Commit Graph

16 Commits

Author SHA1 Message Date
Vladimir Oltean
f3097be21b net: dsa: sja1105: Add a state machine for RX timestamping
Meta frame reception relies on the hardware keeping its promise that it
will send no other traffic towards the CPU port between a link-local
frame and a meta frame.  Otherwise there is no other way to associate
the meta frame with the link-local frame it's holding a timestamp of.
The receive function is made stateful, and buffers a timestampable frame
until its meta frame arrives, then merges the two, drops the meta and
releases the link-local frame up the stack.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 15:20:40 -07:00
Vladimir Oltean
844d7edc6a net: dsa: sja1105: Add a global sja1105_tagger_data structure
This will be used to keep state for RX timestamping. It is global
because the switch serializes timestampable and meta frames when
trapping them towards the CPU port (lower port indices have higher
priority) and therefore having one state machine per port would create
unnecessary complications.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 15:20:40 -07:00
Vladimir Oltean
d3f9b90bf1 net: dsa: sja1105: Build a minimal understanding of meta frames
Meta frames are sent on the CPU port by the switch if RX timestamping is
enabled. They contain a partial timestamp of the previous frame.

They are Ethernet frames with the Ethernet header constructed out of:

- SJA1105_META_DMAC
- SJA1105_META_SMAC
- ETH_P_SJA1105_META

The Ethernet payload will be decoded in a follow-up patch.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 15:20:40 -07:00
Vladimir Oltean
47ed985e97 net: dsa: sja1105: Add logic for TX timestamping
On TX, timestamping is performed synchronously from the
port_deferred_xmit worker thread.
In management routes, the switch is requested to take egress timestamps
(again partial), which are reconstructed and appended to a clone of the
skb that was just sent.  The cloning is done by DSA and we retrieve the
pointer from the structure that DSA keeps in skb->cb.
Then these clones are enqueued to the socket's error queue for
application-level processing.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 15:20:40 -07:00
Vladimir Oltean
d461933638 net: dsa: tag_8021q: Create helper function for removing VLAN header
This removes the existing implementation from tag_sja1105, which was
partially incorrect (it was not changing the MAC header offset, thereby
leaving it to point 4 bytes earlier than it should have).

This overwrites the VLAN tag by moving the Ethernet source and
destination MACs 4 bytes to the right. Then skb->data (assumed to be
pointing immediately after the EtherType) is temporarily pushed to the
beginning of the new Ethernet header, the new Ethernet header offset and
length are recorded, then skb->data is moved back to where it was.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-08 15:20:39 -07:00
Vladimir Oltean
e8d67fa569 net: dsa: sja1105: Don't store frame type in skb->cb
Due to a confusion I thought that eth_type_trans() was called by the
network stack whereas it can actually be called by network drivers to
figure out the skb protocol and next packet_type handlers.

In light of the above, it is not safe to store the frame type from the
DSA tagger's .filter callback (first entry point on RX path), since GRO
is yet to be invoked on the received traffic.  Hence it is very likely
that the skb->cb will actually get overwritten between eth_type_trans()
and the actual DSA packet_type handler.

Of course, what this patch fixes is the actual overwriting of the
SJA1105_SKB_CB(skb)->type field from the GRO layer, which made all
frames be seen as SJA1105_FRAME_TYPE_NORMAL (0).

Fixes: 227d07a07e ("net: dsa: sja1105: Add support for traffic through standalone ports")
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-31 14:27:27 -07:00
Vladimir Oltean
227d07a07e net: dsa: sja1105: Add support for traffic through standalone ports
In order to support this, we are creating a make-shift switch tag out of
a VLAN trunk configured on the CPU port. Termination of normal traffic
on switch ports only works when not under a vlan_filtering bridge.
Termination of management (PTP, BPDU) traffic works under all
circumstances because it uses a different tagging mechanism
(incl_srcpt). We are making use of the generic CONFIG_NET_DSA_TAG_8021Q
code and leveraging it from our own CONFIG_NET_DSA_TAG_SJA1105.

There are two types of traffic: regular and link-local.

The link-local traffic received on the CPU port is trapped from the
switch's regular forwarding decisions because it matched one of the two
DMAC filters for management traffic.

On transmission, the switch requires special massaging for these
link-local frames. Due to a weird implementation of the switching IP, by
default it drops link-local frames that originate on the CPU port.
It needs to be told where to forward them to, through an SPI command
("management route") that is valid for only a single frame.
So when we're sending link-local traffic, we are using the
dsa_defer_xmit mechanism.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 21:52:42 -07:00
Vladimir Oltean
f9bbe4477c net: dsa: Optional VLAN-based port separation for switches without tagging
This patch provides generic DSA code for using VLAN (802.1Q) tags for
the same purpose as a dedicated switch tag for injection/extraction.
It is based on the discussions and interest that has been so far
expressed in https://www.spinics.net/lists/netdev/msg556125.html.

Unlike all other DSA-supported tagging protocols, CONFIG_NET_DSA_TAG_8021Q
does not offer a complete solution for drivers (nor can it). Instead, it
provides generic code that driver can opt into calling:
- dsa_8021q_xmit: Inserts a VLAN header with the specified contents.
  Can be called from another tagging protocol's xmit function.
  Currently the LAN9303 driver is inserting headers that are simply
  802.1Q with custom fields, so this is an opportunity for code reuse.
- dsa_8021q_rcv: Retrieves the TPID and TCI from a VLAN-tagged skb.
  Removing the VLAN header is left as a decision for the caller to make.
- dsa_port_setup_8021q_tagging: For each user port, installs an Rx VID
  and a Tx VID, for proper untagged traffic identification on ingress
  and steering on egress. Also sets up the VLAN trunk on the upstream
  (CPU or DSA) port. Drivers are intentionally left to call this
  function explicitly, depending on the context and hardware support.
  The expected switch behavior and VLAN semantics should not be violated
  under any conditions. That is, after calling
  dsa_port_setup_8021q_tagging, the hardware should still pass all
  ingress traffic, be it tagged or untagged.

For uniformity with the other tagging protocols, a module for the
dsa_8021q_netdev_ops structure is registered, but the typical usage is
to set up another tagging protocol which selects CONFIG_NET_DSA_TAG_8021Q,
and calls the API from tag_8021q.h. Null function definitions are also
provided so that a "depends on" is not forced in the Kconfig.

This tagging protocol only works when switch ports are standalone, or
when they are added to a VLAN-unaware bridge. It will probably remain
this way for the reasons below.

When added to a bridge that has vlan_filtering 1, the bridge core will
install its own VLANs and reset the pvids through switchdev. For the
bridge core, switchdev is a write-only pipe. All VLAN-related state is
kept in the bridge core and nothing is read from DSA/switchdev or from
the driver. So the bridge core will break this port separation because
it will install the vlan_default_pvid into all switchdev ports.

Even if we could teach the bridge driver about switchdev preference of a
certain vlan_default_pvid (task difficult in itself since the current
setting is per-bridge but we would need it per-port), there would still
exist many other challenges.

Firstly, in the DSA rcv callback, a driver would have to perform an
iterative reverse lookup to find the correct switch port. That is
because the port is a bridge slave, so its Rx VID (port PVID) is subject
to user configuration. How would we ensure that the user doesn't reset
the pvid to a different value (which would make an O(1) translation
impossible), or to a non-unique value within this DSA switch tree (which
would make any translation impossible)?

Finally, not all switch ports are equal in DSA, and that makes it
difficult for the bridge to be completely aware of this anyway.
The CPU port needs to transmit tagged packets (VLAN trunk) in order for
the DSA rcv code to be able to decode source information.
But the bridge code has absolutely no idea which switch port is the CPU
port, if nothing else then just because there is no netdevice registered
by DSA for the CPU port.
Also DSA does not currently allow the user to specify that they want the
CPU port to do VLAN trunking anyway. VLANs are added to the CPU port
using the same flags as they were added on the user port.

So the VLANs installed by dsa_port_setup_8021q_tagging per driver
request should remain private from the bridge's and user's perspective,
and should not alter the VLAN semantics observed by the user.

In the current implementation a VLAN range ending at 4095 (VLAN_N_VID)
is reserved for this purpose. Each port receives a unique Rx VLAN and a
unique Tx VLAN. Separate VLANs are needed for Rx and Tx because they
serve different purposes: on Rx the switch must process traffic as
untagged and process it with a port-based VLAN, but with care not to
hinder bridging. On the other hand, the Tx VLAN is where the
reachability restrictions are imposed, since by tagging frames in the
xmit callback we are telling the switch onto which port to steer the
frame.

Some general guidance on how this support might be employed for
real-life hardware (some comments made by Florian Fainelli):

- If the hardware supports VLAN tag stacking, it should somehow back
  up its private VLAN settings when the bridge tries to override them.
  Then the driver could re-apply them as outer tags. Dedicating an outer
  tag per bridge device would allow identical inner tag VID numbers to
  co-exist, yet preserve broadcast domain isolation.

- If the switch cannot handle VLAN tag stacking, it should disable this
  port separation when added as slave to a vlan_filtering bridge, in
  that case having reduced functionality.

- Drivers for old switches that don't support the entire VLAN_N_VID
  range will need to rework the current range selection mechanism.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Vivien Didelot <vivien.didelot@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-05 21:52:42 -07:00
Vladimir Oltean
6666cebc5e net: dsa: sja1105: Add support for VLAN operations
VLAN filtering cannot be properly disabled in SJA1105. So in order to
emulate the "no VLAN awareness" behavior (not dropping traffic that is
tagged with a VID that isn't configured on the port), we need to hack
another switch feature: programmable TPID (which is 0x8100 for 802.1Q).
We are reprogramming the TPID to a bogus value which leaves the switch
thinking that all traffic is untagged, and therefore accepts it.

Under a vlan_filtering bridge, the proper TPID of ETH_P_8021Q is
installed again, and the switch starts identifying 802.1Q-tagged
traffic.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-03 10:49:17 -04:00
Vladimir Oltean
8aa9ebccae net: dsa: Introduce driver for NXP SJA1105 5-port L2 switch
At this moment the following is supported:
* Link state management through phylib
* Autonomous L2 forwarding managed through iproute2 bridge commands.

IP termination must be done currently through the master netdevice,
since the switch is unmanaged at this point and using
DSA_TAG_PROTO_NONE.

Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Georg Waibel <georg.waibel@sensor-technik.de>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-03 10:49:17 -04:00
Egil Hjelmeland
b17c6b1f45 net: dsa: lan9303: phy_addr_sel_strap rename and retype
chip->phy_addr_sel_strap is declared as a bool, but is also used as an
integer address base.

Rename 'phy_addr_sel_strap' to 'phy_addr_base', and change type to int.

Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-04 13:35:07 -05:00
Egil Hjelmeland
2e8d243e88 net: dsa: lan9303: Protect ALR operations with mutex
ALR table operations are a sequence of related register operations which
should be protected from concurrent access. The alr_cache should also be
protected. Add alr_mutex doing that.

Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-08 14:12:33 -05:00
Egil Hjelmeland
620a5c860b net: dsa: lan9303: Correct register names in comments
Two comments refer to registers, but lack the LAN9303_ prefix.
Fix that.

Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no>
Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-08 13:29:05 +09:00
Egil Hjelmeland
054287295b net: Define eth_stp_addr in linux/etherdevice.h
The lan9303 driver defines eth_stp_addr as a synonym to
eth_reserved_addr_base to get the STP ethernet address 01:80:c2:00:00:00.

eth_reserved_addr_base is also used to define the start of Bridge Reserved
ethernet address range, which happen to be the STP address.

br_dev_setup refer to eth_reserved_addr_base as a definition of STP
address.

Clean up by:
 - Move the eth_stp_addr definition to linux/etherdevice.h
 - Use eth_stp_addr instead of eth_reserved_addr_base in br_dev_setup.

Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-03 14:17:39 +09:00
Egil Hjelmeland
e9292f2c03 net: dsa: lan9303: Add STP ALR entry on port 0
STP BPDUs arriving on user ports must sent to CPU port only,
for processing by the SW bridge.

Add an ALR entry with STP state override to fix that.

Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-01 21:30:24 +09:00
Egil Hjelmeland
356c3e9afa net: dsa: lan9303: Move struct lan9303 to include/linux/dsa/lan9303.h
The next patch require net/dsa/tag_lan9303.c to access struct lan9303.
Therefore move struct lan9303 definitions from drivers/net/dsa/lan9303.h
to new file include/linux/dsa/lan9303.h.

Signed-off-by: Egil Hjelmeland <privat@egil-hjelmeland.no>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 23:30:53 +09:00