Commit Graph

319 Commits

Author SHA1 Message Date
Yang Shi
87eaceb3fa mm: thp: make deferred split shrinker memcg aware
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration.  For example the below test would
run into premature OOM easily:

$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000

transhuge-stress comes from kernel selftest.

It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.

Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue.  The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg.  When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.

Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.

[yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai]
  Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:11 -07:00
Yang Shi
0a432dcbeb mm: shrinker: make shrinker not depend on memcg kmem
Currently shrinker is just allocated and can work when memcg kmem is
enabled.  But, THP deferred split shrinker is not slab shrinker, it
doesn't make too much sense to have such shrinker depend on memcg kmem.
It should be able to reclaim THP even though memcg kmem is disabled.

Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker.
When memcg kmem is disabled, just such shrinkers can be called in
shrinking memcg slab.

[yang.shi@linux.alibaba.com: add comment]
  Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:11 -07:00
Linus Torvalds
7ad67ca553 for-5.4/block-2019-09-16
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl1/no0QHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpmo9EACFXMbdNmEEUMyRSdOkVLlr7ZlTyQi1tLpB
 YESDPxdBfybzpi0qa8JSaysGIfvSkSjmSAqBqrWPmASOSOL6CK4bbA4fTYbgPplk
 XeHUdgGiG34oCQUn8Xil5reYaTm7I6LQWnWTpVa5fIhAyUYaGJL+987ykoGmpQmB
 Dvf3YSc+8H0RTp9PCMVd6UCGPkZbVlLImGad3PF5ULvTEaE4RCXC2aiAgh0p1l5A
 J2CkRZ+/mio3zN2O4YN7VdPGfr1Wo1iZ834xbIGLegv1miHXagFk7jwTcC7zIt5t
 oSnJnqIg3iCe7SpWt4Bkzw/zy/2UqaspifbCMgw8vychlViVRUHFO5h85Yboo7kQ
 OMLEQPcwjm6dTHv5h1iXF9LW1O7NoiYmmgvApU9uOo1HUrl1X7PZ3JEfUsVHxkOO
 T4D5igf0Krsl1eAbiwEUQzy7vFZ8PlRHqrHgK+fkyotzHu1BJR7OQkYygEfGFOB/
 EfMxplGDpmibYGuWCwDX2bPAmLV3SPUQENReHrfPJRDt5TD1UkFpVGv/PLLhbr0p
 cLYI78DKpDSigBpVMmwq5nTYpnex33eyDTTA8C0sakcsdzdmU5qv30y3wm4nTiep
 f6gZo6IMXwRg/rCgVVrd9SKQAr/8wEzVlsDW3qyi2pVT8sHIgm0tFv7paihXGdDV
 xsKgmTrQQQ==
 =Qt+h
 -----END PGP SIGNATURE-----

Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - Two NVMe pull requests:
     - ana log parse fix from Anton
     - nvme quirks support for Apple devices from Ben
     - fix missing bio completion tracing for multipath stack devices
       from Hannes and Mikhail
     - IP TOS settings for nvme rdma and tcp transports from Israel
     - rq_dma_dir cleanups from Israel
     - tracing for Get LBA Status command from Minwoo
     - Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
     - Some consolidation between the fabrics transports for handling
       the CAP register
     - reset race with ns scanning fix for fabrics (move fabrics
       commands to a dedicated request queue with a different lifetime
       from the admin request queue)."
     - controller reset and namespace scan races fixes
     - nvme discovery log change uevent support
     - naming improvements from Keith
     - multiple discovery controllers reject fix from James
     - some regular cleanups from various people

 - Series fixing (and re-fixing) null_blk debug printing and nr_devices
   checks (André)

 - A few pull requests from Song, with fixes from Andy, Guoqing,
   Guilherme, Neil, Nigel, and Yufen.

 - REQ_OP_ZONE_RESET_ALL support (Chaitanya)

 - Bio merge handling unification (Christoph)

 - Pick default elevator correctly for devices with special needs
   (Damien)

 - Block stats fixes (Hou)

 - Timeout and support devices nbd fixes (Mike)

 - Series fixing races around elevator switching and device add/remove
   (Ming)

 - sed-opal cleanups (Revanth)

 - Per device weight support for BFQ (Fam)

 - Support for blk-iocost, a new model that can properly account cost of
   IO workloads. (Tejun)

 - blk-cgroup writeback fixes (Tejun)

 - paride queue init fixes (zhengbin)

 - blk_set_runtime_active() cleanup (Stanley)

 - Block segment mapping optimizations (Bart)

 - lightnvm fixes (Hans/Minwoo/YueHaibing)

 - Various little fixes and cleanups

* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
  null_blk: format pr_* logs with pr_fmt
  null_blk: match the type of parameter nr_devices
  null_blk: do not fail the module load with zero devices
  block: also check RQF_STATS in blk_mq_need_time_stamp()
  block: make rq sector size accessible for block stats
  bfq: Fix bfq linkage error
  raid5: use bio_end_sector in r5_next_bio
  raid5: remove STRIPE_OPS_REQ_PENDING
  md: add feature flag MD_FEATURE_RAID0_LAYOUT
  md/raid0: avoid RAID0 data corruption due to layout confusion.
  raid5: don't set STRIPE_HANDLE to stripe which is in batch list
  raid5: don't increment read_errors on EILSEQ return
  nvmet: fix a wrong error status returned in error log page
  nvme: send discovery log page change events to userspace
  nvme: add uevent variables for controller devices
  nvme: enable aen regardless of the presence of I/O queues
  nvme-fabrics: allow discovery subsystems accept a kato
  nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
  nvme: Remove redundant assignment of cq vector
  nvme: Assign subsys instance from first ctrl
  ...
2019-09-17 16:57:47 -07:00
Tejun Heo
97b27821b4 writeback, memcg: Implement foreign dirty flushing
There's an inherent mismatch between memcg and writeback.  The former
trackes ownership per-page while the latter per-inode.  This was a
deliberate design decision because honoring per-page ownership in the
writeback path is complicated, may lead to higher CPU and IO overheads
and deemed unnecessary given that write-sharing an inode across
different cgroups isn't a common use-case.

Combined with inode majority-writer ownership switching, this works
well enough in most cases but there are some pathological cases.  For
example, let's say there are two cgroups A and B which keep writing to
different but confined parts of the same inode.  B owns the inode and
A's memory is limited far below B's.  A's dirty ratio can rise enough
to trigger balance_dirty_pages() sleeps but B's can be low enough to
avoid triggering background writeback.  A will be slowed down without
a way to make writeback of the dirty pages happen.

This patch implements foreign dirty recording and foreign mechanism so
that when a memcg encounters a condition as above it can trigger
flushes on bdi_writebacks which can clean its pages.  Please see the
comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
details.

A reproducer follows.

write-range.c::

  #include <stdio.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <fcntl.h>
  #include <sys/types.h>

  static const char *usage = "write-range FILE START SIZE\n";

  int main(int argc, char **argv)
  {
	  int fd;
	  unsigned long start, size, end, pos;
	  char *endp;
	  char buf[4096];

	  if (argc < 4) {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  fd = open(argv[1], O_WRONLY);
	  if (fd < 0) {
		  perror("open");
		  return 1;
	  }

	  start = strtoul(argv[2], &endp, 0);
	  if (*endp != '\0') {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  size = strtoul(argv[3], &endp, 0);
	  if (*endp != '\0') {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  end = start + size;

	  while (1) {
		  for (pos = start; pos < end; ) {
			  long bread, bwritten = 0;

			  if (lseek(fd, pos, SEEK_SET) < 0) {
				  perror("lseek");
				  return 1;
			  }

			  bread = read(0, buf, sizeof(buf) < end - pos ?
					       sizeof(buf) : end - pos);
			  if (bread < 0) {
				  perror("read");
				  return 1;
			  }
			  if (bread == 0)
				  return 0;

			  while (bwritten < bread) {
				  long this;

				  this = write(fd, buf + bwritten,
					       bread - bwritten);
				  if (this < 0) {
					  perror("write");
					  return 1;
				  }

				  bwritten += this;
				  pos += bwritten;
			  }
		  }
	  }
  }

repro.sh::

  #!/bin/bash

  set -e
  set -x

  sysctl -w vm.dirty_expire_centisecs=300000
  sysctl -w vm.dirty_writeback_centisecs=300000
  sysctl -w vm.dirtytime_expire_seconds=300000
  echo 3 > /proc/sys/vm/drop_caches

  TEST=/sys/fs/cgroup/test
  A=$TEST/A
  B=$TEST/B

  mkdir -p $A $B
  echo "+memory +io" > $TEST/cgroup.subtree_control
  echo $((1<<30)) > $A/memory.high
  echo $((32<<30)) > $B/memory.high

  rm -f testfile
  touch testfile
  fallocate -l 4G testfile

  echo "Starting B"

  (echo $BASHPID > $B/cgroup.procs
   pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) &

  echo "Waiting 10s to ensure B claims the testfile inode"
  sleep 5
  sync
  sleep 5
  sync
  echo "Starting A"

  (echo $BASHPID > $A/cgroup.procs
   pv < /dev/urandom | ./write-range testfile 0 $((2<<30)))

v2: Added comments explaining why the specific intervals are being used.

v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort
    flushing while avoding possible livelocks.

v4: Use get_jiffies_64() and time_before/after64() instead of raw
    jiffies_64 and arthimetic comparisons as suggested by Jan.

Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-27 09:22:38 -06:00
Roman Gushchin
ec9f02384f mm: workingset: fix vmstat counters for shadow nodes
Memcg counters for shadow nodes are broken because the memcg pointer is
obtained in a wrong way. The following approach is used:
        virt_to_page(xa_node)->mem_cgroup

Since commit 4d96ba3530 ("mm: memcg/slab: stop setting
page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't
set for slab pages, so memcg_from_slab_page() should be used instead.

Also I doubt that it ever worked correctly: virt_to_head_page() should
be used instead of virt_to_page().  Otherwise objects residing on tail
pages are not accounted, because only the head page contains a valid
mem_cgroup pointer.  That was a case since the introduction of these
counters by the commit 68d48e6a2d ("mm: workingset: add vmstat counter
for shadow nodes").

Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Shakeel Butt
6ba749ee78 mm, oom: remove redundant task_in_mem_cgroup() check
oom_unkillable_task() can be called from three different contexts i.e.
global OOM, memcg OOM and oom_score procfs interface.  At the moment
oom_unkillable_task() does a task_in_mem_cgroup() check on the given
process.  Since there is no reason to perform task_in_mem_cgroup()
check for global OOM and oom_score procfs interface, those contexts
provide NULL memcg and skips the task_in_mem_cgroup() check.  However
for memcg OOM context, the oom_unkillable_task() is always called from
mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes
redundant and effectively dead code.  So, just remove the
task_in_mem_cgroup() check altogether.

Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:47 -07:00
Roman Gushchin
49a18eae2e mm: memcg/slab: introduce __memcg_kmem_uncharge_memcg()
Let's separate the page counter modification code out of
__memcg_kmem_uncharge() in a way similar to what
__memcg_kmem_charge() and __memcg_kmem_charge_memcg() work.

This will allow to reuse this code later using a new
memcg_kmem_uncharge_memcg() wrapper, which calls
__memcg_kmem_uncharge_memcg() if memcg_kmem_enabled()
check is passed.

Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Shakeel Butt
1e577f970f mm, memcg: introduce memory.events.local
The memory controller in cgroup v2 exposes memory.events file for each
memcg which shows the number of times events like low, high, max, oom
and oom_kill have happened for the whole tree rooted at that memcg.
Users can also poll or register notification to monitor the changes in
that file.  Any event at any level of the tree rooted at memcg will
notify all the listeners along the path till root_mem_cgroup.  There are
existing users which depend on this behavior.

However there are users which are only interested in the events
happening at a specific level of the memcg tree and not in the events in
the underlying tree rooted at that memcg.  One such use-case is a
centralized resource monitor which can dynamically adjust the limits of
the jobs running on a system.  The jobs can create their sub-hierarchy
for their own sub-tasks.  The centralized monitor is only interested in
the events at the top level memcgs of the jobs as it can then act and
adjust the limits of the jobs.  Using the current memory.events for such
centralized monitor is very inconvenient.  The monitor will keep
receiving events which it is not interested and to find if the received
event is interesting, it has to read memory.event files of the next
level and compare it with the top level one.  So, let's introduce
memory.events.local to the memcg which shows and notify for the events
at the memcg level.

Now, does memory.stat and memory.pressure need their local versions.  IMHO
no due to the no internal process contraint of the cgroup v2.  The
memory.stat file of the top level memcg of a job shows the stats and
vmevents of the whole tree.  The local stats or vmevents of the top level
memcg will only change if there is a process running in that memcg but v2
does not allow that.  Similarly for memory.pressure there will not be any
process in the internal nodes and thus no chance of local pressure.

Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Johannes Weiner
815744d751 mm: memcontrol: don't batch updates of local VM stats and events
The kernel test robot noticed a 26% will-it-scale pagefault regression
from commit 42a3003535 ("mm: memcontrol: fix recursive statistics
correctness & scalabilty").  This appears to be caused by bouncing the
additional cachelines from the new hierarchical statistics counters.

We can fix this by getting rid of the batched local counters instead.

Originally, there were *only* group-local counters, and they were fully
maintained per cpu.  A reader of a stats file high up in the cgroup tree
would have to walk the entire subtree and collect each level's per-cpu
counters to get the recursive view.  This was prohibitively expensive,
and so we switched to per-cpu batched updates of the local counters
during a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), reducing the complexity from nr_subgroups *
nr_cpus to nr_subgroups.

With growing machines and cgroup trees, the tree walk itself became too
expensive for monitoring top-level groups, and this is when the culprit
patch added hierarchy counters on each cgroup level.  When the per-cpu
batch size would be reached, both the local and the hierarchy counters
would get batch-updated from the per-cpu delta simultaneously.

This makes local and hierarchical counter reads blazingly fast, but it
unfortunately makes the write-side too cache line intense.

Since local counter reads were never a problem - we only centralized
them to accelerate the hierarchy walk - and use of the local counters
are becoming rarer due to replacement with hierarchical views (ongoing
rework in the page reclaim and workingset code), we can make those local
counters unbatched per-cpu counters again.

The scheme will then be as such:

   when a memcg statistic changes, the writer will:
   - update the local counter (per-cpu)
   - update the batch counter (per-cpu). If the batch is full:
   - spill the batch into the group's atomic_t
   - spill the batch into all ancestors' atomic_ts
   - empty out the batch counter (per-cpu)

   when a local memcg counter is read, the reader will:
   - collect the local counter from all cpus

   when a hiearchy memcg counter is read, the reader will:
   - read the atomic_t

We might be able to simplify this further and make the recursive
counters unbatched per-cpu counters as well (batch upward propagation,
but leave per-cpu collection to the readers), but that will require a
more in-depth analysis and testing of all the callsites.  Deal with the
immediate regression for now.

Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-13 17:34:56 -10:00
Chris Down
9852ae3fe5 mm, memcg: consider subtrees in memory.events
memory.stat and other files already consider subtrees in their output, and
we should too in order to not present an inconsistent interface.

The current situation is fairly confusing, because people interacting with
cgroups expect hierarchical behaviour in the vein of memory.stat,
cgroup.events, and other files.  For example, this causes confusion when
debugging reclaim events under low, as currently these always read "0" at
non-leaf memcg nodes, which frequently causes people to misdiagnose breach
behaviour.  The same confusion applies to other counters in this file when
debugging issues.

Aggregation is done at write time instead of at read-time since these
counters aren't hot (unlike memory.stat which is per-page, so it does it
at read time), and it makes sense to bundle this with the file
notifications.

After this patch, events are propagated up the hierarchy:

    [root@ktst ~]# cat /sys/fs/cgroup/system.slice/memory.events
    low 0
    high 0
    max 0
    oom 0
    oom_kill 0
    [root@ktst ~]# systemd-run -p MemoryMax=1 true
    Running as unit: run-r251162a189fb4562b9dabfdc9b0422f5.service
    [root@ktst ~]# cat /sys/fs/cgroup/system.slice/memory.events
    low 0
    high 0
    max 7
    oom 1
    oom_kill 1

As this is a change in behaviour, this can be reverted to the old
behaviour by mounting with the `memory_localevents' flag set.  However, we
use the new behaviour by default as there's a lack of evidence that there
are any current users of memory.events that would find this change
undesirable.

akpm: this is a behaviour change, so Cc:stable.  THis is so that
forthcoming distros which use cgroup v2 are more likely to pick up the
revised behaviour.

Link: http://lkml.kernel.org/r/20190208224419.GA24772@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-01 15:51:31 -07:00
Thomas Gleixner
c942fddf87 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
Based on 3 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [kishon] [vijay] [abraham]
  [i] [kishon]@[ti] [com] this program is distributed in the hope that
  it will be useful but without any warranty without even the implied
  warranty of merchantability or fitness for a particular purpose see
  the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [graeme] [gregory]
  [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
  [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
  [hk] [hemahk]@[ti] [com] this program is distributed in the hope
  that it will be useful but without any warranty without even the
  implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1105 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:37 -07:00
Johannes Weiner
42a3003535 mm: memcontrol: fix recursive statistics correctness & scalabilty
Right now, when somebody needs to know the recursive memory statistics
and events of a cgroup subtree, they need to walk the entire subtree and
sum up the counters manually.

There are two issues with this:

1. When a cgroup gets deleted, its stats are lost. The state counters
   should all be 0 at that point, of course, but the events are not.
   When this happens, the event counters, which are supposed to be
   monotonic, can go backwards in the parent cgroups.

2. During regular operation, we always have a certain number of lazily
   freed cgroups sitting around that have been deleted, have no tasks,
   but have a few cache pages remaining. These groups' statistics do not
   change until we eventually hit memory pressure, but somebody
   watching, say, memory.stat on an ancestor has to iterate those every
   time.

This patch addresses both issues by introducing recursive counters at
each level that are propagated from the write side when stats change.

Upward propagation happens when the per-cpu caches spill over into the
local atomic counter.  This is the same thing we do during charge and
uncharge, except that the latter uses atomic RMWs, which are more
expensive; stat changes happen at around the same rate.  In a sparse
file test (page faults and reclaim at maximum CPU speed) with 5 cgroup
nesting levels, perf shows __mod_memcg_page state at ~1%.

Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner
db9adbcbe7 mm: memcontrol: move stat/event counting functions out-of-line
These are getting too big to be inlined in every callsite.  They were
stolen from vmstat.c, which already out-of-lines them, and they have
only been growing since.  The callsites aren't that hot, either.

Move __mod_memcg_state()
     __mod_lruvec_state() and
     __count_memcg_events() out of line and add kerneldoc comments.

Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner
205b20cc5a mm: memcontrol: make cgroup stats and events query API explicitly local
Patch series "mm: memcontrol: memory.stat cost & correctness".

The cgroup memory.stat file holds recursive statistics for the entire
subtree.  The current implementation does this tree walk on-demand
whenever the file is read.  This is giving us problems in production.

1. The cost of aggregating the statistics on-demand is high.  A lot of
   system service cgroups are mostly idle and their stats don't change
   between reads, yet we always have to check them.  There are also always
   some lazily-dying cgroups sitting around that are pinned by a handful
   of remaining page cache; the same applies to them.

   In an application that periodically monitors memory.stat in our
   fleet, we have seen the aggregation consume up to 5% CPU time.

2. When cgroups die and disappear from the cgroup tree, so do their
   accumulated vm events.  The result is that the event counters at
   higher-level cgroups can go backwards and confuse some of our
   automation, let alone people looking at the graphs over time.

To address both issues, this patch series changes the stat
implementation to spill counts upwards when the counters change.

The upward spilling is batched using the existing per-cpu cache.  In a
sparse file stress test with 5 level cgroup nesting, the additional cost
of the flushing was negligible (a little under 1% of CPU at 100% CPU
utilization, compared to the 5% of reading memory.stat during regular
operation).

This patch (of 4):

memcg_page_state(), lruvec_page_state(), memcg_sum_events() are
currently returning the state of the local memcg or lruvec, not the
recursive state.

In practice there is a demand for both versions, although the callers
that want the recursive counts currently sum them up by hand.

Per default, cgroups are considered recursive entities and generally we
expect more users of the recursive counters, with the local counts being
special cases.  To reflect that in the name, add a _local suffix to the
current implementations.

The following patch will re-incarnate these functions with recursive
semantics, but with an O(1) implementation.

[hannes@cmpxchg.org: fix bisection hole]
  Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Chris Down
871789d4af mm, memcg: rename ambiguously named memory.stat counters and functions
I spent literally an hour trying to work out why an earlier version of
my memory.events aggregation code doesn't work properly, only to find
out I was calling memcg->events instead of memcg->memory_events, which
is fairly confusing.

This naming seems in need of reworking, so make it harder to do the
wrong thing by using vmevents instead of events, which makes it more
clear that these are vm counters rather than memcg-specific counters.

There are also a few other inconsistent names in both the percpu and
aggregated structs, so these are all cleaned up to be more coherent and
easy to understand.

This commit contains code cleanup only: there are no logic changes.

[akpm@linux-foundation.org: fix it for preceding changes]
Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:52 -07:00
Johannes Weiner
2b487e59f0 mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.

This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.

Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner
1a61ab8038 mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Kirill Tkhai
9851ac1359 mm: move nr_deactivate accounting to shrink_active_list()
We know which LRU is not active.

[chris@chrisdown.name: fix build on !CONFIG_MEMCG]
  Link: http://lkml.kernel.org/r/20190322150513.GA22021@chrisdown.name
Link: http://lkml.kernel.org/r/155290128498.31489.18250485448913338607.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:45 -07:00
Greg Thelen
0b3d6e6f2d mm: writeback: use exact memcg dirty counts
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:

 1) per-memcg per-cpu values in range of [-32..32]

 2) per-memcg atomic counter

When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic.  Stat readers only check the atomic.  Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.

Assuming 100 cpus:
   4k x86 page_size:  13 MiB error per memcg
  64k ppc page_size: 200 MiB error per memcg

Considering that dirty+writeback are used together for some decisions the
errors double.

This inaccuracy can lead to undeserved oom kills.  One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e.  per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages.  If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.

It could be argued that tiny containers are not supported, but it's more
subtle.  It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.

The following test reliably ooms without this patch.  This patch avoids
oom kills.

  $ cat test
  mount -t cgroup2 none /dev/cgroup
  cd /dev/cgroup
  echo +io +memory > cgroup.subtree_control
  mkdir test
  cd test
  echo 10M > memory.max
  (echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
  (echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)

  $ cat memcg-writeback-stress.c
  /*
   * Dirty pages from all but one cpu.
   * Clean pages from the non dirtying cpu.
   * This is to stress per cpu counter imbalance.
   * On a 100 cpu machine:
   * - per memcg per cpu dirty count is 32 pages for each of 99 cpus
   * - per memcg atomic is -99*32 pages
   * - thus the complete dirty limit: sum of all counters 0
   * - balance_dirty_pages() only sees atomic count -99*32 pages, which
   *   it max()s to 0.
   * - So a workload can dirty -99*32 pages before balance_dirty_pages()
   *   cares.
   */
  #define _GNU_SOURCE
  #include <err.h>
  #include <fcntl.h>
  #include <sched.h>
  #include <stdlib.h>
  #include <stdio.h>
  #include <sys/stat.h>
  #include <sys/sysinfo.h>
  #include <sys/types.h>
  #include <unistd.h>

  static char *buf;
  static int bufSize;

  static void set_affinity(int cpu)
  {
  	cpu_set_t affinity;

  	CPU_ZERO(&affinity);
  	CPU_SET(cpu, &affinity);
  	if (sched_setaffinity(0, sizeof(affinity), &affinity))
  		err(1, "sched_setaffinity");
  }

  static void dirty_on(int output_fd, int cpu)
  {
  	int i, wrote;

  	set_affinity(cpu);
  	for (i = 0; i < 32; i++) {
  		for (wrote = 0; wrote < bufSize; ) {
  			int ret = write(output_fd, buf+wrote, bufSize-wrote);
  			if (ret == -1)
  				err(1, "write");
  			wrote += ret;
  		}
  	}
  }

  int main(int argc, char **argv)
  {
  	int cpu, flush_cpu = 1, output_fd;
  	const char *output;

  	if (argc != 2)
  		errx(1, "usage: output_file");

  	output = argv[1];
  	bufSize = getpagesize();
  	buf = malloc(getpagesize());
  	if (buf == NULL)
  		errx(1, "malloc failed");

  	output_fd = open(output, O_CREAT|O_RDWR);
  	if (output_fd == -1)
  		err(1, "open(%s)", output);

  	for (cpu = 0; cpu < get_nprocs(); cpu++) {
  		if (cpu != flush_cpu)
  			dirty_on(output_fd, cpu);
  	}

  	set_affinity(flush_cpu);
  	if (fsync(output_fd))
  		err(1, "fsync(%s)", output);
  	if (close(output_fd))
  		err(1, "close(%s)", output);
  	free(buf);
  }

Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters.  This avoids the aforementioned oom
kills.

This does not affect the overhead of memory.stat, which still reads the
single atomic counter.

Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter.  And the percpu_counter
spinlocks are more heavyweight than is required.

It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports.  But that is saved for later.

Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>	[4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-05 16:02:31 -10:00
Chris Down
aa9694bb78 mm, memcg: create mem_cgroup_from_seq
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).

There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css.  It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).

Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Shakeel Butt
60cd4bcd62 memcg: localize memcg_kmem_enabled() check
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.

This is purely code cleanup patch without any functional change.  Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same.  This should not matter as
memcg_charge_slab() is not in the hot path.

Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
yuzhoujian
f0c867d958 mm, oom: add oom victim's memcg to the oom context information
The current oom report doesn't display victim's memcg context during the
global OOM situation.  While this information is not strictly needed, it
can be really helpful for containerized environments to locate which
container has lost a process.  Now that we have a single line for the oom
context, we can trivially add both the oom memcg (this can be either
global_oom or a specific memcg which hits its hard limits) and task_memcg
which is the victim's memcg.

Below is the single line output in the oom report after this patch.

- global oom context information:

oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>

- memcg oom context information:

oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>

[penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()]
  Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:48 -08:00
Kirill Tkhai
1c2d479a11 mm/memcontrol.c: convert mem_cgroup_id::ref to refcount_t type
This will allow to use generic refcount_t interfaces to check counters
overflow instead of currently existing VM_BUG_ON().  The only difference
after the patch is VM_BUG_ON() may cause BUG(), while refcount_t fires
with WARN().  But this seems not to be significant here, since such the
problems are usually caught by syzbot with panic-on-warn enabled.

Link: http://lkml.kernel.org/r/153910718919.7006.13400779039257185427.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:35 -07:00
Roman Gushchin
9b6f7e163c mm: rework memcg kernel stack accounting
If CONFIG_VMAP_STACK is set, kernel stacks are allocated using
__vmalloc_node_range() with __GFP_ACCOUNT.  So kernel stack pages are
charged against corresponding memory cgroups on allocation and uncharged
on releasing them.

The problem is that we do cache kernel stacks in small per-cpu caches and
do reuse them for new tasks, which can belong to different memory cgroups.

Each stack page still holds a reference to the original cgroup, so the
cgroup can't be released until the vmap area is released.

To make this happen we need more than two subsequent exits without forks
in between on the current cpu, which makes it very unlikely to happen.  As
a result, I saw a significant number of dying cgroups (in theory, up to 2
* number_of_cpu + number_of_tasks), which can't be released even by
significant memory pressure.

As a cgroup structure can take a significant amount of memory (first of
all, per-cpu data like memcg statistics), it leads to a noticeable waste
of memory.

Link: http://lkml.kernel.org/r/20180827162621.30187-1-guro@fb.com
Fixes: ac496bf48d ("fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Roman Gushchin
3d8b38eb81 mm, oom: introduce memory.oom.group
For some workloads an intervention from the OOM killer can be painful.
Killing a random task can bring the workload into an inconsistent state.

Historically, there are two common solutions for this
problem:
1) enabling panic_on_oom,
2) using a userspace daemon to monitor OOMs and kill
   all outstanding processes.

Both approaches have their downsides: rebooting on each OOM is an obvious
waste of capacity, and handling all in userspace is tricky and requires a
userspace agent, which will monitor all cgroups for OOMs.

In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate
the necessity of enabling panic_on_oom.  Also, it can simplify the cgroup
management for userspace applications.

This commit introduces a new knob for cgroup v2 memory controller:
memory.oom.group.  The knob determines whether the cgroup should be
treated as an indivisible workload by the OOM killer.  If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not
a leaf cgroup) are killed together or not at all.

To determine which cgroup has to be killed, we do traverse the cgroup
hierarchy from the victim task's cgroup up to the OOMing cgroup (or root)
and looking for the highest-level cgroup with memory.oom.group set.

Tasks with the OOM protection (oom_score_adj set to -1000) are treated as
an exception and are never killed.

This patch doesn't change the OOM victim selection algorithm.

Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Kirill Tkhai
fae91d6d8b mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance
Introduce set_shrinker_bit() function to set shrinker-related bit in
memcg shrinker bitmap, and set the bit after the first item is added and
in case of reparenting destroyed memcg's items.

This will allow next patch to make shrinkers be called only, in case of
they have charged objects at the moment, and to improve shrink_slab()
performance.

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai
dfd2f10ccf mm/memcontrol.c: export mem_cgroup_is_root()
This will be used in next patch.

Link: http://lkml.kernel.org/r/153063064347.1818.1987011484100392706.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai
0a4465d340 mm, memcg: assign memcg-aware shrinkers bitmap to memcg
Imagine a big node with many cpus, memory cgroups and containers.  Let
we have 200 containers, every container has 10 mounts, and 10 cgroups.
All container tasks don't touch foreign containers mounts.  If there is
intensive pages write, and global reclaim happens, a writing task has to
iterate over all memcgs to shrink slab, before it's able to go to
shrink_page_list().

Iteration over all the memcg slabs is very expensive: the task has to
visit 200 * 10 = 2000 shrinkers for every memcg, and since there are
2000 memcgs, the total calls are 2000 * 2000 = 4000000.

So, the shrinker makes 4 million do_shrink_slab() calls just to try to
isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via
shrink_page_list().  I've observed a node spending almost 100% in
kernel, making useless iteration over already shrinked slab.

This patch adds bitmap of memcg-aware shrinkers to memcg.  The size of
the bitmap depends on bitmap_nr_ids, and during memcg life it's
maintained to be enough to fit bitmap_nr_ids shrinkers.  Every bit in
the map is related to corresponding shrinker id.

Next patches will maintain set bit only for really charged memcg.  This
will allow shrink_slab() to increase its performance in significant way.
See the last patch for the numbers.

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain
[ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()]
  Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com
Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Kirill Tkhai
84c07d11aa mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern.  Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.

Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Michal Hocko
29ef680ae7 memcg, oom: move out_of_memory back to the charge path
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") has changed the ENOMEM semantic of memcg charges.
Rather than invoking the oom killer from the charging context it delays
the oom killer to the page fault path (pagefault_out_of_memory).  This
in turn means that many users (e.g.  slab or g-u-p) will get ENOMEM when
the corresponding memcg hits the hard limit and the memcg is is OOM.
This is behavior is inconsistent with !memcg case where the oom killer
is invoked from the allocation context and the allocator keeps retrying
until it succeeds.

The difference in the behavior is user visible.  mmap(MAP_POPULATE)
might result in not fully populated ranges while the mmap return code
doesn't tell that to the userspace.  Random syscalls might fail with
ENOMEM etc.

The primary motivation of the different memcg oom semantic was the
deadlock avoidance.  Things have changed since then, though.  We have an
async oom teardown by the oom reaper now and so we do not have to rely
on the victim to tear down its memory anymore.  Therefore we can return
to the original semantic as long as the memcg oom killer is not handed
over to the users space.

There is still one thing to be careful about here though.  If the oom
killer is not able to make any forward progress - e.g.  because there is
no eligible task to kill - then we have to bail out of the charge path
to prevent from same class of deadlocks.  We have basically two options
here.  Either we fail the charge with ENOMEM or force the charge and
allow overcharge.  The first option has been considered more harmful
than useful because rare inconsistencies in the ENOMEM behavior is hard
to test for and error prone.  Basically the same reason why the page
allocator doesn't fail allocations under such conditions.  The later
might allow runaways but those should be really unlikely unless somebody
misconfigures the system.  E.g.  allowing to migrate tasks away from the
memcg to a different unlimited memcg with move_charge_at_immigrate
disabled.

Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Shakeel Butt
f745c6f5fe fs, mm: account buffer_head to kmemcg
The buffer_head can consume a significant amount of system memory and is
directly related to the amount of page cache.  In our production
environment we have observed that a lot of machines are spending a
significant amount of memory as buffer_head and can not be left as
system memory overhead.

Charging buffer_head is not as simple as adding __GFP_ACCOUNT to the
allocation.  The buffer_heads can be allocated in a memcg different from
the memcg of the page for which buffer_heads are being allocated.  One
concrete example is memory reclaim.  The reclaim can trigger I/O of
pages of any memcg on the system.  So, the right way to charge
buffer_head is to extract the memcg from the page for which buffer_heads
are being allocated and then use targeted memcg charging API.

[shakeelb@google.com: use __GFP_ACCOUNT for directed memcg charging]
  Link: http://lkml.kernel.org/r/20180702220208.213380-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Shakeel Butt
d46eb14b73 fs: fsnotify: account fsnotify metadata to kmemcg
Patch series "Directed kmem charging", v8.

The Linux kernel's memory cgroup allows limiting the memory usage of the
jobs running on the system to provide isolation between the jobs.  All
the kernel memory allocated in the context of the job and marked with
__GFP_ACCOUNT will also be included in the memory usage and be limited
by the job's limit.

The kernel memory can only be charged to the memcg of the process in
whose context kernel memory was allocated.  However there are cases
where the allocated kernel memory should be charged to the memcg
different from the current processes's memcg.  This patch series
contains two such concrete use-cases i.e.  fsnotify and buffer_head.

The fsnotify event objects can consume a lot of system memory for large
or unlimited queues if there is either no or slow listener.  The events
are allocated in the context of the event producer.  However they should
be charged to the event consumer.  Similarly the buffer_head objects can
be allocated in a memcg different from the memcg of the page for which
buffer_head objects are being allocated.

To solve this issue, this patch series introduces mechanism to charge
kernel memory to a given memcg.  In case of fsnotify events, the memcg
of the consumer can be used for charging and for buffer_head, the memcg
of the page can be charged.  For directed charging, the caller can use
the scope API memalloc_[un]use_memcg() to specify the memcg to charge
for all the __GFP_ACCOUNT allocations within the scope.

This patch (of 2):

A lot of memory can be consumed by the events generated for the huge or
unlimited queues if there is either no or slow listener.  This can cause
system level memory pressure or OOMs.  So, it's better to account the
fsnotify kmem caches to the memcg of the listener.

However the listener can be in a different memcg than the memcg of the
producer and these allocations happen in the context of the event
producer.  This patch introduces remote memcg charging API which the
producer can use to charge the allocations to the memcg of the listener.

There are seven fsnotify kmem caches and among them allocations from
dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
inotify_inode_mark_cachep happens in the context of syscall from the
listener.  So, SLAB_ACCOUNT is enough for these caches.

The objects from fsnotify_mark_connector_cachep are not accounted as
they are small compared to the notification mark or events and it is
unclear whom to account connector to since it is shared by all events
attached to the inode.

The allocations from the event caches happen in the context of the event
producer.  For such caches we will need to remote charge the allocations
to the listener's memcg.  Thus we save the memcg reference in the
fsnotify_group structure of the listener.

This patch has also moved the members of fsnotify_group to keep the size
same, at least for 64 bit build, even with additional member by filling
the holes.

[shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
  Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Roman Gushchin
dc0b58643a mm: introduce mem_cgroup_put() helper
Introduce the mem_cgroup_put() helper, which helps to eliminate guarding
memcg css release with "#ifdef CONFIG_MEMCG" in multiple places.

Link: http://lkml.kernel.org/r/20180623000600.5818-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Tejun Heo
2cf855837b memcontrol: schedule throttling if we are congested
Memory allocations can induce swapping via kswapd or direct reclaim.  If
we are having IO done for us by kswapd and don't actually go into direct
reclaim we may never get scheduled for throttling.  So instead check to
see if our cgroup is congested, and if so schedule the throttling.
Before we return to user space the throttling stuff will only throttle
if we actually required it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-09 09:07:54 -06:00
Roman Gushchin
fe6bdfc8e1 mm: fix oom_kill event handling
Commit e27be240df ("mm: memcg: make sure memory.events is uptodate
when waking pollers") converted most of memcg event counters to
per-memcg atomics, which made them less confusing for a user.  The
"oom_kill" counter remained untouched, so now it behaves differently
than other counters (including "oom").  This adds nothing but confusion.

Let's fix this by adding the MEMCG_OOM_KILL event, and follow the
MEMCG_OOM approach.

This also removes a hack from count_memcg_event_mm(), introduced earlier
specially for the OOM_KILL counter.

[akpm@linux-foundation.org: fix for droppage of memcg-replace-mm-owner-with-mm-memcg.patch]
Link: http://lkml.kernel.org/r/20180508124637.29984-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:25 +09:00
Aaron Lu
e81bf9793b mem_cgroup: make sure moving_account, move_lock_task and stat_cpu in the same cacheline
The LKP robot found a 27% will-it-scale/page_fault3 performance
regression regarding commit e27be240df53("mm: memcg: make sure
memory.events is uptodate when waking pollers").

What the test does is:
 1 mkstemp() a 128M file on a tmpfs;
 2 start $nr_cpu processes, each to loop the following:
   2.1 mmap() this file in shared write mode;
   2.2 write 0 to this file in a PAGE_SIZE step till the end of the file;
   2.3 unmap() this file and repeat this process.
 3 After 5 minutes, check how many loops they managed to complete, the
   higher the better.

The commit itself looks innocent enough as it merely changed some event
counting mechanism and this test didn't trigger those events at all.
Perf shows increased cycles spent on accessing root_mem_cgroup->stat_cpu
in count_memcg_event_mm()(called by handle_mm_fault()) and in
__mod_memcg_state() called by page_add_file_rmap().  So it's likely due
to the changed layout of 'struct mem_cgroup' that either make stat_cpu
falling into a constantly modifying cacheline or some hot fields stop
being in the same cacheline.

I verified this by moving memory_events[] back to where it was:

: --- a/include/linux/memcontrol.h
: +++ b/include/linux/memcontrol.h
: @@ -205,7 +205,6 @@ struct mem_cgroup {
:  	int		oom_kill_disable;
:
:  	/* memory.events */
: -	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
:  	struct cgroup_file events_file;
:
:  	/* protect arrays of thresholds */
: @@ -238,6 +237,7 @@ struct mem_cgroup {
:  	struct mem_cgroup_stat_cpu __percpu *stat_cpu;
:  	atomic_long_t		stat[MEMCG_NR_STAT];
:  	atomic_long_t		events[NR_VM_EVENT_ITEMS];
: +	atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
:
:  	unsigned long		socket_pressure;

And performance restored.

Later investigation found that as long as the following 3 fields
moving_account, move_lock_task and stat_cpu are in the same cacheline,
performance will be good.  To avoid future performance surprise by other
commits changing the layout of 'struct mem_cgroup', this patch makes
sure the 3 fields stay in the same cacheline.

One concern of this approach is, moving_account and move_lock_task could
be modified when a process changes memory cgroup while stat_cpu is a
always read field, it might hurt to place them in the same cacheline.  I
assume it is rare for a process to change memory cgroup so this should
be OK.

Link: https://lkml.kernel.org/r/20180528114019.GF9904@yexl-desktop
Link: http://lkml.kernel.org/r/20180601071115.GA27302@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:38 -07:00
Roman Gushchin
bf8d5d52ff memcg: introduce memory.min
Memory controller implements the memory.low best-effort memory
protection mechanism, which works perfectly in many cases and allows
protecting working sets of important workloads from sudden reclaim.

But its semantics has a significant limitation: it works only as long as
there is a supply of reclaimable memory.  This makes it pretty useless
against any sort of slow memory leaks or memory usage increases.  This
is especially true for swapless systems.  If swap is enabled, memory
soft protection effectively postpones problems, allowing a leaking
application to fill all swap area, which makes no sense.  The only
effective way to guarantee the memory protection in this case is to
invoke the OOM killer.

It's possible to handle this case in userspace by reacting on MEMCG_LOW
events; but there is still a place for a fail-safe in-kernel mechanism
to provide stronger guarantees.

This patch introduces the memory.min interface for cgroup v2 memory
controller.  It works very similarly to memory.low (sharing the same
hierarchical behavior), except that it's not disabled if there is no
more reclaimable memory in the system.

If cgroup is not populated, its memory.min is ignored, because otherwise
even the OOM killer wouldn't be able to reclaim the protected memory,
and the system can stall.

[guro@fb.com: s/low/min/ in docs]
Link: http://lkml.kernel.org/r/20180510130758.GA9129@castle.DHCP.thefacebook.com
Link: http://lkml.kernel.org/r/20180509180734.GA4856@castle.DHCP.thefacebook.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Wang Long
9ccc361716 memcg: writeback: use memcg->cgwb_list directly
mem_cgroup_cgwb_list is a very simple wrapper and it will never be used
outside of code under CONFIG_CGROUP_WRITEBACK.  so use memcg->cgwb_list
directly.

Link: http://lkml.kernel.org/r/1524406173-212182-1-git-send-email-wanglong19@meituan.com
Signed-off-by: Wang Long <wanglong19@meituan.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Roman Gushchin
230671533d mm: memory.low hierarchical behavior
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.

For example, there are memcgs A, A/B, A/C, A/D and A/E:

  A      A/memory.low = 2G, A/memory.current = 6G
 //\\
BC  DE   B/memory.low = 3G  B/memory.current = 2G
         C/memory.low = 1G  C/memory.current = 2G
         D/memory.low = 0   D/memory.current = 2G
	 E/memory.low = 10G E/memory.current = 0

If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G.  This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well.  Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.

A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
  A:    1430097920
  A/B:  711929856
  A/C:  717426688
  A/D:  741376
  A/E:  0

To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.

Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise).  It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense.  To avoid traversing the cgroup tree
twice, page_counters code is reused.

Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level.  So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.

This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.

Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.

With this patch applied results are matching the expectations:
  A:    2147930112
  A/B:  1428721664
  A/C:  718393344
  A/D:  815104
  A/E:  0

Test script:
  #!/bin/bash

  CGPATH="/sys/fs/cgroup"

  truncate /file1 --size 2G
  truncate /file2 --size 2G
  truncate /file3 --size 2G
  truncate /file4 --size 50G

  mkdir "${CGPATH}/A"
  echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
  mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"

  echo 2G > "${CGPATH}/A/memory.low"
  echo 3G > "${CGPATH}/A/B/memory.low"
  echo 1G > "${CGPATH}/A/C/memory.low"
  echo 0 > "${CGPATH}/A/D/memory.low"
  echo 10G > "${CGPATH}/A/E/memory.low"

  echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
  echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
  echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
  echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4

  echo "A:   " `cat "${CGPATH}/A/memory.current"`
  echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
  echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
  echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
  echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`

  rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
  rmdir "${CGPATH}/A"
  rm /file1 /file2 /file3 /file4

Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Roman Gushchin
bbec2e1517 mm: rename page_counter's count/limit into usage/max
This patch renames struct page_counter fields:
  count -> usage
  limit -> max

and the corresponding functions:
  page_counter_limit() -> page_counter_set_max()
  mem_cgroup_get_limit() -> mem_cgroup_get_max()
  mem_cgroup_resize_limit() -> mem_cgroup_resize_max()
  memcg_update_kmem_limit() -> memcg_update_kmem_max()
  memcg_update_tcp_limit() -> memcg_update_tcp_max()

The idea behind this renaming is to have the direct matching
between memory cgroup knobs (low, high, max) and page_counters API.

This is pure renaming, this patch doesn't bring any functional change.

Link: http://lkml.kernel.org/r/20180405185921.4942-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Tejun Heo
f3a53a3a1e mm, memcontrol: implement memory.swap.events
Add swap max and fail events so that userland can monitor and respond to
running out of swap.

I'm not too sure about the fail event.  Right now, it's a bit confusing
which stats / events are recursive and which aren't and also which ones
reflect events which originate from a given cgroup and which targets the
cgroup.  No idea what the right long term solution is and it could just
be that growing them organically is actually the only right thing to do.

Link: http://lkml.kernel.org/r/20180416231151.GI1911913@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:34 -07:00
Johannes Weiner
e27be240df mm: memcg: make sure memory.events is uptodate when waking pollers
Commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") added per-cpu drift to all memory cgroup stats
and events shown in memory.stat and memory.events.

For memory.stat this is acceptable.  But memory.events issues file
notifications, and somebody polling the file for changes will be
confused when the counters in it are unchanged after a wakeup.

Luckily, the events in memory.events - MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX,
MEMCG_OOM - are sufficiently rare and high-level that we don't need
per-cpu buffering for them: MEMCG_HIGH and MEMCG_MAX would be the most
frequent, but they're counting invocations of reclaim, which is a
complex operation that touches many shared cachelines.

This splits memory.events from the generic VM events and tracks them in
their own, unbuffered atomic counters.  That's also cleaner, as it
eliminates the ugly enum nesting of VM and cgroup events.

[hannes@cmpxchg.org: "array subscript is above array bounds"]
  Link: http://lkml.kernel.org/r/20180406155441.GA20806@cmpxchg.org
Link: http://lkml.kernel.org/r/20180405175507.GA24817@cmpxchg.org
Fixes: a983b5ebee ("mm: memcontrol: fix excessive complexity in memory.stat reporting")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:31 -07:00
Andrey Ryabinin
e3c1ac586c mm/vmscan: don't mess with pgdat->flags in memcg reclaim
memcg reclaim may alter pgdat->flags based on the state of LRU lists in
cgroup and its children.  PGDAT_WRITEBACK may force kswapd to sleep
congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem
pages.  But the worst here is PGDAT_CONGESTED, since it may force all
direct reclaims to stall in wait_iff_congested().  Note that only kswapd
have powers to clear any of these bits.  This might just never happen if
cgroup limits configured that way.  So all direct reclaims will stall as
long as we have some congested bdi in the system.

Leave all pgdat->flags manipulations to kswapd.  kswapd scans the whole
pgdat, only kswapd can clear pgdat->flags once node is balanced, thus
it's reasonable to leave all decisions about node state to kswapd.

Why only kswapd? Why not allow to global direct reclaim change these
flags? It is because currently only kswapd can clear these flags.  I'm
less worried about the case when PGDAT_CONGESTED falsely not set, and
more worried about the case when it falsely set.  If direct reclaimer
sets PGDAT_CONGESTED, do we have guarantee that after the congestion
problem is sorted out, kswapd will be woken up and clear the flag? It
seems like there is no such guarantee.  E.g.  direct reclaimers may
eventually balance pgdat and kswapd simply won't wake up (see
wakeup_kswapd()).

Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim
now loses its congestion throttling mechanism.  Add per-cgroup
congestion state and throttle cgroup2 reclaimers if memcg is in
congestion state.

Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY
bits since they alter only kswapd behavior.

The problem could be easily demonstrated by creating heavy congestion in
one cgroup:

    echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control
    mkdir -p /sys/fs/cgroup/congester
    echo 512M > /sys/fs/cgroup/congester/memory.max
    echo $$ > /sys/fs/cgroup/congester/cgroup.procs
    /* generate a lot of diry data on slow HDD */
    while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done &
    ....
    while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done &

and some job in another cgroup:

    mkdir /sys/fs/cgroup/victim
    echo 128M > /sys/fs/cgroup/victim/memory.max

    # time cat /dev/sda > /dev/null
    real    10m15.054s
    user    0m0.487s
    sys     1m8.505s

According to the tracepoint in wait_iff_congested(), the 'cat' spent 50%
of the time sleeping there.

With the patch, cat don't waste time anymore:

    # time cat /dev/sda > /dev/null
    real    5m32.911s
    user    0m0.411s
    sys     0m56.664s

[aryabinin@virtuozzo.com: congestion state should be per-node]
  Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com
[ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[
  Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:30 -07:00
Johannes Weiner
c3cc39118c mm: memcontrol: fix NR_WRITEBACK leak in memcg and system stats
After commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), we observed slowly upward creeping NR_WRITEBACK
counts over the course of several days, both the per-memcg stats as well
as the system counter in e.g.  /proc/meminfo.

The conversion from full per-cpu stat counts to per-cpu cached atomic
stat counts introduced an irq-unsafe RMW operation into the updates.

Most stat updates come from process context, but one notable exception
is the NR_WRITEBACK counter.  While writebacks are issued from process
context, they are retired from (soft)irq context.

When writeback completions interrupt the RMW counter updates of new
writebacks being issued, the decs from the completions are lost.

Since the global updates are routed through the joint lruvec API, both
the memcg counters as well as the system counters are affected.

This patch makes the joint stat and event API irq safe.

Link: http://lkml.kernel.org/r/20180203082353.17284-1-hannes@cmpxchg.org
Fixes: a983b5ebee ("mm: memcontrol: fix excessive complexity in memory.stat reporting")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Debugged-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:42 -08:00
Johannes Weiner
a983b5ebee mm: memcontrol: fix excessive complexity in memory.stat reporting
We've seen memory.stat reads in top-level cgroups take up to fourteen
seconds during a userspace bug that created tens of thousands of ghost
cgroups pinned by lingering page cache.

Even with a more reasonable number of cgroups, aggregating memory.stat
is unnecessarily heavy.  The complexity is this:

	nr_cgroups * nr_stat_items * nr_possible_cpus

where the stat items are ~70 at this point.  With 128 cgroups and 128
CPUs - decent, not enormous setups - reading the top-level memory.stat
has to aggregate over a million per-cpu counters.  This doesn't scale.

Instead of spreading the source of truth across all CPUs, use the
per-cpu counters merely to batch updates to shared atomic counters.

This is the same as the per-cpu stocks we use for charging memory to the
shared atomic page_counters, and also the way the global vmstat counters
are implemented.

Vmstat has elaborate spilling thresholds that depend on the number of
CPUs, amount of memory, and memory pressure - carefully balancing the
cost of counter updates with the amount of per-cpu error.  That's
because the vmstat counters are system-wide, but also used for decisions
inside the kernel (e.g.  NR_FREE_PAGES in the allocator).  Neither is
true for the memory controller.

Use the same static batch size we already use for page_counter updates
during charging.  The per-cpu error in the stats will be 128k, which is
an acceptable ratio of cores to memory accounting granularity.

[hannes@cmpxchg.org: fix warning in __this_cpu_xchg() calls]
  Link: http://lkml.kernel.org/r/20171201135750.GB8097@cmpxchg.org
Link: http://lkml.kernel.org/r/20171103153336.24044-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Johannes Weiner
284542656e mm: memcontrol: implement lruvec stat functions on top of each other
The implementation of the lruvec stat functions and their variants for
accounting through a page, or accounting from a preemptible context, are
mostly identical and needlessly repetitive.

Implement the lruvec_page functions by looking up the page's lruvec and
then using the lruvec function.

Implement the functions for preemptible contexts by disabling preemption
before calling the atomic context functions.

Link: http://lkml.kernel.org/r/20171103153336.24044-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Johannes Weiner
c9019e9bf4 mm: memcontrol: eliminate raw access to stat and event counters
Replace all raw 'this_cpu_' modifications of the stat and event per-cpu
counters with API functions such as mod_memcg_state().

This makes the code easier to read, but is also in preparation for the
next patch, which changes the per-cpu implementation of those counters.

Link: http://lkml.kernel.org/r/20171103153336.24044-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Matthias Kaehlcke
04fecbf51b mm: memcontrol: use int for event/state parameter in several functions
Several functions use an enum type as parameter for an event/state, but
are called in some locations with an argument of a different enum type.
Adjust the interface of these functions to reality by changing the
parameter to int.

This fixes a ton of enum-conversion warnings that are generated when
building the kernel with clang.

[mka@chromium.org: also change parameter type of inc/dec/mod_memcg_page_state()]
  Link: http://lkml.kernel.org/r/20170728213442.93823-1-mka@chromium.org
Link: http://lkml.kernel.org/r/20170727211004.34435-1-mka@chromium.org
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Doug Anderson <dianders@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Johannes Weiner
739f79fc9d mm: memcontrol: fix NULL pointer crash in test_clear_page_writeback()
Jaegeuk and Brad report a NULL pointer crash when writeback ending tries
to update the memcg stats:

    BUG: unable to handle kernel NULL pointer dereference at 00000000000003b0
    IP: test_clear_page_writeback+0x12e/0x2c0
    [...]
    RIP: 0010:test_clear_page_writeback+0x12e/0x2c0
    Call Trace:
     <IRQ>
     end_page_writeback+0x47/0x70
     f2fs_write_end_io+0x76/0x180 [f2fs]
     bio_endio+0x9f/0x120
     blk_update_request+0xa8/0x2f0
     scsi_end_request+0x39/0x1d0
     scsi_io_completion+0x211/0x690
     scsi_finish_command+0xd9/0x120
     scsi_softirq_done+0x127/0x150
     __blk_mq_complete_request_remote+0x13/0x20
     flush_smp_call_function_queue+0x56/0x110
     generic_smp_call_function_single_interrupt+0x13/0x30
     smp_call_function_single_interrupt+0x27/0x40
     call_function_single_interrupt+0x89/0x90
    RIP: 0010:native_safe_halt+0x6/0x10

    (gdb) l *(test_clear_page_writeback+0x12e)
    0xffffffff811bae3e is in test_clear_page_writeback (./include/linux/memcontrol.h:619).
    614		mod_node_page_state(page_pgdat(page), idx, val);
    615		if (mem_cgroup_disabled() || !page->mem_cgroup)
    616			return;
    617		mod_memcg_state(page->mem_cgroup, idx, val);
    618		pn = page->mem_cgroup->nodeinfo[page_to_nid(page)];
    619		this_cpu_add(pn->lruvec_stat->count[idx], val);
    620	}
    621
    622	unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
    623							gfp_t gfp_mask,

The issue is that writeback doesn't hold a page reference and the page
might get freed after PG_writeback is cleared (and the mapping is
unlocked) in test_clear_page_writeback().  The stat functions looking up
the page's node or zone are safe, as those attributes are static across
allocation and free cycles.  But page->mem_cgroup is not, and it will
get cleared if we race with truncation or migration.

It appears this race window has been around for a while, but less likely
to trigger when the memcg stats were updated first thing after
PG_writeback is cleared.  Recent changes reshuffled this code to update
the global node stats before the memcg ones, though, stretching the race
window out to an extent where people can reproduce the problem.

Update test_clear_page_writeback() to look up and pin page->mem_cgroup
before clearing PG_writeback, then not use that pointer afterward.  It
is a partial revert of 62cccb8c8e ("mm: simplify lock_page_memcg()")
but leaves the pageref-holding callsites that aren't affected alone.

Link: http://lkml.kernel.org/r/20170809183825.GA26387@cmpxchg.org
Fixes: 62cccb8c8e ("mm: simplify lock_page_memcg()")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Jaegeuk Kim <jaegeuk@kernel.org>
Tested-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reported-by: Bradley Bolen <bradleybolen@gmail.com>
Tested-by: Brad Bolen <bradleybolen@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>	[4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18 15:32:01 -07:00
Johannes Weiner
00f3ca2c2d mm: memcontrol: per-lruvec stats infrastructure
lruvecs are at the intersection of the NUMA node and memcg, which is the
scope for most paging activity.

Introduce a convenient accounting infrastructure that maintains
statistics per node, per memcg, and the lruvec itself.

Then convert over accounting sites for statistics that are already
tracked in both nodes and memcgs and can be easily switched.

[hannes@cmpxchg.org: fix crash in the new cgroup stat keeping code]
  Link: http://lkml.kernel.org/r/20170531171450.GA10481@cmpxchg.org
[hannes@cmpxchg.org: don't track uncharged pages at all
  Link: http://lkml.kernel.org/r/20170605175254.GA8547@cmpxchg.org
[hannes@cmpxchg.org: add missing free_percpu()]
  Link: http://lkml.kernel.org/r/20170605175354.GB8547@cmpxchg.org
[linux@roeck-us.net: hexagon: fix build error caused by include file order]
  Link: http://lkml.kernel.org/r/20170617153721.GA4382@roeck-us.net
Link: http://lkml.kernel.org/r/20170530181724.27197-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00