places define helpers which are
defined to nothing if CONFIG_SYMBOL_PREFIX isn't set:
1) include/asm-generic/unistd.h defines __SYMBOL_PREFIX.
2) include/asm-generic/vmlinux.lds.h defines VMLINUX_SYMBOL(sym)
3) include/linux/export.h defines MODULE_SYMBOL_PREFIX.
4) include/linux/kernel.h defines SYMBOL_PREFIX (which differs from #7)
5) kernel/modsign_certificate.S defines ASM_SYMBOL(sym)
6) scripts/modpost.c defines MODULE_SYMBOL_PREFIX
7) scripts/Makefile.lib defines SYMBOL_PREFIX on the commandline if
CONFIG_SYMBOL_PREFIX is set, so that we have a non-string version
for pasting.
(arch/h8300/include/asm/linkage.h defines SYMBOL_NAME(), too).
Let's solve this properly:
1) No more generic prefix, just CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX.
2) Make linux/export.h usable from asm.
3) Define VMLINUX_SYMBOL() and VMLINUX_SYMBOL_STR().
4) Make everyone use them.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Tested-by: James Hogan <james.hogan@imgtec.com> (metag)
These helper functions just check a set intersection with a range, and
don't actually modify struct module.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
You should never look at such a module, so it's excised from all paths
which traverse the modules list.
We add the state at the end, to avoid gratuitous ABI break (ksplice).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We do a very simple search for a particular string appended to the module
(which is cache-hot and about to be SHA'd anyway). There's both a config
option and a boot parameter which control whether we accept or fail with
unsigned modules and modules that are signed with an unknown key.
If module signing is enabled, the kernel will be tainted if a module is
loaded that is unsigned or has a signature for which we don't have the
key.
(Useful feedback and tweaks by David Howells <dhowells@redhat.com>)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
module_ref contains two "unsigned int" fields.
Thats now too small, since some machines can open more than 2^32 files.
Check commit 518de9b39e (fs: allow for more than 2^31 files) for
reference.
We can add an aligned(2 * sizeof(unsigned long)) attribute to force
alloc_percpu() allocating module_ref areas in single cache lines.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Rusty Russell <rusty@rustcorp.com.au>
CC: Tejun Heo <tj@kernel.org>
CC: Robin Holt <holt@sgi.com>
CC: David Miller <davem@davemloft.net>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There are files which use module_param and MODULE_PARM_DESC
back to back. They only include moduleparam.h which makes sense,
but the implicit presence of module.h everywhere hid the fact
that MODULE_PARM_DESC wasn't in moduleparam.h at all. Relocate
the macro to moduleparam.h so that the moduleparam infrastructure
can be used independently of module.h
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
A lot of files pull in module.h when all they are really
looking for is the basic EXPORT_SYMBOL functionality. The
recent data from Ingo[1] shows that this is one of several
instances that has a significant impact on compile times,
and it should be targeted for factoring out (as done here).
Note that several commonly used header files in include/*
directly include <linux/module.h> themselves (some 34 of them!)
The most commonly used ones of these will have to be made
independent of module.h before the full benefit of this change
can be realized.
We also transition THIS_MODULE from module.h to export.h,
since there are lots of files with subsystem structs that
in turn will have a struct module *owner and only be doing:
.owner = THIS_MODULE;
and absolutely nothing else modular. So, we also want to have
the THIS_MODULE definition present in the lightweight header.
[1] https://lkml.org/lkml/2011/5/23/76
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Copy the information needed from struct module into a local module list
held within tracepoint.c from within the module coming/going notifier.
This vastly simplifies locking of tracepoint registration /
unregistration, because we don't have to take the module mutex to
register and unregister tracepoints anymore. Steven Rostedt ran into
dependency problems related to modules mutex vs kprobes mutex vs ftrace
mutex vs tracepoint mutex that seems to be hard to fix without removing
this dependency between tracepoint and module mutex. (note: it should be
investigated whether kprobes could benefit of being dissociated from the
modules mutex too.)
This also fixes module handling of tracepoint list iterators, because it
was expecting the list to be sorted by pointer address. Given we have
control on our own list now, it's OK to sort this list which has
tracepoints as its only purpose. The reason why this sorting is required
is to handle the fact that seq files (and any read() operation from
user-space) cannot hold the tracepoint mutex across multiple calls, so
list entries may vanish between calls. With sorting, the tracepoint
iterator becomes usable even if the list don't contain the exact item
pointed to by the iterator anymore.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Jason Baron <jbaron@redhat.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20110810191839.GC8525@Krystal
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Userspace wants to manage module parameters with udev rules.
This currently only works for loaded modules, but not for
built-in ones.
To allow access to the built-in modules we need to
re-trigger all module load events that happened before any
userspace was running. We already do the same thing for all
devices, subsystems(buses) and drivers.
This adds the currently missing /sys/module/<name>/uevent files
to all module entries.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (split & trivial fix)
This simplifies the next patch, where we have an attribute on a
builtin module (ie. module == NULL).
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (split into 2)
This patch places every exported symbol in its own section
(i.e. "___ksymtab+printk"). Thus the linker will use its SORT() directive
to sort and finally merge all symbol in the right and final section
(i.e. "__ksymtab").
The symbol prefixed archs use an underscore as prefix for symbols.
To avoid collision we use a different character to create the temporary
section names.
This work was supported by a hardware donation from the CE Linux Forum.
Signed-off-by: Alessio Igor Bogani <abogani@kernel.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (folded in '+' fixup)
Tested-by: Dirk Behme <dirk.behme@googlemail.com>
Instead of having a callback function for each symbol in the kernel,
have a callback for each array of symbols.
This eases the logic when we move to sorted symbols and binary search.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Alessio Igor Bogani <abogani@kernel.org>
Reorder struct module to remove 24 bytes of alignment padding on 64 bit
builds when the CONFIG_TRACE options are selected. This allows the
structure to fit into one fewer cache lines, and its size drops from 592
to 568 on x86_64.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Doing so prevents the following warning from sparse:
CHECK kernel/params.c
kernel/params.c:817:9: warning: symbol '__modver_version_show' was not
declared. Should it be static?
since kernel/params.c is never compiled with MODULE being set.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
On m68k natural alignment is 2-byte boundary but we are trying to
align structures in __modver section on sizeof(void *) boundary.
This causes trouble when we try to access elements in this section
in array-like fashion when create "version" attributes for built-in
modules.
Moreover, as DaveM said, we can't reliably put structures into
independent objects, put them into a special section, and then expect
array access over them (via the section boundaries) after linking the
objects together to just "work" due to variable alignment choices in
different situations. The only solution that seems to work reliably
is to make an array of plain pointers to the objects in question and
put those pointers in the special section.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We force particular alignment when we generate attribute structures
when generation MODULE_VERSION() data and we need to make sure that
this alignment is followed when we iterate over these structures,
otherwise we may crash on platforms whose natural alignment is not
sizeof(void *), such as m68k.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
[ There are more issues here, but the fixes are incredibly ugly - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the tracepoints more robust, making them solid enough to handle compiler
changes by not relying on anything based on compiler-specific behavior with
respect to structure alignment. Implement an approach proposed by David Miller:
use an array of const pointers to refer to the individual structures, and export
this pointer array through the linker script rather than the structures per se.
It will consume 32 extra bytes per tracepoint (24 for structure padding and 8
for the pointers), but are less likely to break due to compiler changes.
History:
commit 7e066fb8 tracepoints: add DECLARE_TRACE() and DEFINE_TRACE()
added the aligned(32) type and variable attribute to the tracepoint structures
to deal with gcc happily aligning statically defined structures on 32-byte
multiples.
One attempt was to use a 8-byte alignment for tracepoint structures by applying
both the variable and type attribute to tracepoint structures definitions and
declarations. It worked fine with gcc 4.5.1, but broke with gcc 4.4.4 and 4.4.5.
The reason is that the "aligned" attribute only specify the _minimum_ alignment
for a structure, leaving both the compiler and the linker free to align on
larger multiples. Because tracepoint.c expects the structures to be placed as an
array within each section, up-alignment cause NULL-pointer exceptions due to the
extra unexpected padding.
(this patch applies on top of -tip)
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
LKML-Reference: <20110126222622.GA10794@Krystal>
CC: Frederic Weisbecker <fweisbec@gmail.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently the trace_event structures are placed in the _ftrace_events
section, and at link time, the linker makes one large array of all
the trace_event structures. On boot up, this array is read (much like
the initcall sections) and the events are processed.
The problem is that there is no guarantee that gcc will place complex
structures nicely together in an array format. Two structures in the
same file may be placed awkwardly, because gcc has no clue that they
are suppose to be in an array.
A hack was used previous to force the alignment to 4, to pack the
structures together. But this caused alignment issues with other
architectures (sparc).
Instead of packing the structures into an array, the structures' addresses
are now put into the _ftrace_event section. As pointers are always the
natural alignment, gcc should always pack them tightly together
(otherwise initcall, extable, etc would also fail).
By having the pointers to the structures in the section, we can still
iterate the trace_events without causing unnecessary alignment problems
with other architectures, or depending on the current behaviour of
gcc that will likely change in the future just to tick us kernel developers
off a little more.
The _ftrace_event section is also moved into the .init.data section
as it is now only needed at boot up.
Suggested-by: David Miller <davem@davemloft.net>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
lib/built-in.o:(__modver+0x8): undefined reference to `__modver_version_show'
lib/built-in.o:(__modver+0x2c): undefined reference to `__modver_version_show'
Simplest to just not emit anything: if they've disabled SYSFS they probably
want the smallest kernel possible.
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently only drivers that are built as modules have their versions
shown in /sys/module/<module_name>/version, but this information might
also be useful for built-in drivers as well. This especially important
for drivers that do not define any parameters - such drivers, if
built-in, are completely invisible from userspace.
This patch changes MODULE_VERSION() macro so that in case when we are
compiling built-in module, version information is stored in a separate
section. Kernel then uses this data to create 'version' sysfs attribute
in the same fashion it creates attributes for module parameters.
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Commit 9bea7f2395 renamed use_module to
ref_module (and changed its return value), but forgot to update this
prototype in module.h.
Signed-off-by: Anders Kaseorg <andersk@ksplice.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This patch is a logical extension of the protection provided by
CONFIG_DEBUG_RODATA to LKMs. The protection is provided by
splitting module_core and module_init into three logical parts
each and setting appropriate page access permissions for each
individual section:
1. Code: RO+X
2. RO data: RO+NX
3. RW data: RW+NX
In order to achieve proper protection, layout_sections() have
been modified to align each of the three parts mentioned above
onto page boundary. Next, the corresponding page access
permissions are set right before successful exit from
load_module(). Further, free_module() and sys_init_module have
been modified to set module_core and module_init as RW+NX right
before calling module_free().
By default, the original section layout and access flags are
preserved. When compiled with CONFIG_DEBUG_SET_MODULE_RONX=y,
the patch will page-align each group of sections to ensure that
each page contains only one type of content and will enforce
RO/NX for each group of pages.
-v1: Initial proof-of-concept patch.
-v2: The patch have been re-written to reduce the number of #ifdefs
and to make it architecture-agnostic. Code formatting has also
been corrected.
-v3: Opportunistic RO/NX protection is now unconditional. Section
page-alignment is enabled when CONFIG_DEBUG_RODATA=y.
-v4: Removed most macros and improved coding style.
-v5: Changed page-alignment and RO/NX section size calculation
-v6: Fixed comments. Restricted RO/NX enforcement to x86 only
-v7: Introduced CONFIG_DEBUG_SET_MODULE_RONX, added
calls to set_all_modules_text_rw() and set_all_modules_text_ro()
in ftrace
-v8: updated for compatibility with linux 2.6.33-rc5
-v9: coding style fixes
-v10: more coding style fixes
-v11: minor adjustments for -tip
-v12: minor adjustments for v2.6.35-rc2-tip
-v13: minor adjustments for v2.6.37-rc1-tip
Signed-off-by: Siarhei Liakh <sliakh.lkml@gmail.com>
Signed-off-by: Xuxian Jiang <jiang@cs.ncsu.edu>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dave Jones <davej@redhat.com>
Cc: Kees Cook <kees.cook@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <4CE2F914.9070106@free.fr>
[ minor cleanliness edits, -v14: build failure fix ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With all the recent module loading cleanups, we've minimized the code
that sits under module_mutex, fixing various deadlocks and making it
possible to do most of the module loading in parallel.
However, that whole conversion totally missed the rather obscure code
that adds a new module to the list for BUG() handling. That code was
doubly obscure because (a) the code itself lives in lib/bugs.c (for
dubious reasons) and (b) it gets called from the architecture-specific
"module_finalize()" rather than from generic code.
Calling it from arch-specific code makes no sense what-so-ever to begin
with, and is now actively wrong since that code isn't protected by the
module loading lock any more.
So this commit moves the "module_bug_{finalize,cleanup}()" calls away
from the arch-specific code, and into the generic code - and in the
process protects it with the module_mutex so that the list operations
are now safe.
Future fixups:
- move the module list handling code into kernel/module.c where it
belongs.
- get rid of 'module_bug_list' and just use the regular list of modules
(called 'modules' - imagine that) that we already create and maintain
for other reasons.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
base patch to implement 'jump labeling'. Based on a new 'asm goto' inline
assembly gcc mechanism, we can now branch to labels from an 'asm goto'
statment. This allows us to create a 'no-op' fastpath, which can subsequently
be patched with a jump to the slowpath code. This is useful for code which
might be rarely used, but which we'd like to be able to call, if needed.
Tracepoints are the current usecase that these are being implemented for.
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jason Baron <jbaron@redhat.com>
LKML-Reference: <ee8b3595967989fdaf84e698dc7447d315ce972a.1284733808.git.jbaron@redhat.com>
[ cleaned up some formating ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
These were placed in the header in ef665c1a06 to get the various
SYSFS/MODULE config combintations to compile.
That may have been necessary then, but it's not now. These functions
are all local to module.c.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Linus changed the structure, and luckily this didn't compile any more.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Martin Hicks <mort@sgi.com>
When adding a module that depends on another one, we used to create a
one-way list of "modules_which_use_me", so that module unloading could
see who needs a module.
It's actually quite simple to make that list go both ways: so that we
not only can see "who uses me", but also see a list of modules that are
"used by me".
In fact, we always wanted that list in "module_unload_free()": when we
unload a module, we want to also release all the other modules that are
used by that module. But because we didn't have that list, we used to
first iterate over all modules, and then iterate over each "used by me"
list of that module.
By making the list two-way, we simplify module_unload_free(), and it
allows for some trivial fixes later too.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (cleaned & rebased)
Module refcounting is implemented with a per-cpu counter for speed.
However there is a race when tallying the counter where a reference may
be taken by one CPU and released by another. Reference count summation
may then see the decrement without having seen the previous increment,
leading to lower than expected count. A module which never has its
actual reference drop below 1 may return a reference count of 0 due to
this race.
Module removal generally runs under stop_machine, which prevents this
race causing bugs due to removal of in-use modules. However there are
other real bugs in module.c code and driver code (module_refcount is
exported) where the callers do not run under stop_machine.
Fix this by maintaining running per-cpu counters for the number of
module refcount increments and the number of refcount decrements. The
increments are tallied after the decrements, so any decrement seen will
always have its corresponding increment counted. The final refcount is
the difference of the total increments and decrements, preventing a
low-refcount from being returned.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the @refcnt argument, because it has side-effects, and arguments with
side-effects are not skipped by the jump over disabled instrumentation and are
executed even when the tracepoint is disabled.
This was also causing a GPF as found by Randy Dunlap:
Subject: 2.6.33 GP fault only when built with tracing
LKML-Reference: <4BA2B69D.3000309@oracle.com>
Note, the current 2.6.34-rc has a fix for the actual cause of the GPF,
but this fixes one of its triggers.
Tested-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
LKML-Reference: <4BA97FA7.6040406@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Fix build for CONFIG_MODULES not enabled by providing a stub
for is_module_percpu_address().
kernel/lockdep.c:605: error: implicit declaration of function 'is_module_percpu_address'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
lockdep has custom code to check whether a pointer belongs to static
percpu area which is somewhat broken. Implement proper
is_kernel/module_percpu_address() and replace the custom code.
On UP, percpu variables are regular static variables and can't be
distinguished from them. Always return %false on UP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Better encapsulate module static percpu area handling so that code
outsidef of CONFIG_SMP ifdef doesn't deal with mod->percpu directly
and add mod->percpu_size and record percpu_size in it. Both percpu
fields are compiled out on UP. While at it, mark mod->percpu w/
__percpu.
This is to prepare for is_module_percpu_address().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Extern declarations in sysctl.c should be moved to their own header file,
and then include them in relavant .c files.
Move modprobe_path extern declaration to linux/kmod.h
Move modules_disabled extern declaration to linux/module.h
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add __percpu sparse annotations to core subsystems.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-mm@kvack.org
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Biederman <ebiederm@xmission.com>
ringbuffer*.c are the last users of local.h.
Remove the include from modules.h and add it to ringbuffer files.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use cpu ops to deal with the per cpu data instead of a local_t. Reduces memory
requirements, cache footprint and decreases cycle counts.
The this_cpu_xx operations are also used for !SMP mode. Otherwise we could
not drop the use of __module_ref_addr() which would make per cpu data handling
complicated. this_cpu_xx operations have their own fallback for !SMP.
V8-V9:
- Leave include asm/module.h since ringbuffer.c depends on it. Nothing else
does though. Another patch will deal with that.
- Remove spurious free.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Tejun Heo <tj@kernel.org>
The next commit will require the use of MODULE_SYMBOL_PREFIX in
.tmp_exports-asm.S. Currently it is mixed in with C structure
definitions in "asm/module.h". Move the definition of this arch option
into Kconfig, so it can be easily accessed by any code.
This also lets modpost.c use the same definition. Previously modpost
relied on a hardcoded list of architectures in mk_elfconfig.c.
A build test for blackfin, one of the two MODULE_SYMBOL_PREFIX archs,
showed the generated code was unchanged. vmlinux was identical save
for build ids, and an apparently randomized suffix on a single "__key"
symbol in the kallsyms data).
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Acked-by: Mike Frysinger <vapier@gentoo.org> (blackfin)
CC: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
For the longest time now we've been using multiple MODULE_AUTHOR()
statements when a module has more than one author, but the comment here
disagrees.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Luciano Coelho <luciano.coelho@nokia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Also remove all parts of the string table (referenced by the symbol
table) that are not needed for kallsyms use (i.e. which were only
referenced by symbols discarded by the previous patch, or not
referenced at all for whatever reason).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Discard all symbols not interesting for kallsyms use: absolute,
section, and in the common case (!KALLSYMS_ALL) data ones.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Now that the last users of markers have migrated to the event
tracer we can kill off the (now orphan) support code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20090917173527.GA1699@lst.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Call constructors (gcc-generated initcall-like functions) during kernel
start and module load. Constructors are e.g. used for gcov data
initialization.
Disable constructor support for usermode Linux to prevent conflicts with
host glibc.
Signed-off-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Li Wei <W.Li@Sun.COM>
Cc: Michael Ellerman <michaele@au1.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Heiko Carstens <heicars2@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <mschwid2@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They're in linux/bug.h at present, which causes include order tangles. In
particular, linux/bug.h cannot be used by linux/atomic.h because,
according to Nikanth:
linux/bug.h pulls in linux/module.h => linux/spinlock.h => asm/spinlock.h
(which uses atomic_inc) => asm/atomic.h.
bug.h is a pretty low-level thing and module.h is a higher-level thing,
IMO.
Cc: Nikanth Karthikesan <knikanth@novell.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's theoretically possible that there are exception table entries
which point into the (freed) init text of modules. These could cause
future problems if other modules get loaded into that memory and cause
an exception as we'd see the wrong fixup. The only case I know of is
kvm-intel.ko (when CONFIG_CC_OPTIMIZE_FOR_SIZE=n).
Amerigo fixed this long-standing FIXME in the x86 version, but this
patch is more general.
This implements trim_init_extable(); most archs are simple since they
use the standard lib/extable.c sort code. Alpha and IA64 use relative
addresses in their fixups, so thier trimming is a slight variation.
Sparc32 is unique; it doesn't seem to define ARCH_HAS_SORT_EXTABLE,
yet it defines its own sort_extable() which overrides the one in lib.
It doesn't sort, so we have to mark deleted entries instead of
actually trimming them.
Inspired-by: Amerigo Wang <amwang@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: linux-alpha@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
The hooks in the module code for the function tracer must be called
before any of that module code runs. The function tracer hooks
modify the module (replacing calls to mcount to nops). If the code
is executed while the change occurs, then the CPU can take a GPF.
To handle the above with a bit of paranoia, I originally implemented
the hooks as calls directly from the module code.
After examining the notifier calls, it looks as though the start up
notify is called before any of the module's code is executed. This makes
the use of the notify safe with ftrace.
Only the startup notify is required to be "safe". The shutdown simply
removes the entries from the ftrace function list, and does not modify
any code.
This change has another benefit. It removes a issue with a reverse dependency
in the mutexes of ftrace_lock and module_mutex.
[ Impact: fix lock dependency bug, cleanup ]
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Impact: allow modules to add TRACE_EVENTS on load
This patch adds the final hooks to allow modules to use the TRACE_EVENT
macro. A notifier and a data structure are used to link the TRACE_EVENTs
defined in the module to connect them with the ftrace event tracing system.
It also adds the necessary automated clean ups to the trace events when a
module is removed.
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* 'tracing-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (413 commits)
tracing, net: fix net tree and tracing tree merge interaction
tracing, powerpc: fix powerpc tree and tracing tree interaction
ring-buffer: do not remove reader page from list on ring buffer free
function-graph: allow unregistering twice
trace: make argument 'mem' of trace_seq_putmem() const
tracing: add missing 'extern' keywords to trace_output.h
tracing: provide trace_seq_reserve()
blktrace: print out BLK_TN_MESSAGE properly
blktrace: extract duplidate code
blktrace: fix memory leak when freeing struct blk_io_trace
blktrace: fix blk_probes_ref chaos
blktrace: make classic output more classic
blktrace: fix off-by-one bug
blktrace: fix the original blktrace
blktrace: fix a race when creating blk_tree_root in debugfs
blktrace: fix timestamp in binary output
tracing, Text Edit Lock: cleanup
tracing: filter fix for TRACE_EVENT_FORMAT events
ftrace: Using FTRACE_WARN_ON() to check "freed record" in ftrace_release()
x86: kretprobe-booster interrupt emulation code fix
...
Fix up trivial conflicts in
arch/parisc/include/asm/ftrace.h
include/linux/memory.h
kernel/extable.c
kernel/module.c
Impact: Expose some module.c symbols
Ksplice uses several functions from module.c in order to resolve
symbols and implement dependency handling. Calling these functions
requires holding module_mutex, so it is exported.
(This is just the module part of a bigger add-exports patch from Tim).
Cc: Anders Kaseorg <andersk@mit.edu>
Cc: Jeff Arnold <jbarnold@mit.edu>
Signed-off-by: Tim Abbott <tabbott@mit.edu>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: New API
kallsyms_lookup_name only returns the first match that it finds. Ksplice
needs information about all symbols with a given name in order to correctly
resolve local symbols.
kallsyms_on_each_symbol provides a generic mechanism for iterating over the
kallsyms table.
Cc: Jeff Arnold <jbarnold@mit.edu>
Cc: Tim Abbott <tabbott@mit.edu>
Signed-off-by: Anders Kaseorg <andersk@mit.edu>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: Replace and remove risky (non-EXPORTed) API
module_text_address() returns a pointer to the module, which given locking
improvements in module.c, is useless except to test for NULL:
1) If the module can't go away, use __module_text_address.
2) Otherwise, just use is_module_text_address().
Cc: linux-mtd@lists.infradead.org
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: New API, cleanup
ksplice wants to know the bounds of a module, not just the module text.
It makes sense to have __module_address. We then implement
is_module_address and __module_text_address in terms of this (and
change is_module_text_address() to bool while we're at it).
Also, add proper kerneldoc for them all.
Cc: Anders Kaseorg <andersk@mit.edu>
Cc: Jeff Arnold <jbarnold@mit.edu>
Cc: Tim Abbott <tabbott@mit.edu>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: fix crash on reading from /sys/module/.../ieee80211_default_rc_algo
The module_param type "charp" simply sets a char * pointer in the
module to the parameter in the commandline string: this is why we keep
the (mangled) module command line around. But when set via sysfs (as
about 11 charp parameters can be) this memory is freed on the way
out of the write(). Future reads hit random mem.
So we kstrdup instead: we have to check we're not in early commandline
parsing, and we have to note when we've used it so we can reliably
kfree the parameter when it's next overwritten, and also on module
unload.
(Thanks to Randy Dunlap for CONFIG_SYSFS=n fixes)
Reported-by: Sitsofe Wheeler <sitsofe@yahoo.com>
Diagnosed-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: faster and lighter tracing
Now that we have trace_bprintk() which is faster and consume lesser
memory than trace_printk() and has the same purpose, we can now drop
the old implementation in favour of the binary one from trace_bprintk(),
which means we move all the implementation of trace_bprintk() to
trace_printk(), so the Api doesn't change except that we must now use
trace_seq_bprintk() to print the TRACE_PRINT entries.
Some changes result of this:
- Previously, trace_bprintk depended of a single tracer and couldn't
work without. This tracer has been dropped and the whole implementation
of trace_printk() (like the module formats management) is now integrated
in the tracing core (comes with CONFIG_TRACING), though we keep the file
trace_printk (previously trace_bprintk.c) where we can find the module
management. Thus we don't overflow trace.c
- changes some parts to use trace_seq_bprintk() to print TRACE_PRINT entries.
- change a bit trace_printk/trace_vprintk macros to support non-builtin formats
constants, and fix 'const' qualifiers warnings. But this is all transparent for
developers.
- etc...
V2:
- Rebase against last changes
- Fix mispell on the changelog
V3:
- Rebase against last changes (moving trace_printk() to kernel.h)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1236356510-8381-5-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add a generic printk() for tracing, like trace_printk()
trace_bprintk() uses the infrastructure to record events on ring_buffer.
[ fweisbec@gmail.com: ported to latest -tip, made it work if
!CONFIG_MODULES, never free the format strings from modules
because we can't keep track of them and conditionnaly create
the ftrace format strings section (reported by Steven Rostedt) ]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1236356510-8381-4-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix spurious BUG_ON() triggered under load
module_refcount() isn't reliable outside stop_machine(), as demonstrated
by Karsten Keil <kkeil@suse.de>, networking can trigger it under load
(an inc on one cpu and dec on another while module_refcount() is tallying
can give false results, for example).
Almost noone should be using __module_get, but that's another issue.
Cc: Karsten Keil <kkeil@suse.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current refcounting for modules (done if CONFIG_MODULE_UNLOAD=y) is
using a lot of memory.
Each 'struct module' contains an [NR_CPUS] array of full cache lines.
This patch uses existing infrastructure (percpu_modalloc() &
percpu_modfree()) to allocate percpu space for the refcount storage.
Instead of wasting NR_CPUS*128 bytes (on i386), we now use
nr_cpu_ids*sizeof(local_t) bytes.
On a typical distro, where NR_CPUS=8, shiping 2000 modules, we reduce
size of module files by about 2 Mbytes. (1Kb per module)
Instead of having all refcounters in the same memory node - with TLB misses
because of vmalloc() - this new implementation permits to have better
NUMA properties, since each CPU will use storage on its preferred node,
thanks to percpu storage.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series of patches allows kprobes to probe module's __init and __exit
functions. This means, you can probe driver initialization and
terminating.
Currently, kprobes can't probe __init function because these functions are
freed after module initialization. And it also can't probe module __exit
functions because kprobe increments reference count of target module and
user can't unload it. this means __exit functions never be called unless
removing probes from the module.
To solve both cases, this series of patches introduces GONE flag and sets
it when the target code is freed(for this purpose, kprobes hooks
MODULE_STATE_* events). This also removes refcount incrementing for
allowing user to unload target module. Users can check which probes are
GONE by debugfs interface. For taking timing of freeing module's .init
text, these also include a patch which adds module's notifier of
MODULE_STATE_LIVE event.
This patch:
Add within_module_core() and within_module_init() for checking whether an
address is in the module .init.text section or .text section, and replace
within() local inline functions in kernel/module.c with them.
kprobes uses these functions to check where the kprobe is inserted.
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of insisting each new module_param sysfs entry is unique,
handle the case where it already exists (for builtin modules).
The current code assumes that all identical prefixes are together in
the section: true for normal uses, but not necessarily so if someone
overrides MODULE_PARAM_PREFIX. More importantly, it's not true with
the new "core_param()" code which uses "kernel" as a prefix.
This simplifies the caller for the builtin case, at a slight loss of
efficiency (we do the lookup every time to see if the directory
exists).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
The kparam code tries to handle over-length parameter prefixes at
runtime. Not only would I bet this has never been tested, it's not
clear that truncating names is a good idea either.
So let's check at compile time. We need to move the #define to
moduleparam.h to do this, though.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Linus' recent catch of stack overflow in load_module lead me to look
at the code. A couple of helpers to get a section address and get
objects from a section can help clean things up a little.
(And in case you're wondering, the stack size also dropped from 328 to
284 bytes).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Base infrastructure to enable per-module debug messages.
I've introduced CONFIG_DYNAMIC_PRINTK_DEBUG, which when enabled centralizes
control of debugging statements on a per-module basis in one /proc file,
currently, <debugfs>/dynamic_printk/modules. When, CONFIG_DYNAMIC_PRINTK_DEBUG,
is not set, debugging statements can still be enabled as before, often by
defining 'DEBUG' for the proper compilation unit. Thus, this patch set has no
affect when CONFIG_DYNAMIC_PRINTK_DEBUG is not set.
The infrastructure currently ties into all pr_debug() and dev_dbg() calls. That
is, if CONFIG_DYNAMIC_PRINTK_DEBUG is set, all pr_debug() and dev_dbg() calls
can be dynamically enabled/disabled on a per-module basis.
Future plans include extending this functionality to subsystems, that define
their own debug levels and flags.
Usage:
Dynamic debugging is controlled by the debugfs file,
<debugfs>/dynamic_printk/modules. This file contains a list of the modules that
can be enabled. The format of the file is as follows:
<module_name> <enabled=0/1>
.
.
.
<module_name> : Name of the module in which the debug call resides
<enabled=0/1> : whether the messages are enabled or not
For example:
snd_hda_intel enabled=0
fixup enabled=1
driver enabled=0
Enable a module:
$echo "set enabled=1 <module_name>" > dynamic_printk/modules
Disable a module:
$echo "set enabled=0 <module_name>" > dynamic_printk/modules
Enable all modules:
$echo "set enabled=1 all" > dynamic_printk/modules
Disable all modules:
$echo "set enabled=0 all" > dynamic_printk/modules
Finally, passing "dynamic_printk" at the command line enables
debugging for all modules. This mode can be turned off via the above
disable command.
[gkh: minor cleanups and tweaks to make the build work quietly]
Signed-off-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Implementation of kernel tracepoints. Inspired from the Linux Kernel
Markers. Allows complete typing verification by declaring both tracing
statement inline functions and probe registration/unregistration static
inline functions within the same macro "DEFINE_TRACE". No format string
is required. See the tracepoint Documentation and Samples patches for
usage examples.
Taken from the documentation patch :
"A tracepoint placed in code provides a hook to call a function (probe)
that you can provide at runtime. A tracepoint can be "on" (a probe is
connected to it) or "off" (no probe is attached). When a tracepoint is
"off" it has no effect, except for adding a tiny time penalty (checking
a condition for a branch) and space penalty (adding a few bytes for the
function call at the end of the instrumented function and adds a data
structure in a separate section). When a tracepoint is "on", the
function you provide is called each time the tracepoint is executed, in
the execution context of the caller. When the function provided ends its
execution, it returns to the caller (continuing from the tracepoint
site).
You can put tracepoints at important locations in the code. They are
lightweight hooks that can pass an arbitrary number of parameters, which
prototypes are described in a tracepoint declaration placed in a header
file."
Addition and removal of tracepoints is synchronized by RCU using the
scheduler (and preempt_disable) as guarantees to find a quiescent state
(this is really RCU "classic"). The update side uses rcu_barrier_sched()
with call_rcu_sched() and the read/execute side uses
"preempt_disable()/preempt_enable()".
We make sure the previous array containing probes, which has been
scheduled for deletion by the rcu callback, is indeed freed before we
proceed to the next update. It therefore limits the rate of modification
of a single tracepoint to one update per RCU period. The objective here
is to permit fast batch add/removal of probes on _different_
tracepoints.
Changelog :
- Use #name ":" #proto as string to identify the tracepoint in the
tracepoint table. This will make sure not type mismatch happens due to
connexion of a probe with the wrong type to a tracepoint declared with
the same name in a different header.
- Add tracepoint_entry_free_old.
- Change __TO_TRACE to get rid of the 'i' iterator.
Masami Hiramatsu <mhiramat@redhat.com> :
Tested on x86-64.
Performance impact of a tracepoint : same as markers, except that it
adds about 70 bytes of instructions in an unlikely branch of each
instrumented function (the for loop, the stack setup and the function
call). It currently adds a memory read, a test and a conditional branch
at the instrumentation site (in the hot path). Immediate values will
eventually change this into a load immediate, test and branch, which
removes the memory read which will make the i-cache impact smaller
(changing the memory read for a load immediate removes 3-4 bytes per
site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it
also saves the d-cache hit).
About the performance impact of tracepoints (which is comparable to
markers), even without immediate values optimizations, tests done by
Hideo Aoki on ia64 show no regression. His test case was using hackbench
on a kernel where scheduler instrumentation (about 5 events in code
scheduler code) was added.
Quoting Hideo Aoki about Markers :
I evaluated overhead of kernel marker using linux-2.6-sched-fixes git
tree, which includes several markers for LTTng, using an ia64 server.
While the immediate trace mark feature isn't implemented on ia64, there
is no major performance regression. So, I think that we don't have any
issues to propose merging marker point patches into Linus's tree from
the viewpoint of performance impact.
I prepared two kernels to evaluate. The first one was compiled without
CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS.
I downloaded the original hackbench from the following URL:
http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c
I ran hackbench 5 times in each condition and calculated the average and
difference between the kernels.
The parameter of hackbench: every 50 from 50 to 800
The number of CPUs of the server: 2, 4, and 8
Below is the results. As you can see, major performance regression
wasn't found in any case. Even if number of processes increases,
differences between marker-enabled kernel and marker- disabled kernel
doesn't increase. Moreover, if number of CPUs increases, the differences
doesn't increase either.
Curiously, marker-enabled kernel is better than marker-disabled kernel
in more than half cases, although I guess it comes from the difference
of memory access pattern.
* 2 CPUs
Number of | without | with | diff | diff |
processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] |
--------------------------------------------------------------
50 | 4.811 | 4.872 | +0.061 | +1.27 |
100 | 9.854 | 10.309 | +0.454 | +4.61 |
150 | 15.602 | 15.040 | -0.562 | -3.6 |
200 | 20.489 | 20.380 | -0.109 | -0.53 |
250 | 25.798 | 25.652 | -0.146 | -0.56 |
300 | 31.260 | 30.797 | -0.463 | -1.48 |
350 | 36.121 | 35.770 | -0.351 | -0.97 |
400 | 42.288 | 42.102 | -0.186 | -0.44 |
450 | 47.778 | 47.253 | -0.526 | -1.1 |
500 | 51.953 | 52.278 | +0.325 | +0.63 |
550 | 58.401 | 57.700 | -0.701 | -1.2 |
600 | 63.334 | 63.222 | -0.112 | -0.18 |
650 | 68.816 | 68.511 | -0.306 | -0.44 |
700 | 74.667 | 74.088 | -0.579 | -0.78 |
750 | 78.612 | 79.582 | +0.970 | +1.23 |
800 | 85.431 | 85.263 | -0.168 | -0.2 |
--------------------------------------------------------------
* 4 CPUs
Number of | without | with | diff | diff |
processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] |
--------------------------------------------------------------
50 | 2.586 | 2.584 | -0.003 | -0.1 |
100 | 5.254 | 5.283 | +0.030 | +0.56 |
150 | 8.012 | 8.074 | +0.061 | +0.76 |
200 | 11.172 | 11.000 | -0.172 | -1.54 |
250 | 13.917 | 14.036 | +0.119 | +0.86 |
300 | 16.905 | 16.543 | -0.362 | -2.14 |
350 | 19.901 | 20.036 | +0.135 | +0.68 |
400 | 22.908 | 23.094 | +0.186 | +0.81 |
450 | 26.273 | 26.101 | -0.172 | -0.66 |
500 | 29.554 | 29.092 | -0.461 | -1.56 |
550 | 32.377 | 32.274 | -0.103 | -0.32 |
600 | 35.855 | 35.322 | -0.533 | -1.49 |
650 | 39.192 | 38.388 | -0.804 | -2.05 |
700 | 41.744 | 41.719 | -0.025 | -0.06 |
750 | 45.016 | 44.496 | -0.520 | -1.16 |
800 | 48.212 | 47.603 | -0.609 | -1.26 |
--------------------------------------------------------------
* 8 CPUs
Number of | without | with | diff | diff |
processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] |
--------------------------------------------------------------
50 | 2.094 | 2.072 | -0.022 | -1.07 |
100 | 4.162 | 4.273 | +0.111 | +2.66 |
150 | 6.485 | 6.540 | +0.055 | +0.84 |
200 | 8.556 | 8.478 | -0.078 | -0.91 |
250 | 10.458 | 10.258 | -0.200 | -1.91 |
300 | 12.425 | 12.750 | +0.325 | +2.62 |
350 | 14.807 | 14.839 | +0.032 | +0.22 |
400 | 16.801 | 16.959 | +0.158 | +0.94 |
450 | 19.478 | 19.009 | -0.470 | -2.41 |
500 | 21.296 | 21.504 | +0.208 | +0.98 |
550 | 23.842 | 23.979 | +0.137 | +0.57 |
600 | 26.309 | 26.111 | -0.198 | -0.75 |
650 | 28.705 | 28.446 | -0.259 | -0.9 |
700 | 31.233 | 31.394 | +0.161 | +0.52 |
750 | 34.064 | 33.720 | -0.344 | -1.01 |
800 | 36.320 | 36.114 | -0.206 | -0.57 |
--------------------------------------------------------------
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Acked-by: Masami Hiramatsu <mhiramat@redhat.com>
Acked-by: 'Peter Zijlstra' <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Trying to compile the v850 port brings many compile errors, one of them exists
since at least kernel 2.6.19.
There also seems to be noone willing to bring this port back into a usable
state.
This patch therefore removes the v850 port.
If anyone ever decides to revive the v850 port the code will still be
available from older kernels, and it wouldn't be impossible for the port to
reenter the kernel if it would become actively maintained again.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This shrinks module.o and each *.ko file.
And finally, structure members which hold length of module
code (four such members there) and count of symbols
are converted from longs to ints.
We cannot possibly have a module where 32 bits won't
be enough to hold such counts.
For one, module loading checks module size for sanity
before loading, so such insanely big module will fail
that test first.
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
module.c and module.h conatains code for finding
exported symbols which are declared with EXPORT_UNUSED_SYMBOL,
and this code is compiled in even if CONFIG_UNUSED_SYMBOLS is not set
and thus there can be no EXPORT_UNUSED_SYMBOLs in modules anyway
(because EXPORT_UNUSED_SYMBOL(x) are compiled out to nothing then).
This patch adds required #ifdefs.
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
reorder struct module to save space on 64 bit builds.
saves 1 cacheline_size (128 on default x86_64 & 64 on AMD
Opteron/athlon) when CONFIG_MODULE_UNLOAD=y.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This patch fixes the following compile error with CONFIG_MODULES=n
caused by commit fb40bd78b0:
/home/bunk/linux/kernel-2.6/git/linux-2.6/kernel/marker.c: In function `marker_update_probes':
/home/bunk/linux/kernel-2.6/git/linux-2.6/kernel/marker.c:627: error: too few arguments to function `module_update_markers'
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RCU style multiple probes support for the Linux Kernel Markers. Common case
(one probe) is still fast and does not require dynamic allocation or a
supplementary pointer dereference on the fast path.
- Move preempt disable from the marker site to the callback.
Since we now have an internal callback, move the preempt disable/enable to the
callback instead of the marker site.
Since the callback change is done asynchronously (passing from a handler that
supports arguments to a handler that does not setup the arguments is no
arguments are passed), we can safely update it even if it is outside the
preempt disable section.
- Move probe arm to probe connection. Now, a connected probe is automatically
armed.
Remove MARK_MAX_FORMAT_LEN, unused.
This patch modifies the Linux Kernel Markers API : it removes the probe
"arm/disarm" and changes the probe function prototype : it now expects a
va_list * instead of a "...".
If we want to have more than one probe connected to a marker at a given
time (LTTng, or blktrace, ssytemtap) then we need this patch. Without it,
connecting a second probe handler to a marker will fail.
It allow us, for instance, to do interesting combinations :
Do standard tracing with LTTng and, eventually, to compute statistics
with SystemTAP, or to have a special trigger on an event that would call
a systemtap script which would stop flight recorder tracing.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Mason <mmlnx@us.ibm.com>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: David Smith <dsmith@redhat.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: "Frank Ch. Eigler" <fche@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild: (79 commits)
Remove references to "make dep"
kconfig: document use of HAVE_*
Introduce new section reference annotations tags: __ref, __refdata, __refconst
kbuild: warn about ld added unique sections
kbuild: add verbose option to Section mismatch reporting in modpost
kconfig: tristate choices with mixed tristate and boolean values
asm-generic/vmlix.lds.h: simplify __mem{init,exit}* dependencies
remove __attribute_used__
kbuild: support ARCH=x86 in buildtar
kconfig: remove "enable"
kbuild: simplified warning report in modpost
kbuild: introduce a few helpers in modpost
kbuild: use simpler section mismatch warnings in modpost
kbuild: link vmlinux.o before kallsyms passes
kbuild: introduce new option to enhance section mismatch analysis
Use separate sections for __dev/__cpu/__mem code/data
compiler.h: introduce __section()
all archs: consolidate init and exit sections in vmlinux.lds.h
kbuild: check section names consistently in modpost
kbuild: introduce blacklisting in modpost
...
module_address_lookup releases preemption then returns a pointer into
the module space. The only user (kallsyms) copies the result, so just
do that under the preempt disable.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>