mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 22:00:15 +07:00
645e64662a
279 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Johannes Weiner
|
b910718a94 |
mm: vmscan: detect file thrashing at the reclaim root
We use refault information to determine whether the cache workingset is stable or transitioning, and dynamically adjust the inactive:active file LRU ratio so as to maximize protection from one-off cache during stable periods, and minimize IO during transitions. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, refaults only affect the local LRU order in the cgroup in which they are occuring. As a result, cache transitions can take longer in a cgrouped system as the active pages of sibling cgroups aren't challenged when they should be. [ Right now, this is somewhat theoretical, because the siblings, under continued regular reclaim pressure, should eventually run out of inactive pages - and since inactive:active *size* balancing is also done on a cgroup-local level, we will challenge the active pages eventually in most cases. But the next patch will move that relative size enforcement to the reclaim root as well, and then this patch here will be necessary to propagate refault pressure to siblings. ] This patch moves refault detection to the root of reclaim. Instead of remembering the cgroup owner of an evicted page, remember the cgroup that caused the reclaim to happen. When refaults later occur, they'll correctly influence the cross-cgroup LRU order that reclaim follows. I.e. if global reclaim kicked out pages in some subgroup A/B/C, the refault of those pages will challenge the global LRU order, and not just the local order down inside C. [hannes@cmpxchg.org: use page_memcg() instead of another lookup] Link: http://lkml.kernel.org/r/20191115160722.GA309754@cmpxchg.org Link: http://lkml.kernel.org/r/20191107205334.158354-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
1a4e58cce8 |
mm: introduce MADV_PAGEOUT
When a process expects no accesses to a certain memory range for a long time, it could hint kernel that the pages can be reclaimed instantly but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall. MADV_PAGEOUT can be used by a process to mark a memory range as not expected to be used for a long time so that kernel reclaims *any LRU* pages instantly. The hint can help kernel in deciding which pages to evict proactively. A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit intentionally because it's automatically bounded by PMD size. If PMD size(e.g., 256) makes some trouble, we could fix it later by limit it to SWAP_CLUSTER_MAX[1]. - man-page material MADV_PAGEOUT (since Linux x.x) Do not expect access in the near future so pages in the specified regions could be reclaimed instantly regardless of memory pressure. Thus, access in the range after successful operation could cause major page fault but never lose the up-to-date contents unlike MADV_DONTNEED. Pages belonging to a shared mapping are only processed if a write access is allowed for the calling process. MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/ [minchan@kernel.org: clear PG_active on MADV_PAGEOUT] Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
9c276cc65a |
mm: introduce MADV_COLD
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7. - Background The Android terminology used for forking a new process and starting an app from scratch is a cold start, while resuming an existing app is a hot start. While we continually try to improve the performance of cold starts, hot starts will always be significantly less power hungry as well as faster so we are trying to make hot start more likely than cold start. To increase hot start, Android userspace manages the order that apps should be killed in a process called ActivityManagerService. ActivityManagerService tracks every Android app or service that the user could be interacting with at any time and translates that into a ranked list for lmkd(low memory killer daemon). They are likely to be killed by lmkd if the system has to reclaim memory. In that sense they are similar to entries in any other cache. Those apps are kept alive for opportunistic performance improvements but those performance improvements will vary based on the memory requirements of individual workloads. - Problem Naturally, cached apps were dominant consumers of memory on the system. However, they were not significant consumers of swap even though they are good candidate for swap. Under investigation, swapping out only begins once the low zone watermark is hit and kswapd wakes up, but the overall allocation rate in the system might trip lmkd thresholds and cause a cached process to be killed(we measured performance swapping out vs. zapping the memory by killing a process. Unsurprisingly, zapping is 10x times faster even though we use zram which is much faster than real storage) so kill from lmkd will often satisfy the high zone watermark, resulting in very few pages actually being moved to swap. - Approach The approach we chose was to use a new interface to allow userspace to proactively reclaim entire processes by leveraging platform information. This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages that are known to be cold from userspace and to avoid races with lmkd by reclaiming apps as soon as they entered the cached state. Additionally, it could provide many chances for platform to use much information to optimize memory efficiency. To achieve the goal, the patchset introduce two new options for madvise. One is MADV_COLD which will deactivate activated pages and the other is MADV_PAGEOUT which will reclaim private pages instantly. These new options complement MADV_DONTNEED and MADV_FREE by adding non-destructive ways to gain some free memory space. MADV_PAGEOUT is similar to MADV_DONTNEED in a way that it hints the kernel that memory region is not currently needed and should be reclaimed immediately; MADV_COLD is similar to MADV_FREE in a way that it hints the kernel that memory region is not currently needed and should be reclaimed when memory pressure rises. This patch (of 5): When a process expects no accesses to a certain memory range, it could give a hint to kernel that the pages can be reclaimed when memory pressure happens but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_COLD hint to madvise(2) syscall. MADV_COLD can be used by a process to mark a memory range as not expected to be used in the near future. The hint can help kernel in deciding which pages to evict early during memory pressure. It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves active file page -> inactive file LRU active anon page -> inacdtive anon LRU Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file LRU's head because MADV_COLD is a little bit different symantic. MADV_FREE means it's okay to discard when the memory pressure because the content of the page is *garbage* so freeing such pages is almost zero overhead since we don't need to swap out and access afterward causes just minor fault. Thus, it would make sense to put those freeable pages in inactive file LRU to compete other used-once pages. It makes sense for implmentaion point of view, too because it's not swapbacked memory any longer until it would be re-dirtied. Even, it could give a bonus to make them be reclaimed on swapless system. However, MADV_COLD doesn't mean garbage so reclaiming them requires swap-out/in in the end so it's bigger cost. Since we have designed VM LRU aging based on cost-model, anonymous cold pages would be better to position inactive anon's LRU list, not file LRU. Furthermore, it would help to avoid unnecessary scanning if system doesn't have a swap device. Let's start simpler way without adding complexity at this moment. However, keep in mind, too that it's a caveat that workloads with a lot of pages cache are likely to ignore MADV_COLD on anonymous memory because we rarely age anonymous LRU lists. * man-page material MADV_COLD (since Linux x.x) Pages in the specified regions will be treated as less-recently-accessed compared to pages in the system with similar access frequencies. In contrast to MADV_FREE, the contents of the region are preserved regardless of subsequent writes to pages. MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aaron Lu
|
4efaceb1c5 |
mm, swap: use rbtree for swap_extent
swap_extent is used to map swap page offset to backing device's block offset. For a continuous block range, one swap_extent is used and all these swap_extents are managed in a linked list. These swap_extents are used by map_swap_entry() during swap's read and write path. To find out the backing device's block offset for a page offset, the swap_extent list will be traversed linearly, with curr_swap_extent being used as a cache to speed up the search. This works well as long as swap_extents are not huge or when the number of processes that access swap device are few, but when the swap device has many extents and there are a number of processes accessing the swap device concurrently, it can be a problem. On one of our servers, the disk's remaining size is tight: $df -h Filesystem Size Used Avail Use% Mounted on ... ... /dev/nvme0n1p1 1.8T 1.3T 504G 72% /home/t4 When creating a 80G swapfile there, there are as many as 84656 swap extents. The end result is, kernel spends abou 30% time in map_swap_entry() and swap throughput is only 70MB/s. As a comparison, when I used smaller sized swapfile, like 4G whose swap_extent dropped to 2000, swap throughput is back to 400-500MB/s and map_swap_entry() is about 3%. One downside of using rbtree for swap_extent is, 'struct rbtree' takes 24 bytes while 'struct list_head' takes 16 bytes, that's 8 bytes more for each swap_extent. For a swapfile that has 80k swap_extents, that means 625KiB more memory consumed. Test: Since it's not possible to reboot that server, I can not test this patch diretly there. Instead, I tested it on another server with NVMe disk. I created a 20G swapfile on an NVMe backed XFS fs. By default, the filesystem is quite clean and the created swapfile has only 2 extents. Testing vanilla and this patch shows no obvious performance difference when swapfile is not fragmented. To see the patch's effects, I used some tweaks to manually fragment the swapfile by breaking the extent at 1M boundary. This made the swapfile have 20K extents. nr_task=4 kernel swapout(KB/s) map_swap_entry(perf) swapin(KB/s) map_swap_entry(perf) vanilla 165191 90.77% 171798 90.21% patched 858993 +420% 2.16% 715827 +317% 0.77% nr_task=8 kernel swapout(KB/s) map_swap_entry(perf) swapin(KB/s) map_swap_entry(perf) vanilla 306783 92.19% 318145 87.76% patched 954437 +211% 2.35% 1073741 +237% 1.57% swapout: the throughput of swap out, in KB/s, higher is better 1st map_swap_entry: cpu cycles percent sampled by perf swapin: the throughput of swap in, in KB/s, higher is better. 2nd map_swap_entry: cpu cycles percent sampled by perf nr_task=1 doesn't show any difference, this is due to the curr_swap_extent can be effectively used to cache the correct swap extent for single task workload. [akpm@linux-foundation.org: s/BUG_ON(1)/BUG()/] Link: http://lkml.kernel.org/r/20190523142404.GA181@aaronlu Signed-off-by: Aaron Lu <ziqian.lzq@antfin.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
eb085574a7 |
mm, swap: fix race between swapoff and some swap operations
When swapin is performed, after getting the swap entry information from
the page table, system will swap in the swap entry, without any lock held
to prevent the swap device from being swapoff. This may cause the race
like below,
CPU 1 CPU 2
----- -----
do_swap_page
swapin_readahead
__read_swap_cache_async
swapoff swapcache_prepare
p->swap_map = NULL __swap_duplicate
p->swap_map[?] /* !!! NULL pointer access */
Because swapoff is usually done when system shutdown only, the race may
not hit many people in practice. But it is still a race need to be fixed.
To fix the race, get_swap_device() is added to check whether the specified
swap entry is valid in its swap device. If so, it will keep the swap
entry valid via preventing the swap device from being swapoff, until
put_swap_device() is called.
Because swapoff() is very rare code path, to make the normal path runs as
fast as possible, rcu_read_lock/unlock() and synchronize_rcu() instead of
reference count is used to implement get/put_swap_device(). >From
get_swap_device() to put_swap_device(), RCU reader side is locked, so
synchronize_rcu() in swapoff() will wait until put_swap_device() is
called.
In addition to swap_map, cluster_info, etc. data structure in the struct
swap_info_struct, the swap cache radix tree will be freed after swapoff,
so this patch fixes the race between swap cache looking up and swapoff
too.
Races between some other swap cache usages and swapoff are fixed too via
calling synchronize_rcu() between clearing PageSwapCache() and freeing
swap cache data structure.
Another possible method to fix this is to use preempt_off() +
stop_machine() to prevent the swap device from being swapoff when its data
structure is being accessed. The overhead in hot-path of both methods is
similar. The advantages of RCU based method are,
1. stop_machine() may disturb the normal execution code path on other
CPUs.
2. File cache uses RCU to protect its radix tree. If the similar
mechanism is used for swap cache too, it is easier to share code
between them.
3. RCU is used to protect swap cache in total_swapcache_pages() and
exit_swap_address_space() already. The two mechanisms can be
merged to simplify the logic.
Link: http://lkml.kernel.org/r/20190522015423.14418-1-ying.huang@intel.com
Fixes:
|
||
Pi-Hsun Shih
|
a4046c06be |
include/linux/swap.h: use offsetof() instead of custom __swapoffset macro
Use offsetof() to calculate offset of a field to take advantage of compiler built-in version when possible, and avoid UBSAN warning when compiling with Clang: UBSAN: Undefined behaviour in mm/swapfile.c:3010:38 member access within null pointer of type 'union swap_header' CPU: 6 PID: 1833 Comm: swapon Tainted: G S 4.19.23 #43 Call trace: dump_backtrace+0x0/0x194 show_stack+0x20/0x2c __dump_stack+0x20/0x28 dump_stack+0x70/0x94 ubsan_epilogue+0x14/0x44 ubsan_type_mismatch_common+0xf4/0xfc __ubsan_handle_type_mismatch_v1+0x34/0x54 __se_sys_swapon+0x654/0x1084 __arm64_sys_swapon+0x1c/0x24 el0_svc_common+0xa8/0x150 el0_svc_compat_handler+0x2c/0x38 el0_svc_compat+0x8/0x18 Link: http://lkml.kernel.org/r/20190312081902.223764-1-pihsun@chromium.org Signed-off-by: Pi-Hsun Shih <pihsun@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
a7ca12f9d9 |
mm/workingset: remove unused @mapping argument in workingset_eviction()
workingset_eviction() doesn't use and never did use the @mapping argument. Remove it. Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
59118c42a6 |
mm: swap: use mem_cgroup_is_root() instead of deferencing css->parent
mem_cgroup_is_root() is the preferred API to check if memcg is root or not. Use it instead of deferencing css->parent. Link: http://lkml.kernel.org/r/1547232913-118148-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aaron Lu
|
66f71da9dd |
mm/swap: use nr_node_ids for avail_lists in swap_info_struct
Since
|
||
Wei Yang
|
8b09549c2b |
vmscan: return NODE_RECLAIM_NOSCAN in node_reclaim() when CONFIG_NUMA is n
Commit
|
||
Arun KS
|
ca79b0c211 |
mm: convert totalram_pages and totalhigh_pages variables to atomic
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Suggested-by: Michal Hocko <mhocko@suse.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jani Nikula
|
2ac5e38ea4 |
Merge drm/drm-next into drm-intel-next-queued
Pull in v4.20-rc3 via drm-next. Signed-off-by: Jani Nikula <jani.nikula@intel.com> |
||
Kuo-Hsin Yang
|
64e3d12f76 |
mm, drm/i915: mark pinned shmemfs pages as unevictable
The i915 driver uses shmemfs to allocate backing storage for gem objects. These shmemfs pages can be pinned (increased ref count) by shmem_read_mapping_page_gfp(). When a lot of pages are pinned, vmscan wastes a lot of time scanning these pinned pages. In some extreme case, all pages in the inactive anon lru are pinned, and only the inactive anon lru is scanned due to inactive_ratio, the system cannot swap and invokes the oom-killer. Mark these pinned pages as unevictable to speed up vmscan. Export pagevec API check_move_unevictable_pages(). This patch was inspired by Chris Wilson's change [1]. [1]: https://patchwork.kernel.org/patch/9768741/ Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Kuo-Hsin Yang <vovoy@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> # mm part Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Link: https://patchwork.freedesktop.org/patch/msgid/20181106132324.17390-1-chris@chris-wilson.co.uk Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> |
||
Linus Torvalds
|
dad4f140ed |
Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox: "The XArray provides an improved interface to the radix tree data structure, providing locking as part of the API, specifying GFP flags at allocation time, eliminating preloading, less re-walking the tree, more efficient iterations and not exposing RCU-protected pointers to its users. This patch set 1. Introduces the XArray implementation 2. Converts the pagecache to use it 3. Converts memremap to use it The page cache is the most complex and important user of the radix tree, so converting it was most important. Converting the memremap code removes the only other user of the multiorder code, which allows us to remove the radix tree code that supported it. I have 40+ followup patches to convert many other users of the radix tree over to the XArray, but I'd like to get this part in first. The other conversions haven't been in linux-next and aren't suitable for applying yet, but you can see them in the xarray-conv branch if you're interested" * 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits) radix tree: Remove multiorder support radix tree test: Convert multiorder tests to XArray radix tree tests: Convert item_delete_rcu to XArray radix tree tests: Convert item_kill_tree to XArray radix tree tests: Move item_insert_order radix tree test suite: Remove multiorder benchmarking radix tree test suite: Remove __item_insert memremap: Convert to XArray xarray: Add range store functionality xarray: Move multiorder_check to in-kernel tests xarray: Move multiorder_shrink to kernel tests xarray: Move multiorder account test in-kernel radix tree test suite: Convert iteration test to XArray radix tree test suite: Convert tag_tagged_items to XArray radix tree: Remove radix_tree_clear_tags radix tree: Remove radix_tree_maybe_preload_order radix tree: Remove split/join code radix tree: Remove radix_tree_update_node_t page cache: Finish XArray conversion dax: Convert page fault handlers to XArray ... |
||
Omar Sandoval
|
bc4ae27d81 |
mm: split SWP_FILE into SWP_ACTIVATED and SWP_FS
The SWP_FILE flag serves two purposes: to make swap_{read,write}page() go through the filesystem, and to make swapoff() call ->swap_deactivate(). For Btrfs, we want the latter but not the former, so split this flag into two. This makes us always call ->swap_deactivate() if ->swap_activate() succeeded, not just if it didn't add any swap extents itself. This also resolves the issue of the very misleading name of SWP_FILE, which is only used for swap files over NFS. Link: http://lkml.kernel.org/r/6d63d8668c4287a4f6d203d65696e96f80abdfc7.1536704650.git.osandov@fb.com Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Sterba <dsterba@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1899ad18c6 |
mm: workingset: tell cache transitions from workingset thrashing
Refaults happen during transitions between workingsets as well as in-place thrashing. Knowing the difference between the two has a range of applications, including measuring the impact of memory shortage on the system performance, as well as the ability to smarter balance pressure between the filesystem cache and the swap-backed workingset. During workingset transitions, inactive cache refaults and pushes out established active cache. When that active cache isn't stale, however, and also ends up refaulting, that's bonafide thrashing. Introduce a new page flag that tells on eviction whether the page has been active or not in its lifetime. This bit is then stored in the shadow entry, to classify refaults as transitioning or thrashing. How many page->flags does this leave us with on 32-bit? 20 bits are always page flags 21 if you have an MMU 23 with the zone bits for DMA, Normal, HighMem, Movable 29 with the sparsemem section bits 30 if PAE is enabled 31 with this patch. So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If that's not enough, the system can switch to discontigmem and re-gain the 6 or 7 sparsemem section bits. Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
4e17ec250f |
mm: Convert delete_from_swap_cache to XArray
Both callers of __delete_from_swap_cache have the swp_entry_t already, so pass that in to make constructing the XA_STATE easier. Signed-off-by: Matthew Wilcox <willy@infradead.org> |
||
Matthew Wilcox
|
a97e7904c0 |
mm: Convert workingset to XArray
We construct an XA_STATE and use it to delete the node with xas_store() rather than adding a special function for this unique use case. Includes a test that simulates this usage for the test suite. Signed-off-by: Matthew Wilcox <willy@infradead.org> |
||
Matthew Wilcox
|
74d609585d |
page cache: Add and replace pages using the XArray
Use the XArray APIs to add and replace pages in the page cache. This removes two uses of the radix tree preload API and is significantly shorter code. It also removes the last user of __radix_tree_create() outside radix-tree.c itself, so make it static. Signed-off-by: Matthew Wilcox <willy@infradead.org> |
||
Huang Ying
|
5d5e8f1954 |
mm, swap, get_swap_pages: use entry_size instead of cluster in parameter
As suggested by Matthew Wilcox, it is better to use "int entry_size" instead of "bool cluster" as parameter to specify whether to operate for huge or normal swap entries. Because this improve the flexibility to support other swap entry size. And Dave Hansen thinks that this improves code readability too. So in this patch, the "bool cluster" parameter of get_swap_pages() is replaced by "int entry_size". And nr_swap_entries() trick is used to reduce the binary size when !CONFIG_TRANSPARENT_HUGE_PAGE. text data bss dec hex filename base 24215 2028 340 26583 67d7 mm/swapfile.o head 24123 2004 340 26467 6763 mm/swapfile.o Link: http://lkml.kernel.org/r/20180720071845.17920-7-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tejun Heo
|
2cf855837b |
memcontrol: schedule throttling if we are congested
Memory allocations can induce swapping via kswapd or direct reclaim. If we are having IO done for us by kswapd and don't actually go into direct reclaim we may never get scheduled for throttling. So instead check to see if our cgroup is congested, and if so schedule the throttling. Before we return to user space the throttling stuff will only throttle if we actually required it. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Jonathan Corbet
|
24844fd339 |
Merge branch 'mm-rst' into docs-next
Mike Rapoport says: These patches convert files in Documentation/vm to ReST format, add an initial index and link it to the top level documentation. There are no contents changes in the documentation, except few spelling fixes. The relatively large diffstat stems from the indentation and paragraph wrapping changes. I've tried to keep the formatting as consistent as possible, but I could miss some places that needed markup and add some markup where it was not necessary. [jc: significant conflicts in vm/hmm.rst] |
||
Mike Rapoport
|
ad56b738c5 |
docs/vm: rename documentation files to .rst
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Minchan Kim
|
e9e9b7ecee |
mm: swap: unify cluster-based and vma-based swap readahead
This patch makes do_swap_page() not need to be aware of two different swap readahead algorithms. Just unify cluster-based and vma-based readahead function call. Link: http://lkml.kernel.org/r/1509520520-32367-3-git-send-email-minchan@kernel.org Link: http://lkml.kernel.org/r/20180220085249.151400-3-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
eaf649ebc3 |
mm: swap: clean up swap readahead
When I see recent change of swap readahead, I am very unhappy about current code structure which diverges two swap readahead algorithm in do_swap_page. This patch is to clean it up. Main motivation is that fault handler doesn't need to be aware of readahead algorithms but just should call swapin_readahead. As first step, this patch cleans up a little bit but not perfect (I just separate for review easier) so next patch will make the goal complete. [minchan@kernel.org: do not check readahead flag with THP anon] Link: http://lkml.kernel.org/r/874lm83zho.fsf@yhuang-dev.intel.com Link: http://lkml.kernel.org/r/20180227232611.169883-1-minchan@kernel.org Link: http://lkml.kernel.org/r/1509520520-32367-2-git-send-email-minchan@kernel.org Link: http://lkml.kernel.org/r/20180220085249.151400-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
9c4e6b1a70 |
mm, mlock, vmscan: no more skipping pagevecs
When a thread mlocks an address space backed either by file pages which are currently not present in memory or swapped out anon pages (not in swapcache), a new page is allocated and added to the local pagevec (lru_add_pvec), I/O is triggered and the thread then sleeps on the page. On I/O completion, the thread can wake on a different CPU, the mlock syscall will then sets the PageMlocked() bit of the page but will not be able to put that page in unevictable LRU as the page is on the pagevec of a different CPU. Even on drain, that page will go to evictable LRU because the PageMlocked() bit is not checked on pagevec drain. The page will eventually go to right LRU on reclaim but the LRU stats will remain skewed for a long time. This patch puts all the pages, even unevictable, to the pagevecs and on the drain, the pages will be added on their LRUs correctly by checking their evictability. This resolves the mlocked pages on pagevec of other CPUs issue because when those pagevecs will be drained, the mlocked file pages will go to unevictable LRU. Also this makes the race with munlock easier to resolve because the pagevec drains happen in LRU lock. However there is still one place which makes a page evictable and does PageLRU check on that page without LRU lock and needs special attention. TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock(). #0: __pagevec_lru_add_fn #1: clear_page_mlock SetPageLRU() if (!TestClearPageMlocked()) return smp_mb() // <--required // inside does PageLRU if (!PageMlocked()) if (isolate_lru_page()) move to evictable LRU putback_lru_page() else move to unevictable LRU In '#1', TestClearPageMlocked() provides full memory barrier semantics and thus the PageLRU check (inside isolate_lru_page) can not be reordered before it. In '#0', without explicit memory barrier, the PageMlocked() check can be reordered before SetPageLRU(). If that happens, '#0' can put a page in unevictable LRU and '#1' might have just cleared the Mlocked bit of that page but fails to isolate as PageLRU fails as '#0' still hasn't set PageLRU bit of that page. That page will be stranded on the unevictable LRU. There is one (good) side effect though. Without this patch, the pages allocated for System V shared memory segment are added to evictable LRUs even after shmctl(SHM_LOCK) on that segment. This patch will correctly put such pages to unevictable LRU. Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Jan Kara <jack@suse.cz> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jan Kara
|
a4ef876841 |
mm: remove unused pgdat_reclaimable_pages()
Remove unused function pgdat_reclaimable_pages() and node_page_state_snapshot() which becomes unused as well. Link: http://lkml.kernel.org/r/20171122094416.26019-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
9852a72123 |
mm: drop hotplug lock from lru_add_drain_all()
Pulling cpu hotplug locks inside the mm core function like
lru_add_drain_all just asks for problems and the recent lockdep splat
[1] just proves this. While the usage in that particular case might be
wrong we should avoid the locking as lru_add_drain_all() is used in many
places. It seems that this is not all that hard to achieve actually.
We have done the same thing for drain_all_pages which is analogous by
commit
|
||
Mel Gorman
|
c6f92f9fbe |
mm: remove cold parameter for release_pages
All callers of release_pages claim the pages being released are cache hot. As no one cares about the hotness of pages being released to the allocator, just ditch the parameter. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. Link: http://lkml.kernel.org/r/20171018075952.10627-7-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c7df8ad291 |
mm, truncate: do not check mapping for every page being truncated
During truncation, the mapping has already been checked for shmem and dax so it's known that workingset_update_node is required. This patch avoids the checks on mapping for each page being truncated. In all other cases, a lookup helper is used to determine if workingset_update_node() needs to be called. The one danger is that the API is slightly harder to use as calling workingset_update_node directly without checking for dax or shmem mappings could lead to surprises. However, the API rarely needs to be used and hopefully the comment is enough to give people the hint. sparsetruncate (tiny) 4.14.0-rc4 4.14.0-rc4 oneirq-v1r1 pickhelper-v1r1 Min Time 141.00 ( 0.00%) 140.00 ( 0.71%) 1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%) 2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%) 3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%) Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%) Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%) Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%) Max Time 230.00 ( 0.00%) 205.00 ( 10.87%) Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%) Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%) Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%) Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%) Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%) Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%) Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%) Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%) Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%) As you'd expect, the gain is marginal but it can be detected. The differences in bonnie are all within the noise which is not surprising given the impact on the microbenchmark. radix_tree_update_node_t is a callback for some radix operations that optionally passes in a private field. The only user of the callback is workingset_update_node and as it no longer requires a mapping, the private field is removed. Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
aa8d22a11d |
mm: swap: SWP_SYNCHRONOUS_IO: skip swapcache only if swapped page has no other reference
When SWP_SYNCHRONOUS_IO swapped-in pages are shared by several processes, it can cause unnecessary memory wastage by skipping swap cache. Because, with swapin fault by read, they could share a page if the page were in swap cache. Thus, it avoids allocating same content new pages. This patch makes the swapcache skipping work only if the swap pte is non-sharable. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1507620825-5537-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
0bcac06f27 |
mm, swap: skip swapcache for swapin of synchronous device
With fast swap storage, the platforms want to use swap more aggressively and swap-in is crucial to application latency. The rw_page() based synchronous devices like zram, pmem and btt are such fast storage. When I profile swapin performance with zram lz4 decompress test, S/W overhead is more than 70%. Maybe, it would be bigger in nvdimm. This patch aims to reduce swap-in latency by skipping swapcache if the swap device is synchronous device like rw_page based device. It enhances 45% my swapin test(5G sequential swapin, no readahead, from 2.41sec to 1.64sec). Link: http://lkml.kernel.org/r/1505886205-9671-5-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
539a6fea7f |
mm, swap: introduce SWP_SYNCHRONOUS_IO
If rw-page based fast storage is used for swap devices, we need to detect it to enhance swap IO operations. This patch is preparation for optimizing of swap-in operation with next patch. Link: http://lkml.kernel.org/r/1505886205-9671-4-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
2628bd6fc0 |
mm, swap: fix race between swap count continuation operations
One page may store a set of entries of the sis->swap_map
(swap_info_struct->swap_map) in multiple swap clusters.
If some of the entries has sis->swap_map[offset] > SWAP_MAP_MAX,
multiple pages will be used to store the set of entries of the
sis->swap_map. And the pages are linked with page->lru. This is called
swap count continuation. To access the pages which store the set of
entries of the sis->swap_map simultaneously, previously, sis->lock is
used. But to improve the scalability of __swap_duplicate(), swap
cluster lock may be used in swap_count_continued() now. This may race
with add_swap_count_continuation() which operates on a nearby swap
cluster, in which the sis->swap_map entries are stored in the same page.
The race can cause wrong swap count in practice, thus cause unfreeable
swap entries or software lockup, etc.
To fix the race, a new spin lock called cont_lock is added to struct
swap_info_struct to protect the swap count continuation page list. This
is a lock at the swap device level, so the scalability isn't very well.
But it is still much better than the original sis->lock, because it is
only acquired/released when swap count continuation is used. Which is
considered rare in practice. If it turns out that the scalability
becomes an issue for some workloads, we can split the lock into some
more fine grained locks.
Link: http://lkml.kernel.org/r/20171017081320.28133-1-ying.huang@intel.com
Fixes:
|
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Jérôme Glisse
|
5042db43cc |
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory
HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aaron Lu
|
a2468cc9bf |
swap: choose swap device according to numa node
If the system has more than one swap device and swap device has the node information, we can make use of this information to decide which swap device to use in get_swap_pages() to get better performance. The current code uses a priority based list, swap_avail_list, to decide which swap device to use and if multiple swap devices share the same priority, they are used round robin. This patch changes the previous single global swap_avail_list into a per-numa-node list, i.e. for each numa node, it sees its own priority based list of available swap devices. Swap device's priority can be promoted on its matching node's swap_avail_list. The current swap device's priority is set as: user can set a >=0 value, or the system will pick one starting from -1 then downwards. The priority value in the swap_avail_list is the negated value of the swap device's due to plist being sorted from low to high. The new policy doesn't change the semantics for priority >=0 cases, the previous starting from -1 then downwards now becomes starting from -2 then downwards and -1 is reserved as the promoted value. Take 4-node EX machine as an example, suppose 4 swap devices are available, each sit on a different node: swapA on node 0 swapB on node 1 swapC on node 2 swapD on node 3 After they are all swapped on in the sequence of ABCD. Current behaviour: their priorities will be: swapA: -1 swapB: -2 swapC: -3 swapD: -4 And their position in the global swap_avail_list will be: swapA -> swapB -> swapC -> swapD prio:1 prio:2 prio:3 prio:4 New behaviour: their priorities will be(note that -1 is skipped): swapA: -2 swapB: -3 swapC: -4 swapD: -5 And their positions in the 4 swap_avail_lists[nid] will be: swap_avail_lists[0]: /* node 0's available swap device list */ swapA -> swapB -> swapC -> swapD prio:1 prio:3 prio:4 prio:5 swap_avali_lists[1]: /* node 1's available swap device list */ swapB -> swapA -> swapC -> swapD prio:1 prio:2 prio:4 prio:5 swap_avail_lists[2]: /* node 2's available swap device list */ swapC -> swapA -> swapB -> swapD prio:1 prio:2 prio:3 prio:5 swap_avail_lists[3]: /* node 3's available swap device list */ swapD -> swapA -> swapB -> swapC prio:1 prio:2 prio:3 prio:4 To see the effect of the patch, a test that starts N process, each mmap a region of anonymous memory and then continually write to it at random position to trigger both swap in and out is used. On a 2 node Skylake EP machine with 64GiB memory, two 170GB SSD drives are used as swap devices with each attached to a different node, the result is: runtime=30m/processes=32/total test size=128G/each process mmap region=4G kernel throughput vanilla 13306 auto-binding 15169 +14% runtime=30m/processes=64/total test size=128G/each process mmap region=2G kernel throughput vanilla 11885 auto-binding 14879 +25% [aaron.lu@intel.com: v2] Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com [akpm@linux-foundation.org: use kmalloc_array()] Link: http://lkml.kernel.org/r/20170814053130.GD2369@aaronlu.sh.intel.com Link: http://lkml.kernel.org/r/20170816024439.GA10925@aaronlu.sh.intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: "Chen, Tim C" <tim.c.chen@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
81a0298bdf |
mm, swap: don't use VMA based swap readahead if HDD is used as swap
VMA based swap readahead will readahead the virtual pages that is continuous in the virtual address space. While the original swap readahead will readahead the swap slots that is continuous in the swap device. Although VMA based swap readahead is more correct for the swap slots to be readahead, it will trigger more small random readings, which may cause the performance of HDD (hard disk) to degrade heavily, and may finally exceed the benefit. To avoid the issue, in this patch, if the HDD is used as swap, the VMA based swap readahead will be disabled, and the original swap readahead will be used instead. Link: http://lkml.kernel.org/r/20170807054038.1843-6-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
ec560175c0 |
mm, swap: VMA based swap readahead
The swap readahead is an important mechanism to reduce the swap in latency. Although pure sequential memory access pattern isn't very popular for anonymous memory, the space locality is still considered valid. In the original swap readahead implementation, the consecutive blocks in swap device are readahead based on the global space locality estimation. But the consecutive blocks in swap device just reflect the order of page reclaiming, don't necessarily reflect the access pattern in virtual memory. And the different tasks in the system may have different access patterns, which makes the global space locality estimation incorrect. In this patch, when page fault occurs, the virtual pages near the fault address will be readahead instead of the swap slots near the fault swap slot in swap device. This avoid to readahead the unrelated swap slots. At the same time, the swap readahead is changed to work on per-VMA from globally. So that the different access patterns of the different VMAs could be distinguished, and the different readahead policy could be applied accordingly. The original core readahead detection and scaling algorithm is reused, because it is an effect algorithm to detect the space locality. The test and result is as follow, Common test condition ===================== Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM) Swap device: NVMe disk Micro-benchmark with combined access pattern ============================================ vm-scalability, sequential swap test case, 4 processes to eat 50G virtual memory space, repeat the sequential memory writing until 300 seconds. The first round writing will trigger swap out, the following rounds will trigger sequential swap in and out. At the same time, run vm-scalability random swap test case in background, 8 processes to eat 30G virtual memory space, repeat the random memory write until 300 seconds. This will trigger random swap-in in the background. This is a combined workload with sequential and random memory accessing at the same time. The result (for sequential workload) is as follow, Base Optimized ---- --------- throughput 345413 KB/s 414029 KB/s (+19.9%) latency.average 97.14 us 61.06 us (-37.1%) latency.50th 2 us 1 us latency.60th 2 us 1 us latency.70th 98 us 2 us latency.80th 160 us 2 us latency.90th 260 us 217 us latency.95th 346 us 369 us latency.99th 1.34 ms 1.09 ms ra_hit% 52.69% 99.98% The original swap readahead algorithm is confused by the background random access workload, so readahead hit rate is lower. The VMA-base readahead algorithm works much better. Linpack ======= The test memory size is bigger than RAM to trigger swapping. Base Optimized ---- --------- elapsed_time 393.49 s 329.88 s (-16.2%) ra_hit% 86.21% 98.82% The score of base and optimized kernel hasn't visible changes. But the elapsed time reduced and readahead hit rate improved, so the optimized kernel runs better for startup and tear down stages. And the absolute value of readahead hit rate is high, shows that the space locality is still valid in some practical workloads. Link: http://lkml.kernel.org/r/20170807054038.1843-4-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c41f012ade |
mm: rename global_page_state to global_zone_page_state
global_page_state is error prone as a recent bug report pointed out [1]. It only returns proper values for zone based counters as the enum it gets suggests. We already have global_node_page_state so let's rename global_page_state to global_zone_page_state to be more explicit here. All existing users seems to be correct: $ git grep "global_page_state(NR_" | sed 's@.*(\(NR_[A-Z_]*\)).*@\1@' | sort | uniq -c 2 NR_BOUNCE 2 NR_FREE_CMA_PAGES 11 NR_FREE_PAGES 1 NR_KERNEL_STACK_KB 1 NR_MLOCK 2 NR_PAGETABLE This patch shouldn't introduce any functional change. [1] http://lkml.kernel.org/r/201707260628.v6Q6SmaS030814@www262.sakura.ne.jp Link: http://lkml.kernel.org/r/20170801134256.5400-2-hannes@cmpxchg.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
59807685a7 |
mm, THP, swap: support splitting THP for THP swap out
After adding swapping out support for THP (Transparent Huge Page), it is possible that a THP in swap cache (partly swapped out) need to be split. To split such a THP, the swap cluster backing the THP need to be split too, that is, the CLUSTER_FLAG_HUGE flag need to be cleared for the swap cluster. The patch implemented this. And because the THP swap writing needs the THP keeps as huge page during writing. The PageWriteback flag is checked before splitting. Link: http://lkml.kernel.org/r/20170724051840.2309-8-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
ba3c4ce6de |
mm, THP, swap: make reuse_swap_page() works for THP swapped out
After supporting to delay THP (Transparent Huge Page) splitting after swapped out, it is possible that some page table mappings of the THP are turned into swap entries. So reuse_swap_page() need to check the swap count in addition to the map count as before. This patch done that. In the huge PMD write protect fault handler, in addition to the page map count, the swap count need to be checked too, so the page lock need to be acquired too when calling reuse_swap_page() in addition to the page table lock. [ying.huang@intel.com: silence a compiler warning] Link: http://lkml.kernel.org/r/87bmnzizjy.fsf@yhuang-dev.intel.com Link: http://lkml.kernel.org/r/20170724051840.2309-4-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
e07098294a |
mm, THP, swap: support to reclaim swap space for THP swapped out
The normal swap slot reclaiming can be done when the swap count reaches SWAP_HAS_CACHE. But for the swap slot which is backing a THP, all swap slots backing one THP must be reclaimed together, because the swap slot may be used again when the THP is swapped out again later. So the swap slots backing one THP can be reclaimed together when the swap count for all swap slots for the THP reached SWAP_HAS_CACHE. In the patch, the functions to check whether the swap count for all swap slots backing one THP reached SWAP_HAS_CACHE are implemented and used when checking whether a swap slot can be reclaimed. To make it easier to determine whether a swap slot is backing a THP, a new swap cluster flag named CLUSTER_FLAG_HUGE is added to mark a swap cluster which is backing a THP (Transparent Huge Page). Because THP swap in as a whole isn't supported now. After deleting the THP from the swap cache (for example, swapping out finished), the CLUSTER_FLAG_HUGE flag will be cleared. So that, the normal pages inside THP can be swapped in individually. [ying.huang@intel.com: fix swap_page_trans_huge_swapped on HDD] Link: http://lkml.kernel.org/r/874ltsm0bi.fsf@yhuang-dev.intel.com Link: http://lkml.kernel.org/r/20170724051840.2309-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Gleixner
|
a47fed5b5b |
mm: swap: provide lru_add_drain_all_cpuslocked()
The rework of the cpu hotplug locking unearthed potential deadlocks with the memory hotplug locking code. The solution for these is to rework the memory hotplug locking code as well and take the cpu hotplug lock before the memory hotplug lock in mem_hotplug_begin(), but this will cause a recursive locking of the cpu hotplug lock when the memory hotplug code calls lru_add_drain_all(). Split out the inner workings of lru_add_drain_all() into lru_add_drain_all_cpuslocked() so this function can be invoked from the memory hotplug code with the cpu hotplug lock held. Link: http://lkml.kernel.org/r/20170704093421.419329357@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
23955622ff |
swap: add block io poll in swapin path
For fast flash disk, async IO could introduce overhead because of context switch. block-mq now supports IO poll, which improves performance and latency a lot. swapin is a good place to use this technique, because the task is waiting for the swapin page to continue execution. In my virtual machine, directly read 4k data from a NVMe with iopoll is about 60% better than that without poll. With iopoll support in swapin patch, my microbenchmark (a task does random memory write) is about 10%~25% faster. CPU utilization increases a lot though, 2x and even 3x CPU utilization. This will depend on disk speed. While iopoll in swapin isn't intended for all usage cases, it's a win for latency sensistive workloads with high speed swap disk. block layer has knob to control poll in runtime. If poll isn't enabled in block layer, there should be no noticeable change in swapin. I got a chance to run the same test in a NVMe with DRAM as the media. In simple fio IO test, blkpoll boosts 50% performance in single thread test and ~20% in 8 threads test. So this is the base line. In above swap test, blkpoll boosts ~27% performance in single thread test. blkpoll uses 2x CPU time though. If we enable hybid polling, the performance gain has very slight drop but CPU time is only 50% worse than that without blkpoll. Also we can adjust parameter of hybid poll, with it, the CPU time penality is reduced further. In 8 threads test, blkpoll doesn't help though. The performance is similar to that without blkpoll, but cpu utilization is similar too. There is lock contention in swap path. The cpu time spending on blkpoll isn't high. So overall, blkpoll swapin isn't worse than that without it. The swapin readahead might read several pages in in the same time and form a big IO request. Since the IO will take longer time, it doesn't make sense to do poll, so the patch only does iopoll for single page swapin. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/070c3c3e40b711e7b1390002c991e86a-b5408f0@7511894063d3764ff01ea8111f5a004d7dd700ed078797c204a24e620ddb965c Signed-off-by: Shaohua Li <shli@fb.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Jens Axboe <axboe@fb.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
0f0746589e |
mm, THP, swap: move anonymous THP split logic to vmscan
The add_to_swap aims to allocate swap_space(ie, swap slot and swapcache) so if it fails due to lack of space in case of THP or something(hdd swap but tries THP swapout) *caller* rather than add_to_swap itself should split the THP page and retry it with base page which is more natural. Link: http://lkml.kernel.org/r/20170515112522.32457-4-ying.huang@intel.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
75f6d6d29a |
mm, THP, swap: unify swap slot free functions to put_swap_page
Now, get_swap_page takes struct page and allocates swap space according to page size(ie, normal or THP) so it would be more cleaner to introduce put_swap_page which is a counter function of get_swap_page. Then, it calls right swap slot free function depending on page's size. [ying.huang@intel.com: minor cleanup and fix] Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
38d8b4e6bd |
mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
df6b749980 |
mm, swap: remove unused function prototype
This is a code cleanup patch, no functionality changes. There are 2 unused function prototype in swap.h, they are removed. Link: http://lkml.kernel.org/r/20170405071017.23677-1-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
f7ad2a6cb9 |
mm: move MADV_FREE pages into LRU_INACTIVE_FILE list
madv()'s MADV_FREE indicate pages are 'lazyfree'. They are still anonymous pages, but they can be freed without pageout. To distinguish these from normal anonymous pages, we clear their SwapBacked flag. MADV_FREE pages could be freed without pageout, so they pretty much like used once file pages. For such pages, we'd like to reclaim them once there is memory pressure. Also it might be unfair reclaiming MADV_FREE pages always before used once file pages and we definitively want to reclaim the pages before other anonymous and file pages. To speed up MADV_FREE pages reclaim, we put the pages into LRU_INACTIVE_FILE list. The rationale is LRU_INACTIVE_FILE list is tiny nowadays and should be full of used once file pages. Reclaiming MADV_FREE pages will not have much interfere of anonymous and active file pages. And the inactive file pages and MADV_FREE pages will be reclaimed according to their age, so we don't reclaim too many MADV_FREE pages too. Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also means we can reclaim the pages without swap support. This idea is suggested by Johannes. This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to avoid bisect failure, next patch will do it. The patch is based on Minchan's original patch. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |