Commit Graph

443 Commits

Author SHA1 Message Date
Matthias Kaehlcke
0dde10bed2 btrfs: Remove extra parentheses from condition in copy_items()
There is no need for the extra pair of parentheses, remove it. This
fixes the following warning when building with clang:

fs/btrfs/tree-log.c:3694:10: warning: equality comparison with extraneous
  parentheses [-Wparentheses-equality]
                if ((i == (nr - 1)))
                     ~~^~~~~~~~~~~

Also remove the unnecessary parentheses around the substraction.

Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-21 17:47:42 +02:00
Filipe Manana
6399fb5a0b Btrfs: fix assertion failure during fsync in no-holes mode
When logging an inode in full mode that has an inline compressed extent
that represents a range with a size matching the sector size (currently
the same as the page size), has a trailing hole and the no-holes feature
is enabled, we end up failing an assertion leading to a trace like the
following:

[141812.031528] assertion failed: len == i_size, file: fs/btrfs/tree-log.c, line: 4453
[141812.033069] ------------[ cut here ]------------
[141812.034330] kernel BUG at fs/btrfs/ctree.h:3452!
[141812.035137] invalid opcode: 0000 [#1] PREEMPT SMP
[141812.035932] Modules linked in: btrfs dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio dm_flakey dm_mod dax ppdev evdev ghash_clmulni_intel pcbc aesni_intel aes_x86_64 tpm_tis psmouse crypto_simd parport_pc sg pcspkr tpm_tis_core cryptd parport serio_raw glue_helper tpm i2c_piix4 i2c_core button sunrpc loop autofs4 ext4 crc16 jbd2 mbcache raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sd_mod ata_generic virtio_scsi ata_piix floppy crc32c_intel libata scsi_mod virtio_pci virtio_ring e1000 virtio [last unloaded: btrfs]
[141812.036790] CPU: 3 PID: 845 Comm: fdm-stress Tainted: G    B   W       4.12.3-btrfs-next-52+ #1
[141812.036790] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.2-0-g5f4c7b1-prebuilt.qemu-project.org 04/01/2014
[141812.036790] task: ffff8801e6694180 task.stack: ffffc90009004000
[141812.036790] RIP: 0010:assfail.constprop.18+0x1c/0x1e [btrfs]
[141812.036790] RSP: 0018:ffffc90009007bc0 EFLAGS: 00010282
[141812.036790] RAX: 0000000000000046 RBX: ffff88017512c008 RCX: 0000000000000001
[141812.036790] RDX: ffff88023fd95201 RSI: ffffffff8182264c RDI: 00000000ffffffff
[141812.036790] RBP: ffffc90009007bc0 R08: 0000000000000001 R09: 0000000000000001
[141812.036790] R10: 0000000000001000 R11: ffffffff82f5a0c9 R12: ffff88014e5947e8
[141812.036790] R13: 00000000000b4000 R14: ffff8801b234d008 R15: 0000000000000000
[141812.036790] FS:  00007fdba6ffd700(0000) GS:ffff88023fd80000(0000) knlGS:0000000000000000
[141812.036790] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[141812.036790] CR2: 00007fdb9c000010 CR3: 000000016efa2000 CR4: 00000000001406e0
[141812.036790] Call Trace:
[141812.036790]  btrfs_log_inode+0x9f0/0xd3d [btrfs]
[141812.036790]  ? __mutex_lock+0x120/0x3ce
[141812.036790]  btrfs_log_inode_parent+0x224/0x685 [btrfs]
[141812.036790]  ? lock_acquire+0x16b/0x1af
[141812.036790]  btrfs_log_dentry_safe+0x60/0x7b [btrfs]
[141812.036790]  btrfs_sync_file+0x32e/0x3f8 [btrfs]
[141812.036790]  vfs_fsync_range+0x8a/0x9d
[141812.036790]  vfs_fsync+0x1c/0x1e
[141812.036790]  do_fsync+0x31/0x4a
[141812.036790]  SyS_fdatasync+0x13/0x17
[141812.036790]  entry_SYSCALL_64_fastpath+0x18/0xad
[141812.036790] RIP: 0033:0x7fdbac41a47d
[141812.036790] RSP: 002b:00007fdba6ffce30 EFLAGS: 00000293 ORIG_RAX: 000000000000004b
[141812.036790] RAX: ffffffffffffffda RBX: ffffffff81092c9f RCX: 00007fdbac41a47d
[141812.036790] RDX: 0000004cf0160a40 RSI: 0000000000000000 RDI: 0000000000000006
[141812.036790] RBP: ffffc90009007f98 R08: 0000000000000000 R09: 0000000000000010
[141812.036790] R10: 00000000000002e8 R11: 0000000000000293 R12: ffffffff8110cd90
[141812.036790] R13: ffffc90009007f78 R14: 0000000000000000 R15: 0000000000000000
[141812.036790]  ? time_hardirqs_off+0x9/0x14
[141812.036790]  ? trace_hardirqs_off_caller+0x1f/0xa3
[141812.036790] Code: c7 d6 61 6b a0 48 89 e5 e8 ba ef a8 e0 0f 0b 55 89 f1 48 c7 c2 6d 65 6b a0 48 89 fe 48 c7 c7 81 65 6b a0 48 89 e5 e8 9c ef a8 e0 <0f> 0b 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 49 89
[141812.036790] RIP: assfail.constprop.18+0x1c/0x1e [btrfs] RSP: ffffc90009007bc0
[141812.084448] ---[ end trace 44e472684c7a32cc ]---

Which happens because the code that logs a trailing hole when the no-holes
feature is enabled, did not consider that a compressed inline extent can
represent a range with a size matching the sector size, in which case
expanding the inode's i_size, through a truncate operation, won't lead
to padding with zeroes the page that represents the inline extent, and
therefore the inline extent remains after the truncation.

Fix this by adapting the assertion to accept inline extents representing
data with a sector size length if, and only if, the inline extents are
compressed.

A sample and trivial reproducer (for systems with a 4K page size) for this
issue:

  mkfs.btrfs -O no-holes -f /dev/sdc
  mount -o compress /dev/sdc /mnt
  xfs_io -f -c "pwrite -S 0xab 0 4K" /mnt/foobar
  sync
  xfs_io -c "truncate 32K" /mnt/foobar
  xfs_io -c "fsync" /mnt/foobar

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-18 16:36:29 +02:00
Colin Ian King
938e1c77f8 btrfs: remove redundant check on ret being non-zero
The error return variable ret is initialized to zero and then is
checked to see if it is non-zero in the if-block that follows it.
It is therefore impossible for ret to be non-zero after the if-block
hence the check is redundant and can be removed.

Detected by CoverityScan, CID#1021040 ("Logically dead code")

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-18 16:36:29 +02:00
Filipe Manana
e33bf72361 Btrfs: fix dir item validation when replaying xattr deletes
We were passing an incorrect slot number to the function that validates
directory items when we are replaying xattr deletes from a log tree. The
correct slot is stored at variable 'i' and not at 'path->slots[0]', so
the call to the validation function was only correct for the first
iteration of the loop, when 'i == path->slots[0]'.
After this fix, the fstest generic/066 passes again.

Fixes: 8ee8c2d62d ("btrfs: Verify dir_item in replay_xattr_deletes")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-07-19 20:38:16 +02:00
Su Yue
3c1d418448 btrfs: Check name_len in btrfs_check_ref_name_override
In btrfs_log_inode, btrfs_search_forward gets the buffer and then
btrfs_check_ref_name_override will read name from ref/extref for the
first time.

Call btrfs_is_name_len_valid before reading name.

Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-21 19:16:04 +02:00
Su Yue
8ee8c2d62d btrfs: Verify dir_item in replay_xattr_deletes
replay_xattr_deletes calls btrfs_search_slot to get buffer and reads
name.

Call verify_dir_item to check name_len in replay_xattr_deletes to avoid
reading out of boundary.

Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-21 19:16:04 +02:00
Su Yue
26a836cec2 btrfs: Check name_len on add_inode_ref call path
replay_one_buffer first reads buffers and dispatches items accroding to
the item type.
In this patch, add_inode_ref handles inode_ref and inode_extref.
Then add_inode_ref calls ref_get_fields and extref_get_fields to read
ref/extref name for the first time.
So checking name_len before reading those two is fine.

add_inode_ref also calls inode_in_dir to match ref/extref in parent_dir.
The call graph includes btrfs_match_dir_item_name to read dir_item name
in the parent dir.
Checking first dir_item is not enough. Change it to verify every
dir_item while doing matches.

Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-21 19:16:04 +02:00
Su Yue
e79a33270d btrfs: Check name_len with boundary in verify dir_item
Originally, verify_dir_item verifies name_len of dir_item with fixed
values but not item boundary.
If corrupted name_len was not bigger than the fixed value, for example
255, the function will think the dir_item is fine. And then reading
beyond boundary will cause crash.

Example:
	1. Corrupt one dir_item name_len to be 255.
        2. Run 'ls -lar /mnt/test/ > /dev/null'
dmesg:
[   48.451449] BTRFS info (device vdb1): disk space caching is enabled
[   48.451453] BTRFS info (device vdb1): has skinny extents
[   48.489420] general protection fault: 0000 [#1] SMP
[   48.489571] Modules linked in: ext4 jbd2 mbcache btrfs xor raid6_pq
[   48.489716] CPU: 1 PID: 2710 Comm: ls Not tainted 4.10.0-rc1 #5
[   48.489853] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
[   48.490008] task: ffff880035df1bc0 task.stack: ffffc90004800000
[   48.490008] RIP: 0010:read_extent_buffer+0xd2/0x190 [btrfs]
[   48.490008] RSP: 0018:ffffc90004803d98 EFLAGS: 00010202
[   48.490008] RAX: 000000000000001b RBX: 000000000000001b RCX: 0000000000000000
[   48.490008] RDX: ffff880079dbf36c RSI: 0005080000000000 RDI: ffff880079dbf368
[   48.490008] RBP: ffffc90004803dc8 R08: ffff880078e8cc48 R09: ffff880000000000
[   48.490008] R10: 0000160000000000 R11: 0000000000001000 R12: ffff880079dbf288
[   48.490008] R13: ffff880078e8ca88 R14: 0000000000000003 R15: ffffc90004803e20
[   48.490008] FS:  00007fef50c60800(0000) GS:ffff88007d400000(0000) knlGS:0000000000000000
[   48.490008] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   48.490008] CR2: 000055f335ac2ff8 CR3: 000000007356d000 CR4: 00000000001406e0
[   48.490008] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[   48.490008] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[   48.490008] Call Trace:
[   48.490008]  btrfs_real_readdir+0x3b7/0x4a0 [btrfs]
[   48.490008]  iterate_dir+0x181/0x1b0
[   48.490008]  SyS_getdents+0xa7/0x150
[   48.490008]  ? fillonedir+0x150/0x150
[   48.490008]  entry_SYSCALL_64_fastpath+0x18/0xad
[   48.490008] RIP: 0033:0x7fef5032546b
[   48.490008] RSP: 002b:00007ffeafcdb830 EFLAGS: 00000206 ORIG_RAX: 000000000000004e
[   48.490008] RAX: ffffffffffffffda RBX: 00007fef5061db38 RCX: 00007fef5032546b
[   48.490008] RDX: 0000000000008000 RSI: 000055f335abaff0 RDI: 0000000000000003
[   48.490008] RBP: 00007fef5061dae0 R08: 00007fef5061db48 R09: 0000000000000000
[   48.490008] R10: 000055f335abafc0 R11: 0000000000000206 R12: 00007fef5061db38
[   48.490008] R13: 0000000000008040 R14: 00007fef5061db38 R15: 000000000000270e
[   48.490008] RIP: read_extent_buffer+0xd2/0x190 [btrfs] RSP: ffffc90004803d98
[   48.499455] ---[ end trace 321920d8e8339505 ]---

Fix it by adding a parameter @slot and check name_len with item boundary
by calling btrfs_is_name_len_valid.

Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
rev
Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-21 19:16:04 +02:00
Elena Reshetova
490b54d6fb btrfs: convert extent_map.refs from atomic_t to refcount_t
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.

Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18 14:07:23 +02:00
Chris Mason
e9f467d028 Merge branch 'for-chris-4.11-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.11 2017-02-28 14:35:09 -08:00
Nikolay Borisov
db0a669fb0 btrfs: Make btrfs_add_link take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28 11:30:11 +01:00
Nikolay Borisov
19df27a9e4 btrfs: make btrfs_log_inode_parent take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28 11:30:10 +01:00
Nikolay Borisov
aefa6115c0 btrfs: Make check_parent_dirs_for_sync take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28 11:30:10 +01:00
Nikolay Borisov
6ef06d2790 btrfs: Make btrfs_i_size_write take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28 11:30:06 +01:00
Nikolay Borisov
d0a0b78de4 btrfs: Make btrfs_log_all_parents take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-28 11:30:05 +01:00
Filipe Manana
3168021cf9 Btrfs: do not create explicit holes when replaying log tree if NO_HOLES enabled
We log holes explicitly by using file extent items, however when replaying
a log tree, if a logged file extent item corresponds to a hole and the
NO_HOLES feature is enabled we do not need to copy the file extent item
into the fs/subvolume tree, as the absence of such file extent items is
the purpose of the NO_HOLES feature. So skip the copying of file extent
items representing holes when the NO_HOLES feature is enabled.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2017-02-24 00:38:10 +00:00
David Sterba
d75eefdf96 btrfs: remove unused parameter from __add_inode_ref
Unused since the helper has been split, eb used in the caller.

Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-17 12:03:54 +01:00
David Sterba
eece6a9cf6 btrfs: merge two superblock writing helpers
write_all_supers and write_ctree_super are almost equal, the parameter
'trans' is unused so we can drop it and have just one helper.

Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-17 12:03:51 +01:00
David Sterba
7c302b49dd btrfs: remove unused parameter from clean_tree_block
Added but never needed.

Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-17 12:03:51 +01:00
David Sterba
f85b7379cd btrfs: fix over-80 lines introduced by previous cleanups
This goes as a separate patch because fixing that inside the patches
caused too many many conflicts.

Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:57 +01:00
Nikolay Borisov
f329e31971 btrfs: Make count_inode_refs take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:57 +01:00
Nikolay Borisov
3628365823 btrfs: Make count_inode_extrefs take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:57 +01:00
Nikolay Borisov
a59108a73f btrfs: Make btrfs_log_inode take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:57 +01:00
Nikolay Borisov
6d889a3b9e btrfs: Make log_inode_item take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:56 +01:00
Nikolay Borisov
94c91a1f39 btrfs: Make __add_inode_ref take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:56 +01:00
Nikolay Borisov
207e7d92aa btrfs: Make drop_one_dir_item take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:56 +01:00
Nikolay Borisov
4ec5934e43 btrfs: Make btrfs_unlink_inode take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:56 +01:00
Nikolay Borisov
51cc0d3227 btrfs: Make log_new_dir_dentries take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:56 +01:00
Nikolay Borisov
dbf39ea48b btrfs: Make log_directory_changes take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:56 +01:00
Nikolay Borisov
684a5773f9 btrfs: Make log_dir_items take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
9d122629f1 btrfs: Make btrfs_log_changed_extents take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
223466370c btrfs: Make btrfs_get_logged_extents take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
a0308dd7e0 btrfs: Make btrfs_log_trailing_hole take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
1a93c36acd btrfs: Make btrfs_log_all_xattrs take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
44d70e194f btrfs: Make copy_items take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
4791c8f19c btrfs: Make btrfs_check_ref_name_override take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:55 +01:00
Nikolay Borisov
481b01c0d3 btrfs: Make logged_inode_size take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
a491abb2e7 btrfs: Make btrfs_del_inode_ref take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
49f34d1f96 btrfs: Make btrfs_del_dir_entries_in_log take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
9ca5fbfbb9 btrfs: Make btrfs_log_new_name take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
0f8939b8ac btrfs: Make btrfs_inode_in_log take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
436635571b btrfs: Make btrfs_record_snapshot_destroy take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:54 +01:00
Nikolay Borisov
4176bdbf2d btrfs: Make btrfs_record_unlink_dir take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:53 +01:00
Nikolay Borisov
ab1717b2ab btrfs: Make btrfs_must_commit_transaction take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:53 +01:00
Nikolay Borisov
5f4b32e94a btrfs: Make btrfs_commit_inode_delayed_items take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:53 +01:00
Nikolay Borisov
aa79021fde btrfs: Make btrfs_commit_inode_delayed_inode take btrfs_inode
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:53 +01:00
Nikolay Borisov
4a0cc7ca6c btrfs: Make btrfs_ino take a struct btrfs_inode
Currently btrfs_ino takes a struct inode and this causes a lot of
internal btrfs functions which consume this ino to take a VFS inode,
rather than btrfs' own struct btrfs_inode. In order to fix this "leak"
of VFS structs into the internals of btrfs first it's necessary to
eliminate all uses of struct inode for the purpose of inode. This patch
does that by using BTRFS_I to convert an inode to btrfs_inode. With
this problem eliminated subsequent patches will start eliminating the
passing of struct inode altogether, eventually resulting in a lot cleaner
code.

Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
[ fix btrfs_get_extent tracepoint prototype ]
Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14 15:50:51 +01:00
Liu Bo
781feef7e6 Btrfs: fix lockdep warning about log_mutex
While checking INODE_REF/INODE_EXTREF for a corner case, we may acquire a
different inode's log_mutex with holding the current inode's log_mutex, and
lockdep has complained this with a possilble deadlock warning.

Fix this by using mutex_lock_nested() when processing the other inode's
log_mutex.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-01-03 15:19:28 +01:00
Chris Mason
5f52a2c512 Merge branch 'for-chris-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.10
Patches queued up by Filipe:

The most important change is still the fix for the extent tree
corruption that happens due to balance when qgroups are enabled (a
regression introduced in 4.7 by a fix for a regression from the last
qgroups rework). This has been hitting SLE and openSUSE users and QA
very badly, where transactions keep getting aborted when running
delayed references leaving the root filesystem in RO mode and nearly
unusable.  There are fixes here that allow us to run xfstests again
with the integrity checker enabled, which has been impossible since 4.8
(apparently I'm the only one running xfstests with the integrity
checker enabled, which is useful to validate dirtied leafs, like
checking if there are keys out of order, etc).  The rest are just some
trivial fixes, most of them tagged for stable, and two cleanups.

Signed-off-by: Chris Mason <clm@fb.com>
2016-12-13 09:14:42 -08:00
Jeff Mahoney
3a45bb207e btrfs: remove root parameter from transaction commit/end routines
Now we only use the root parameter to print the root objectid in
a tracepoint.  We can use the root parameter from the transaction
handle for that.  It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:07:00 +01:00
Jeff Mahoney
bf89d38feb btrfs: split btrfs_wait_marked_extents into normal and tree log functions
btrfs_write_and_wait_marked_extents and btrfs_sync_log both call
btrfs_wait_marked_extents, which provides a core loop and then handles
errors differently based on whether it's it's a log root or not.

This means that btrfs_write_and_wait_marked_extents needs to take a root
because btrfs_wait_marked_extents requires one, even though it's only
used to determine whether the root is a log root.  The log root code
won't ever call into the transaction commit code using a log root, so we
can factor out the core loop and provide the error handling appropriate
to each waiter in new routines.  This allows us to eventually remove
the root argument from btrfs_commit_transaction, and as a result,
btrfs_end_transaction.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:07:00 +01:00
Jeff Mahoney
2ff7e61e0d btrfs: take an fs_info directly when the root is not used otherwise
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer.  Let's convert those to
just accept an fs_info pointer directly.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:59 +01:00
Jeff Mahoney
0b246afa62 btrfs: root->fs_info cleanup, add fs_info convenience variables
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable.  This makes the code considerably
more readable.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:59 +01:00
Jeff Mahoney
da17066c40 btrfs: pull node/sector/stripe sizes out of root and into fs_info
We track the node sizes per-root, but they never vary from the values
in the superblock.  This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:58 +01:00
Jeff Mahoney
5b4aacefb8 btrfs: call functions that overwrite their root parameter with fs_info
There are 11 functions that accept a root parameter and immediately
overwrite it.  We can pass those an fs_info pointer instead.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:57 +01:00
Robbie Ko
2a7bf53f57 Btrfs: fix tree search logic when replaying directory entry deletes
If a log tree has a layout like the following:

leaf N:
        ...
        item 240 key (282 DIR_LOG_ITEM 0) itemoff 8189 itemsize 8
                dir log end 1275809046
leaf N + 1:
        item 0 key (282 DIR_LOG_ITEM 3936149215) itemoff 16275 itemsize 8
                dir log end 18446744073709551615
        ...

When we pass the value 1275809046 + 1 as the parameter start_ret to the
function tree-log.c:find_dir_range() (done by replay_dir_deletes()), we
end up with path->slots[0] having the value 239 (points to the last item
of leaf N, item 240). Because the dir log item in that position has an
offset value smaller than *start_ret (1275809046 + 1) we need to move on
to the next leaf, however the logic for that is wrong since it compares
the current slot to the number of items in the leaf, which is smaller
and therefore we don't lookup for the next leaf but instead we set the
slot to point to an item that does not exist, at slot 240, and we later
operate on that slot which has unexpected content or in the worst case
can result in an invalid memory access (accessing beyond the last page
of leaf N's extent buffer).

So fix the logic that checks when we need to lookup at the next leaf
by first incrementing the slot and only after to check if that slot
is beyond the last item of the current leaf.

Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Fixes: e02119d5a7 (Btrfs: Add a write ahead tree log to optimize synchronous operations)
Cc: stable@vger.kernel.org  # 2.6.29+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
2016-11-30 16:56:12 +00:00
Robbie Ko
ec125cfb7a Btrfs: fix deadlock caused by fsync when logging directory entries
While logging new directory entries, at tree-log.c:log_new_dir_dentries(),
after we call btrfs_search_forward() we get a leaf with a read lock on it,
and without unlocking that leaf we can end up calling btrfs_iget() to get
an inode pointer. The later (btrfs_iget()) can end up doing a read-only
search on the same tree again, if the inode is not in memory already, which
ends up causing a deadlock if some other task in the meanwhile started a
write search on the tree and is attempting to write lock the same leaf
that btrfs_search_forward() locked while holding write locks on upper
levels of the tree blocking the read search from btrfs_iget(). In this
scenario we get a deadlock.

So fix this by releasing the search path before calling btrfs_iget() at
tree-log.c:log_new_dir_dentries().

Example trace of such deadlock:

[ 4077.478852] kworker/u24:10  D ffff88107fc90640     0 14431      2 0x00000000
[ 4077.486752] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[ 4077.494346]  ffff880ffa56bad0 0000000000000046 0000000000009000 ffff880ffa56bfd8
[ 4077.502629]  ffff880ffa56bfd8 ffff881016ce21c0 ffffffffa06ecb26 ffff88101a5d6138
[ 4077.510915]  ffff880ebb5173b0 ffff880ffa56baf8 ffff880ebb517410 ffff881016ce21c0
[ 4077.519202] Call Trace:
[ 4077.528752]  [<ffffffffa06ed5ed>] ? btrfs_tree_lock+0xdd/0x2f0 [btrfs]
[ 4077.536049]  [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4077.542574]  [<ffffffffa068cc1f>] ? btrfs_search_slot+0x79f/0xb10 [btrfs]
[ 4077.550171]  [<ffffffffa06a5073>] ? btrfs_lookup_file_extent+0x33/0x40 [btrfs]
[ 4077.558252]  [<ffffffffa06c600b>] ? __btrfs_drop_extents+0x13b/0xdf0 [btrfs]
[ 4077.566140]  [<ffffffffa06fc9e2>] ? add_delayed_data_ref+0xe2/0x150 [btrfs]
[ 4077.573928]  [<ffffffffa06fd629>] ? btrfs_add_delayed_data_ref+0x149/0x1d0 [btrfs]
[ 4077.582399]  [<ffffffffa06cf3c0>] ? __set_extent_bit+0x4c0/0x5c0 [btrfs]
[ 4077.589896]  [<ffffffffa06b4a64>] ? insert_reserved_file_extent.constprop.75+0xa4/0x320 [btrfs]
[ 4077.599632]  [<ffffffffa06b206d>] ? start_transaction+0x8d/0x470 [btrfs]
[ 4077.607134]  [<ffffffffa06bab57>] ? btrfs_finish_ordered_io+0x2e7/0x600 [btrfs]
[ 4077.615329]  [<ffffffff8104cbc2>] ? process_one_work+0x142/0x3d0
[ 4077.622043]  [<ffffffff8104d729>] ? worker_thread+0x109/0x3b0
[ 4077.628459]  [<ffffffff8104d620>] ? manage_workers.isra.26+0x270/0x270
[ 4077.635759]  [<ffffffff81052b0f>] ? kthread+0xaf/0xc0
[ 4077.641404]  [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110
[ 4077.648696]  [<ffffffff814a9ac8>] ? ret_from_fork+0x58/0x90
[ 4077.654926]  [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110

[ 4078.358087] kworker/u24:15  D ffff88107fcd0640     0 14436      2 0x00000000
[ 4078.365981] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[ 4078.373574]  ffff880ffa57fad0 0000000000000046 0000000000009000 ffff880ffa57ffd8
[ 4078.381864]  ffff880ffa57ffd8 ffff88103004d0a0 ffffffffa06ecb26 ffff88101a5d6138
[ 4078.390163]  ffff880fbeffc298 ffff880ffa57faf8 ffff880fbeffc2f8 ffff88103004d0a0
[ 4078.398466] Call Trace:
[ 4078.408019]  [<ffffffffa06ed5ed>] ? btrfs_tree_lock+0xdd/0x2f0 [btrfs]
[ 4078.415322]  [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4078.421844]  [<ffffffffa068cc1f>] ? btrfs_search_slot+0x79f/0xb10 [btrfs]
[ 4078.429438]  [<ffffffffa06a5073>] ? btrfs_lookup_file_extent+0x33/0x40 [btrfs]
[ 4078.437518]  [<ffffffffa06c600b>] ? __btrfs_drop_extents+0x13b/0xdf0 [btrfs]
[ 4078.445404]  [<ffffffffa06fc9e2>] ? add_delayed_data_ref+0xe2/0x150 [btrfs]
[ 4078.453194]  [<ffffffffa06fd629>] ? btrfs_add_delayed_data_ref+0x149/0x1d0 [btrfs]
[ 4078.461663]  [<ffffffffa06cf3c0>] ? __set_extent_bit+0x4c0/0x5c0 [btrfs]
[ 4078.469161]  [<ffffffffa06b4a64>] ? insert_reserved_file_extent.constprop.75+0xa4/0x320 [btrfs]
[ 4078.478893]  [<ffffffffa06b206d>] ? start_transaction+0x8d/0x470 [btrfs]
[ 4078.486388]  [<ffffffffa06bab57>] ? btrfs_finish_ordered_io+0x2e7/0x600 [btrfs]
[ 4078.494561]  [<ffffffff8104cbc2>] ? process_one_work+0x142/0x3d0
[ 4078.501278]  [<ffffffff8104a507>] ? pwq_activate_delayed_work+0x27/0x40
[ 4078.508673]  [<ffffffff8104d729>] ? worker_thread+0x109/0x3b0
[ 4078.515098]  [<ffffffff8104d620>] ? manage_workers.isra.26+0x270/0x270
[ 4078.522396]  [<ffffffff81052b0f>] ? kthread+0xaf/0xc0
[ 4078.528032]  [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110
[ 4078.535325]  [<ffffffff814a9ac8>] ? ret_from_fork+0x58/0x90
[ 4078.541552]  [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110

[ 4079.355824] user-space-program D ffff88107fd30640     0 32020      1 0x00000000
[ 4079.363716]  ffff880eae8eba10 0000000000000086 0000000000009000 ffff880eae8ebfd8
[ 4079.372003]  ffff880eae8ebfd8 ffff881016c162c0 ffffffffa06ecb26 ffff88101a5d6138
[ 4079.380294]  ffff880fbed4b4c8 ffff880eae8eba38 ffff880fbed4b528 ffff881016c162c0
[ 4079.388586] Call Trace:
[ 4079.398134]  [<ffffffffa06ed595>] ? btrfs_tree_lock+0x85/0x2f0 [btrfs]
[ 4079.405431]  [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4079.411955]  [<ffffffffa06876fb>] ? btrfs_lock_root_node+0x2b/0x40 [btrfs]
[ 4079.419644]  [<ffffffffa068ce83>] ? btrfs_search_slot+0xa03/0xb10 [btrfs]
[ 4079.427237]  [<ffffffffa06aba52>] ? btrfs_buffer_uptodate+0x52/0x70 [btrfs]
[ 4079.435041]  [<ffffffffa0689b60>] ? generic_bin_search.constprop.38+0x80/0x190 [btrfs]
[ 4079.443897]  [<ffffffffa068ea44>] ? btrfs_insert_empty_items+0x74/0xd0 [btrfs]
[ 4079.451975]  [<ffffffffa072c443>] ? copy_items+0x128/0x850 [btrfs]
[ 4079.458890]  [<ffffffffa072da10>] ? btrfs_log_inode+0x629/0xbf3 [btrfs]
[ 4079.466292]  [<ffffffffa06f34a1>] ? btrfs_log_inode_parent+0xc61/0xf30 [btrfs]
[ 4079.474373]  [<ffffffffa06f45a9>] ? btrfs_log_dentry_safe+0x59/0x80 [btrfs]
[ 4079.482161]  [<ffffffffa06c298d>] ? btrfs_sync_file+0x20d/0x330 [btrfs]
[ 4079.489558]  [<ffffffff8112777c>] ? do_fsync+0x4c/0x80
[ 4079.495300]  [<ffffffff81127a0a>] ? SyS_fdatasync+0xa/0x10
[ 4079.501422]  [<ffffffff814a9b72>] ? system_call_fastpath+0x16/0x1b

[ 4079.508334] user-space-program D ffff88107fc30640     0 32021      1 0x00000004
[ 4079.516226]  ffff880eae8efbf8 0000000000000086 0000000000009000 ffff880eae8effd8
[ 4079.524513]  ffff880eae8effd8 ffff881030279610 ffffffffa06ecb26 ffff88101a5d6138
[ 4079.532802]  ffff880ebb671d88 ffff880eae8efc20 ffff880ebb671de8 ffff881030279610
[ 4079.541092] Call Trace:
[ 4079.550642]  [<ffffffffa06ed595>] ? btrfs_tree_lock+0x85/0x2f0 [btrfs]
[ 4079.557941]  [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4079.564463]  [<ffffffffa068cc1f>] ? btrfs_search_slot+0x79f/0xb10 [btrfs]
[ 4079.572058]  [<ffffffffa06bb7d8>] ? btrfs_truncate_inode_items+0x168/0xb90 [btrfs]
[ 4079.580526]  [<ffffffffa06b04be>] ? join_transaction.isra.15+0x1e/0x3a0 [btrfs]
[ 4079.588701]  [<ffffffffa06b206d>] ? start_transaction+0x8d/0x470 [btrfs]
[ 4079.596196]  [<ffffffffa0690ac6>] ? block_rsv_add_bytes+0x16/0x50 [btrfs]
[ 4079.603789]  [<ffffffffa06bc2e9>] ? btrfs_truncate+0xe9/0x2e0 [btrfs]
[ 4079.610994]  [<ffffffffa06bd00b>] ? btrfs_setattr+0x30b/0x410 [btrfs]
[ 4079.618197]  [<ffffffff81117c1c>] ? notify_change+0x1dc/0x680
[ 4079.624625]  [<ffffffff8123c8a4>] ? aa_path_perm+0xd4/0x160
[ 4079.630854]  [<ffffffff810f4fcb>] ? do_truncate+0x5b/0x90
[ 4079.636889]  [<ffffffff810f59fa>] ? do_sys_ftruncate.constprop.15+0x10a/0x160
[ 4079.644869]  [<ffffffff8110d87b>] ? SyS_fcntl+0x5b/0x570
[ 4079.650805]  [<ffffffff814a9b72>] ? system_call_fastpath+0x16/0x1b

[ 4080.410607] user-space-program D ffff88107fc70640     0 32028  12639 0x00000004
[ 4080.418489]  ffff880eaeccbbe0 0000000000000086 0000000000009000 ffff880eaeccbfd8
[ 4080.426778]  ffff880eaeccbfd8 ffff880f317ef1e0 ffffffffa06ecb26 ffff88101a5d6138
[ 4080.435067]  ffff880ef7e93928 ffff880f317ef1e0 ffff880eaeccbc08 ffff880f317ef1e0
[ 4080.443353] Call Trace:
[ 4080.452920]  [<ffffffffa06ed15d>] ? btrfs_tree_read_lock+0xdd/0x190 [btrfs]
[ 4080.460703]  [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4080.467225]  [<ffffffffa06876bb>] ? btrfs_read_lock_root_node+0x2b/0x40 [btrfs]
[ 4080.475400]  [<ffffffffa068cc81>] ? btrfs_search_slot+0x801/0xb10 [btrfs]
[ 4080.482994]  [<ffffffffa06b2df0>] ? btrfs_clean_one_deleted_snapshot+0xe0/0xe0 [btrfs]
[ 4080.491857]  [<ffffffffa06a70a6>] ? btrfs_lookup_inode+0x26/0x90 [btrfs]
[ 4080.499353]  [<ffffffff810ec42f>] ? kmem_cache_alloc+0xaf/0xc0
[ 4080.505879]  [<ffffffffa06bd905>] ? btrfs_iget+0xd5/0x5d0 [btrfs]
[ 4080.512696]  [<ffffffffa06caf04>] ? btrfs_get_token_64+0x104/0x120 [btrfs]
[ 4080.520387]  [<ffffffffa06f341f>] ? btrfs_log_inode_parent+0xbdf/0xf30 [btrfs]
[ 4080.528469]  [<ffffffffa06f45a9>] ? btrfs_log_dentry_safe+0x59/0x80 [btrfs]
[ 4080.536258]  [<ffffffffa06c298d>] ? btrfs_sync_file+0x20d/0x330 [btrfs]
[ 4080.543657]  [<ffffffff8112777c>] ? do_fsync+0x4c/0x80
[ 4080.549399]  [<ffffffff81127a0a>] ? SyS_fdatasync+0xa/0x10
[ 4080.555534]  [<ffffffff814a9b72>] ? system_call_fastpath+0x16/0x1b

Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Fixes: 2f2ff0ee5e (Btrfs: fix metadata inconsistencies after directory fsync)
Cc: stable@vger.kernel.org # 4.1+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
2016-11-30 13:49:16 +00:00
Qu Wenruo
50b3e040b7 btrfs: qgroup: Rename functions to make it follow reserve,trace,account steps
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to
btrfs_qgroup_trace_extent(_nolock), according to the new
reserve/trace/account naming schema.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:21 +01:00
Linus Torvalds
f6167514c8 Merge branch 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "My patch fixes the btrfs list_head abuse that we tracked down during
  Dave Jones' memory corruption investigation. With both Jens and my
  patches in place, I'm no longer able to trigger problems.

  Filipe is fixing a difficult old bug between snapshots, balance and
  send. Dave is cooking a few more for the next rc, but these are tested
  and ready"

* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix races on root_log_ctx lists
  btrfs: fix incremental send failure caused by balance
2016-10-28 10:07:35 -07:00
Chris Mason
570dd45042 btrfs: fix races on root_log_ctx lists
btrfs_remove_all_log_ctxs takes a shortcut where it avoids walking the
list because it knows all of the waiters are patiently waiting for the
commit to finish.

But, there's a small race where btrfs_sync_log can remove itself from
the list if it finds a log commit is already done.  Also, it uses
list_del_init() to remove itself from the list, but there's no way to
know if btrfs_remove_all_log_ctxs has already run, so we don't know for
sure if it is safe to call list_del_init().

This gets rid of all the shortcuts for btrfs_remove_all_log_ctxs(), and
just calls it with the proper locking.

This is part two of the corruption fixed by cbd60aa7cd.  I should have
done this in the first place, but convinced myself the optimizations were
safe.  A 12 hour run of dbench 2048 will eventually trigger a list debug
WARN_ON for the list_del_init() in btrfs_sync_log().

Fixes: d1433debe7
Reported-by: Dave Jones <davej@codemonkey.org.uk>
cc: stable@vger.kernel.org # 3.15+
Signed-off-by: Chris Mason <clm@fb.com>
2016-10-27 10:42:20 -07:00
Linus Torvalds
f29135b54b Merge branch 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This is a big variety of fixes and cleanups.

  Liu Bo continues to fixup fuzzer related problems, and some of Josef's
  cleanups are prep for his bigger extent buffer changes (slated for
  v4.10)"

* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (39 commits)
  Revert "btrfs: let btrfs_delete_unused_bgs() to clean relocated bgs"
  Btrfs: remove unnecessary btrfs_mark_buffer_dirty in split_leaf
  Btrfs: don't BUG() during drop snapshot
  btrfs: fix btrfs_no_printk stub helper
  Btrfs: memset to avoid stale content in btree leaf
  btrfs: parent_start initialization cleanup
  btrfs: Remove already completed TODO comment
  btrfs: Do not reassign count in btrfs_run_delayed_refs
  btrfs: fix a possible umount deadlock
  Btrfs: fix memory leak in do_walk_down
  btrfs: btrfs_debug should consume fs_info when DEBUG is not defined
  btrfs: convert send's verbose_printk to btrfs_debug
  btrfs: convert pr_* to btrfs_* where possible
  btrfs: convert printk(KERN_* to use pr_* calls
  btrfs: unsplit printed strings
  btrfs: clean the old superblocks before freeing the device
  Btrfs: kill BUG_ON in run_delayed_tree_ref
  Btrfs: don't leak reloc root nodes on error
  btrfs: squash lines for simple wrapper functions
  Btrfs: improve check_node to avoid reading corrupted nodes
  ...
2016-10-11 11:23:06 -07:00
Jeff Mahoney
5d163e0e68 btrfs: unsplit printed strings
CodingStyle chapter 2:
"[...] never break user-visible strings such as printk messages,
because that breaks the ability to grep for them."

This patch unsplits user-visible strings.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 18:08:44 +02:00
Josef Bacik
afcdd129e0 Btrfs: add a flags field to btrfs_fs_info
We have a lot of random ints in btrfs_fs_info that can be put into flags.  This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 17:59:49 +02:00
Miklos Szeredi
f031221001 btrfs: use filemap_check_errors()
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Cc: Chris Mason <clm@fb.com>
2016-09-16 12:44:21 +02:00
Chris Mason
cbd60aa7cd Btrfs: remove root_log_ctx from ctx list before btrfs_sync_log returns
We use a btrfs_log_ctx structure to pass information into the
tree log commit, and get error values out.  It gets added to a per
log-transaction list which we walk when things go bad.

Commit d1433debe added an optimization to skip waiting for the log
commit, but didn't take root_log_ctx out of the list.  This
patch makes sure we remove things before exiting.

Signed-off-by: Chris Mason <clm@fb.com>
Fixes: d1433debe7
cc: stable@vger.kernel.org # 3.15+
2016-09-06 05:57:25 -07:00
Filipe Manana
28a235931b Btrfs: fix lockdep warning on deadlock against an inode's log mutex
Commit 44f714dae5 ("Btrfs: improve performance on fsync against new
inode after rename/unlink"), which landed in 4.8-rc2, introduced a
possibility for a deadlock due to double locking of an inode's log mutex
by the same task, which lockdep reports with:

[23045.433975] =============================================
[23045.434748] [ INFO: possible recursive locking detected ]
[23045.435426] 4.7.0-rc6-btrfs-next-34+ #1 Not tainted
[23045.436044] ---------------------------------------------
[23045.436044] xfs_io/3688 is trying to acquire lock:
[23045.436044]  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]
               but task is already holding lock:
[23045.436044]  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]
               other info that might help us debug this:
[23045.436044]  Possible unsafe locking scenario:

[23045.436044]        CPU0
[23045.436044]        ----
[23045.436044]   lock(&ei->log_mutex);
[23045.436044]   lock(&ei->log_mutex);
[23045.436044]
                *** DEADLOCK ***

[23045.436044]  May be due to missing lock nesting notation

[23045.436044] 3 locks held by xfs_io/3688:
[23045.436044]  #0:  (&sb->s_type->i_mutex_key#15){+.+...}, at: [<ffffffffa035f2ae>] btrfs_sync_file+0x14e/0x425 [btrfs]
[23045.436044]  #1:  (sb_internal#2){.+.+.+}, at: [<ffffffff8118446b>] __sb_start_write+0x5f/0xb0
[23045.436044]  #2:  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]
               stack backtrace:
[23045.436044] CPU: 4 PID: 3688 Comm: xfs_io Not tainted 4.7.0-rc6-btrfs-next-34+ #1
[23045.436044] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[23045.436044]  0000000000000000 ffff88022f5f7860 ffffffff8127074d ffffffff82a54b70
[23045.436044]  ffffffff82a54b70 ffff88022f5f7920 ffffffff81092897 ffff880228015d68
[23045.436044]  0000000000000000 ffffffff82a54b70 ffffffff829c3f00 ffff880228015d68
[23045.436044] Call Trace:
[23045.436044]  [<ffffffff8127074d>] dump_stack+0x67/0x90
[23045.436044]  [<ffffffff81092897>] __lock_acquire+0xcbb/0xe4e
[23045.436044]  [<ffffffff8109155f>] ? mark_lock+0x24/0x201
[23045.436044]  [<ffffffff8109179a>] ? mark_held_locks+0x5e/0x74
[23045.436044]  [<ffffffff81092de0>] lock_acquire+0x12f/0x1c3
[23045.436044]  [<ffffffff81092de0>] ? lock_acquire+0x12f/0x1c3
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffff814a51a4>] mutex_lock_nested+0x77/0x3a7
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffffa039705e>] ? btrfs_release_delayed_node+0xb/0xd [btrfs]
[23045.436044]  [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
[23045.436044]  [<ffffffff810a0ed1>] ? vprintk_emit+0x453/0x465
[23045.436044]  [<ffffffffa0385a61>] btrfs_log_inode+0x66e/0xc95 [btrfs]
[23045.436044]  [<ffffffffa03c084d>] log_new_dir_dentries+0x26c/0x359 [btrfs]
[23045.436044]  [<ffffffffa03865aa>] btrfs_log_inode_parent+0x4a6/0x628 [btrfs]
[23045.436044]  [<ffffffffa0387552>] btrfs_log_dentry_safe+0x5a/0x75 [btrfs]
[23045.436044]  [<ffffffffa035f464>] btrfs_sync_file+0x304/0x425 [btrfs]
[23045.436044]  [<ffffffff811acaf4>] vfs_fsync_range+0x8c/0x9e
[23045.436044]  [<ffffffff811acb22>] vfs_fsync+0x1c/0x1e
[23045.436044]  [<ffffffff811acc79>] do_fsync+0x31/0x4a
[23045.436044]  [<ffffffff811ace99>] SyS_fsync+0x10/0x14
[23045.436044]  [<ffffffff814a88e5>] entry_SYSCALL_64_fastpath+0x18/0xa8
[23045.436044]  [<ffffffff8108f039>] ? trace_hardirqs_off_caller+0x3f/0xaa

An example reproducer for this is:

   $ mkfs.btrfs -f /dev/sdb
   $ mount /dev/sdb /mnt
   $ mkdir /mnt/dir
   $ touch /mnt/dir/foo
   $ sync
   $ mv /mnt/dir/foo /mnt/dir/bar
   $ touch /mnt/dir/foo
   $ xfs_io -c "fsync" /mnt/dir/bar

This is because while logging the inode of file bar we end up logging its
parent directory (since its inode has an unlink_trans field matching the
current transaction id due to the rename operation), which in turn logs
the inodes for all its new dentries, so that the new inode for the new
file named foo gets logged which in turn triggered another logging attempt
for the inode we are fsync'ing, since that inode had an old name that
corresponds to the name of the new inode.

So fix this by ensuring that when logging the inode for a new dentry that
has a name matching an old name of some other inode, we don't log again
the original inode that we are fsync'ing.

Fixes: 44f714dae5 ("Btrfs: improve performance on fsync against new inode after rename/unlink")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-08-25 03:58:32 -07:00
Qu Wenruo
df2c95f33e btrfs: qgroup: Fix qgroup incorrectness caused by log replay
When doing log replay at mount time(after power loss), qgroup will leak
numbers of replayed data extents.

The cause is almost the same of balance.
So fix it by manually informing qgroup for owner changed extents.

The bug can be detected by btrfs/119 test case.

Cc: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-08-25 03:58:23 -07:00
Chris Mason
1083881654 Merge branch 'integration-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.8 2016-08-05 12:25:05 -07:00
Filipe Manana
44f714dae5 Btrfs: improve performance on fsync against new inode after rename/unlink
With commit 56f23fdbb6 ("Btrfs: fix file/data loss caused by fsync after
rename and new inode") we got simple fix for a functional issue when the
following sequence of actions is done:

  at transaction N
  create file A at directory D
  at transaction N + M (where M >= 1)
  move/rename existing file A from directory D to directory E
  create a new file named A at directory D
  fsync the new file
  power fail

The solution was to simply detect such scenario and fallback to a full
transaction commit when we detect it. However this turned out to had a
significant impact on throughput (and a bit on latency too) for benchmarks
using the dbench tool, which simulates real workloads from smbd (Samba)
servers. For example on a test vm (with a debug kernel):

Unpatched:
Throughput 19.1572 MB/sec  32 clients  32 procs  max_latency=1005.229 ms

Patched:
Throughput 23.7015 MB/sec  32 clients  32 procs  max_latency=809.206 ms

The patched results (this patch is applied) are similar to the results of
a kernel with the commit 56f23fdbb6 ("Btrfs: fix file/data loss caused
by fsync after rename and new inode") reverted.

This change avoids the fallback to a transaction commit and instead makes
sure all the names of the conflicting inode (the one that had a name in a
past transaction that matches the name of the new file in the same parent
directory) are logged so that at log replay time we don't lose neither the
new file nor the old file, and the old file gets the name it was renamed
to.

This also ends up avoiding a full transaction commit for a similar case
that involves an unlink instead of a rename of the old file:

  at transaction N
  create file A at directory D
  at transaction N + M (where M >= 1)
  remove file A
  create a new file named A at directory D
  fsync the new file
  power fail

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-08-01 07:32:14 +01:00
Jeff Mahoney
66642832f0 btrfs: btrfs_abort_transaction, drop root parameter
__btrfs_abort_transaction doesn't use its root parameter except to
obtain an fs_info pointer.  We can obtain that from trans->root->fs_info
for now and from trans->fs_info in a later patch.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:54:26 +02:00
Jeff Mahoney
3cdde2240d btrfs: btrfs_test_opt and friends should take a btrfs_fs_info
btrfs_test_opt and friends only use the root pointer to access
the fs_info.  Let's pass the fs_info directly in preparation to
eliminate similar patterns all over btrfs.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:53:16 +02:00
Liu Bo
fb770ae414 Btrfs: fix read_node_slot to return errors
We use read_node_slot() to read btree node and it has two cases,
a) slot is out of range, which means 'no such entry'
b) we fail to read the block, due to checksum fails or corrupted
   content or not with uptodate flag.
But we're returning NULL in both cases, this makes it return -ENOENT
in case a) and return -EIO in case b), and this fixes its callers
as well as btrfs_search_forward() 's caller to catch the new errors.

The problem is reported by Peter Becker, and I can manage to
hit the same BUG_ON by mounting my fuzz image.

Reported-by: Peter Becker <floyd.net@gmail.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:52:25 +02:00
Linus Torvalds
4c6459f945 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "The most user visible change here is a fix for our recent superblock
  validation checks that were causing problems on non-4k pagesized
  systems"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: btrfs_check_super_valid: Allow 4096 as stripesize
  btrfs: remove build fixup for qgroup_account_snapshot
  btrfs: use new error message helper in qgroup_account_snapshot
  btrfs: avoid blocking open_ctree from cleaner_kthread
  Btrfs: don't BUG_ON() in btrfs_orphan_add
  btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
  Btrfs: check if extent buffer is aligned to sectorsize
  btrfs: Use correct format specifier
2016-06-18 05:57:59 -10:00
Liu Bo
c871b0f2fd Btrfs: check if extent buffer is aligned to sectorsize
Thanks to fuzz testing, we can pass an invalid bytenr to extent buffer
via alloc_extent_buffer().  An unaligned eb can have more pages than it
should have, which ends up extent buffer's leak or some corrupted content
in extent buffer.

This adds a warning to let us quickly know what was happening.

Now that alloc_extent_buffer() no more returns NULL, this changes its
caller and callers of its caller to match with the new error
handling.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Linus Torvalds
559b6d90a0 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs cleanups and fixes from Chris Mason:
 "We have another round of fixes and a few cleanups.

  I have a fix for short returns from btrfs_copy_from_user, which
  finally nails down a very hard to find regression we added in v4.6.

  Dave is pushing around gfp parameters, mostly to cleanup internal apis
  and make it a little more consistent.

  The rest are smaller fixes, and one speelling fixup patch"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (22 commits)
  Btrfs: fix handling of faults from btrfs_copy_from_user
  btrfs: fix string and comment grammatical issues and typos
  btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
  Btrfs: fix unexpected return value of fiemap
  Btrfs: free sys_array eb as soon as possible
  btrfs: sink gfp parameter to convert_extent_bit
  btrfs: make state preallocation more speculative in __set_extent_bit
  btrfs: untangle gotos a bit in convert_extent_bit
  btrfs: untangle gotos a bit in __clear_extent_bit
  btrfs: untangle gotos a bit in __set_extent_bit
  btrfs: sink gfp parameter to set_record_extent_bits
  btrfs: sink gfp parameter to set_extent_new
  btrfs: sink gfp parameter to set_extent_defrag
  btrfs: sink gfp parameter to set_extent_delalloc
  btrfs: sink gfp parameter to clear_extent_dirty
  btrfs: sink gfp parameter to clear_record_extent_bits
  btrfs: sink gfp parameter to clear_extent_bits
  btrfs: sink gfp parameter to set_extent_bits
  btrfs: make find_workspace warn if there are no workspaces
  btrfs: make find_workspace always succeed
  ...
2016-05-27 16:37:36 -07:00
David Sterba
42f31734eb Merge branch 'cleanups-4.7' into for-chris-4.7-20160525 2016-05-25 22:51:03 +02:00
Nicholas D Steeves
0132761017 btrfs: fix string and comment grammatical issues and typos
Signed-off-by: Nicholas D Steeves <nsteeves@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 22:35:14 +02:00
Linus Torvalds
07be1337b9 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This has our merge window series of cleanups and fixes.  These target
  a wide range of issues, but do include some important fixes for
  qgroups, O_DIRECT, and fsync handling.  Jeff Mahoney moved around a
  few definitions to make them easier for userland to consume.

  Also whiteout support is included now that issues with overlayfs have
  been cleared up.

  I have one more fix pending for page faults during btrfs_copy_from_user,
  but I wanted to get this bulk out the door first"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (90 commits)
  btrfs: fix memory leak during RAID 5/6 device replacement
  Btrfs: add semaphore to synchronize direct IO writes with fsync
  Btrfs: fix race between block group relocation and nocow writes
  Btrfs: fix race between fsync and direct IO writes for prealloc extents
  Btrfs: fix number of transaction units for renames with whiteout
  Btrfs: pin logs earlier when doing a rename exchange operation
  Btrfs: unpin logs if rename exchange operation fails
  Btrfs: fix inode leak on failure to setup whiteout inode in rename
  btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
  Btrfs: pin log earlier when renaming
  Btrfs: unpin log if rename operation fails
  Btrfs: don't do unnecessary delalloc flushes when relocating
  Btrfs: don't wait for unrelated IO to finish before relocation
  Btrfs: fix empty symlink after creating symlink and fsync parent dir
  Btrfs: fix for incorrect directory entries after fsync log replay
  btrfs: build fixup for qgroup_account_snapshot
  btrfs: qgroup: Fix qgroup accounting when creating snapshot
  Btrfs: fix fspath error deallocation
  btrfs: make find_workspace warn if there are no workspaces
  btrfs: make find_workspace always succeed
  ...
2016-05-21 10:49:22 -07:00
Chris Mason
c315ef8d9d Merge branch 'for-chris-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.7
Signed-off-by: Chris Mason <clm@fb.com>
2016-05-17 14:43:19 -07:00
Filipe Manana
5f9a8a51d8 Btrfs: add semaphore to synchronize direct IO writes with fsync
Due to the optimization of lockless direct IO writes (the inode's i_mutex
is not held) introduced in commit 38851cc19a ("Btrfs: implement unlocked
dio write"), we started having races between such writes with concurrent
fsync operations that use the fast fsync path. These races were addressed
in the patches titled "Btrfs: fix race between fsync and lockless direct
IO writes" and "Btrfs: fix race between fsync and direct IO writes for
prealloc extents". The races happened because the direct IO path, like
every other write path, does create extent maps followed by the
corresponding ordered extents while the fast fsync path collected first
ordered extents and then it collected extent maps. This made it possible
to log file extent items (based on the collected extent maps) without
waiting for the corresponding ordered extents to complete (get their IO
done). The two fixes mentioned before added a solution that consists of
making the direct IO path create first the ordered extents and then the
extent maps, while the fsync path attempts to collect any new ordered
extents once it collects the extent maps. This was simple and did not
require adding any synchonization primitive to any data structure (struct
btrfs_inode for example) but it makes things more fragile for future
development endeavours and adds an exceptional approach compared to the
other write paths.

This change adds a read-write semaphore to the btrfs inode structure and
makes the direct IO path create the extent maps and the ordered extents
while holding read access on that semaphore, while the fast fsync path
collects extent maps and ordered extents while holding write access on
that semaphore. The logic for direct IO write path is encapsulated in a
new helper function that is used both for cow and nocow direct IO writes.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:36 +01:00
Filipe Manana
3f9749f6e9 Btrfs: fix empty symlink after creating symlink and fsync parent dir
If we create a symlink, fsync its parent directory, crash/power fail and
mount the filesystem, we end up with an empty symlink, which not only is
useless it's also not allowed in linux (the man page symlink(2) is well
explicit about that).  So we just need to make sure to fully log an inode
if it's a symlink, to ensure its inline extent gets logged, ensuring the
same behaviour as ext3, ext4, xfs, reiserfs, f2fs, nilfs2, etc.

Example reproducer:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt
  $ mkdir /mnt/testdir
  $ sync
  $ ln -s /mnt/foo /mnt/testdir/bar
  $ xfs_io -c fsync /mnt/testdir
  <power fail>
  $ mount /dev/sdb /mnt
  $ readlink /mnt/testdir/bar
  <empty string>

A test case for fstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:12 +01:00
Filipe Manana
657ed1aa48 Btrfs: fix for incorrect directory entries after fsync log replay
If we move a directory to a new parent and later log that parent and don't
explicitly log the old parent, when we replay the log we can end up with
entries for the moved directory in both the old and new parent directories.
Besides being ilegal to have directories with multiple hard links in linux,
it also resulted in the leaving the inode item with a link count of 1.
A similar issue also happens if we move a regular file - after the log tree
is replayed the file has a link in both the old and new parent directories,
when it should be only at the new directory.

Sample reproducer:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt
  $ mkdir /mnt/x
  $ mkdir /mnt/y
  $ touch /mnt/x/foo
  $ mkdir /mnt/y/z
  $ sync
  $ ln /mnt/x/foo /mnt/x/bar
  $ mv /mnt/y/z /mnt/x/z
  < power fail >
  $ mount /dev/sdc /mnt
  $ ls -1Ri /mnt
  /mnt:
  257 x
  258 y

  /mnt/x:
  259 bar
  259 foo
  260 z

  /mnt/x/z:

  /mnt/y:
  260 z

  /mnt/y/z:

  $ umount /dev/sdc
  $ btrfs check /dev/sdc
  Checking filesystem on /dev/sdc
  UUID: a67e2c4a-a4b4-4fdc-b015-9d9af1e344be
  checking extents
  checking free space cache
  checking fs roots
  root 5 inode 260 errors 2000, link count wrong
        unresolved ref dir 257 index 4 namelen 1 name z filetype 2 errors 0
        unresolved ref dir 258 index 2 namelen 1 name z filetype 2 errors 0
  (...)

Attempting to remove the directory becomes impossible:

  $ mount /dev/sdc /mnt
  $ rmdir /mnt/y/z
  $ ls -lh /mnt/y
  ls: cannot access /mnt/y/z: No such file or directory
  total 0
  d????????? ? ? ? ?            ? z
  $ rmdir /mnt/x/z
  rmdir: failed to remove ‘/mnt/x/z’: Stale file handle
  $ ls -lh /mnt/x
  ls: cannot access /mnt/x/z: Stale file handle
  total 0
  -rw-r--r-- 2 root root 0 Apr  6 18:06 bar
  -rw-r--r-- 2 root root 0 Apr  6 18:06 foo
  d????????? ? ?    ?    ?            ? z

So make sure that on rename we set the last_unlink_trans value for our
inode, even if it's a directory, to the value of the current transaction's
ID and that if the new parent directory is logged that we fallback to a
transaction commit.

A test case for fstests is being submitted as well.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:11 +01:00
Al Viro
84695ffee7 Merge getxattr prototype change into work.lookups
The rest of work.xattr stuff isn't needed for this branch
2016-05-02 19:45:47 -04:00
David Sterba
91166212e0 btrfs: sink gfp parameter to clear_extent_bits
Callers pass GFP_NOFS and GFP_KERNEL. No need to pass the flags around.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-29 11:01:47 +02:00
Anand Jain
34d9700702 btrfs: rename btrfs_std_error to btrfs_handle_fs_error
btrfs_std_error() handles errors, puts FS into readonly mode
(as of now). So its good idea to rename it to btrfs_handle_fs_error().

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ edit changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-28 10:36:54 +02:00
Al Viro
fc64005c93 don't bother with ->d_inode->i_sb - it's always equal to ->d_sb
... and neither can ever be NULL

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-04-10 17:11:51 -04:00
Filipe Manana
56f23fdbb6 Btrfs: fix file/data loss caused by fsync after rename and new inode
If we rename an inode A (be it a file or a directory), create a new
inode B with the old name of inode A and under the same parent directory,
fsync inode B and then power fail, at log tree replay time we end up
removing inode A completely. If inode A is a directory then all its files
are gone too.

Example scenarios where this happens:
This is reproducible with the following steps, taken from a couple of
test cases written for fstests which are going to be submitted upstream
soon:

   # Scenario 1

   mkfs.btrfs -f /dev/sdc
   mount /dev/sdc /mnt
   mkdir -p /mnt/a/x
   echo "hello" > /mnt/a/x/foo
   echo "world" > /mnt/a/x/bar
   sync
   mv /mnt/a/x /mnt/a/y
   mkdir /mnt/a/x
   xfs_io -c fsync /mnt/a/x
   <power failure happens>

   The next time the fs is mounted, log tree replay happens and
   the directory "y" does not exist nor do the files "foo" and
   "bar" exist anywhere (neither in "y" nor in "x", nor the root
   nor anywhere).

   # Scenario 2

   mkfs.btrfs -f /dev/sdc
   mount /dev/sdc /mnt
   mkdir /mnt/a
   echo "hello" > /mnt/a/foo
   sync
   mv /mnt/a/foo /mnt/a/bar
   echo "world" > /mnt/a/foo
   xfs_io -c fsync /mnt/a/foo
   <power failure happens>

   The next time the fs is mounted, log tree replay happens and the
   file "bar" does not exists anymore. A file with the name "foo"
   exists and it matches the second file we created.

Another related problem that does not involve file/data loss is when a
new inode is created with the name of a deleted snapshot and we fsync it:

   mkfs.btrfs -f /dev/sdc
   mount /dev/sdc /mnt
   mkdir /mnt/testdir
   btrfs subvolume snapshot /mnt /mnt/testdir/snap
   btrfs subvolume delete /mnt/testdir/snap
   rmdir /mnt/testdir
   mkdir /mnt/testdir
   xfs_io -c fsync /mnt/testdir # or fsync some file inside /mnt/testdir
   <power failure>

   The next time the fs is mounted the log replay procedure fails because
   it attempts to delete the snapshot entry (which has dir item key type
   of BTRFS_ROOT_ITEM_KEY) as if it were a regular (non-root) entry,
   resulting in the following error that causes mount to fail:

   [52174.510532] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257
   [52174.512570] ------------[ cut here ]------------
   [52174.513278] WARNING: CPU: 12 PID: 28024 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x178/0x351 [btrfs]()
   [52174.514681] BTRFS: Transaction aborted (error -2)
   [52174.515630] Modules linked in: btrfs dm_flakey dm_mod overlay crc32c_generic ppdev xor raid6_pq acpi_cpufreq parport_pc tpm_tis sg parport tpm evdev i2c_piix4 proc
   [52174.521568] CPU: 12 PID: 28024 Comm: mount Tainted: G        W       4.5.0-rc6-btrfs-next-27+ #1
   [52174.522805] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
   [52174.524053]  0000000000000000 ffff8801df2a7710 ffffffff81264e93 ffff8801df2a7758
   [52174.524053]  0000000000000009 ffff8801df2a7748 ffffffff81051618 ffffffffa03591cd
   [52174.524053]  00000000fffffffe ffff88015e6e5000 ffff88016dbc3c88 ffff88016dbc3c88
   [52174.524053] Call Trace:
   [52174.524053]  [<ffffffff81264e93>] dump_stack+0x67/0x90
   [52174.524053]  [<ffffffff81051618>] warn_slowpath_common+0x99/0xb2
   [52174.524053]  [<ffffffffa03591cd>] ? __btrfs_unlink_inode+0x178/0x351 [btrfs]
   [52174.524053]  [<ffffffff81051679>] warn_slowpath_fmt+0x48/0x50
   [52174.524053]  [<ffffffffa03591cd>] __btrfs_unlink_inode+0x178/0x351 [btrfs]
   [52174.524053]  [<ffffffff8118f5e9>] ? iput+0xb0/0x284
   [52174.524053]  [<ffffffffa0359fe8>] btrfs_unlink_inode+0x1c/0x3d [btrfs]
   [52174.524053]  [<ffffffffa038631e>] check_item_in_log+0x1fe/0x29b [btrfs]
   [52174.524053]  [<ffffffffa0386522>] replay_dir_deletes+0x167/0x1cf [btrfs]
   [52174.524053]  [<ffffffffa038739e>] fixup_inode_link_count+0x289/0x2aa [btrfs]
   [52174.524053]  [<ffffffffa038748a>] fixup_inode_link_counts+0xcb/0x105 [btrfs]
   [52174.524053]  [<ffffffffa038a5ec>] btrfs_recover_log_trees+0x258/0x32c [btrfs]
   [52174.524053]  [<ffffffffa03885b2>] ? replay_one_extent+0x511/0x511 [btrfs]
   [52174.524053]  [<ffffffffa034f288>] open_ctree+0x1dd4/0x21b9 [btrfs]
   [52174.524053]  [<ffffffffa032b753>] btrfs_mount+0x97e/0xaed [btrfs]
   [52174.524053]  [<ffffffff8108e1b7>] ? trace_hardirqs_on+0xd/0xf
   [52174.524053]  [<ffffffff8117bafa>] mount_fs+0x67/0x131
   [52174.524053]  [<ffffffff81193003>] vfs_kern_mount+0x6c/0xde
   [52174.524053]  [<ffffffffa032af81>] btrfs_mount+0x1ac/0xaed [btrfs]
   [52174.524053]  [<ffffffff8108e1b7>] ? trace_hardirqs_on+0xd/0xf
   [52174.524053]  [<ffffffff8108c262>] ? lockdep_init_map+0xb9/0x1b3
   [52174.524053]  [<ffffffff8117bafa>] mount_fs+0x67/0x131
   [52174.524053]  [<ffffffff81193003>] vfs_kern_mount+0x6c/0xde
   [52174.524053]  [<ffffffff8119590f>] do_mount+0x8a6/0x9e8
   [52174.524053]  [<ffffffff811358dd>] ? strndup_user+0x3f/0x59
   [52174.524053]  [<ffffffff81195c65>] SyS_mount+0x77/0x9f
   [52174.524053]  [<ffffffff814935d7>] entry_SYSCALL_64_fastpath+0x12/0x6b
   [52174.561288] ---[ end trace 6b53049efb1a3ea6 ]---

Fix this by forcing a transaction commit when such cases happen.
This means we check in the commit root of the subvolume tree if there
was any other inode with the same reference when the inode we are
fsync'ing is a new inode (created in the current transaction).

Test cases for fstests, covering all the scenarios given above, were
submitted upstream for fstests:

  * fstests: generic test for fsync after renaming directory
    https://patchwork.kernel.org/patch/8694281/

  * fstests: generic test for fsync after renaming file
    https://patchwork.kernel.org/patch/8694301/

  * fstests: add btrfs test for fsync after snapshot deletion
    https://patchwork.kernel.org/patch/8670671/

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-04-06 17:01:44 -07:00
Adam Buchbinder
bb7ab3b92e btrfs: Fix misspellings in comments.
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-03-14 15:05:02 +01:00
Anand Jain
ebb8765b2d btrfs: move btrfs_compression_type to compression.h
So that its better organized.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-03-11 17:12:46 +01:00
Filipe Manana
5e33a2bd7c Btrfs: do not collect ordered extents when logging that inode exists
When logging that an inode exists, for example as part of a directory
fsync operation, we were collecting any ordered extents for the inode but
we ended up doing nothing with them except tagging them as processed, by
setting the flag BTRFS_ORDERED_LOGGED on them, which prevented a
subsequent fsync of that inode (using the LOG_INODE_ALL mode) from
collecting and processing them. This created a time window where a second
fsync against the inode, using the fast path, ended up not logging the
checksums for the new extents but it logged the extents since they were
part of the list of modified extents. This happened because the ordered
extents were not collected and checksums were not yet added to the csum
tree - the ordered extents have not gone through btrfs_finish_ordered_io()
yet (which is where we add them to the csum tree by calling
inode.c:add_pending_csums()).

So fix this by not collecting an inode's ordered extents if we are logging
it with the LOG_INODE_EXISTS mode.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-03-01 08:23:47 -08:00
Filipe Manana
2be63d5ce9 Btrfs: fix file loss on log replay after renaming a file and fsync
We have two cases where we end up deleting a file at log replay time
when we should not. For this to happen the file must have been renamed
and a directory inode must have been fsynced/logged.

Two examples that exercise these two cases are listed below.

  Case 1)

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt
  $ mkdir -p /mnt/a/b
  $ mkdir /mnt/c
  $ touch /mnt/a/b/foo
  $ sync
  $ mv /mnt/a/b/foo /mnt/c/
  # Create file bar just to make sure the fsync on directory a/ does
  # something and it's not a no-op.
  $ touch /mnt/a/bar
  $ xfs_io -c "fsync" /mnt/a
  < power fail / crash >

  The next time the filesystem is mounted, the log replay procedure
  deletes file foo.

  Case 2)

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt
  $ mkdir /mnt/a
  $ mkdir /mnt/b
  $ mkdir /mnt/c
  $ touch /mnt/a/foo
  $ ln /mnt/a/foo /mnt/b/foo_link
  $ touch /mnt/b/bar
  $ sync
  $ unlink /mnt/b/foo_link
  $ mv /mnt/b/bar /mnt/c/
  $ xfs_io -c "fsync" /mnt/a/foo
  < power fail / crash >

  The next time the filesystem is mounted, the log replay procedure
  deletes file bar.

The reason why the files are deleted is because when we log inodes
other then the fsync target inode, we ignore their last_unlink_trans
value and leave the log without enough information to later replay the
rename operations. So we need to look at the last_unlink_trans values
and fallback to a transaction commit if they are greater than the
id of the last committed transaction.

So fix this by looking at the last_unlink_trans values and fallback to
transaction commits when needed. Also, when logging other inodes (for
case 1 we logged descendants of the fsync target inode while for case 2
we logged ascendants) we need to care about concurrent tasks updating
the last_unlink_trans of inodes we are logging (which was already an
existing problem in check_parent_dirs_for_sync()). Since we can not
acquire their inode mutex (vfs' struct inode ->i_mutex), as that causes
deadlocks with other concurrent operations that acquire the i_mutex of
2 inodes (other fsyncs or renames for example), we need to serialize on
the log_mutex of the inode we are logging. A task setting a new value for
an inode's last_unlink_trans must acquire the inode's log_mutex and it
must do this update before doing the actual unlink operation (which is
already the case except when deleting a snapshot). Conversely the task
logging the inode must first log the inode and then check the inode's
last_unlink_trans value while holding its log_mutex, as if its value is
not greater then the id of the last committed transaction it means it
logged a safe state of the inode's items, while if its value is not
smaller then the id of the last committed transaction it means the inode
state it has logged might not be safe (the concurrent task might have
just updated last_unlink_trans but hasn't done yet the unlink operation)
and therefore a transaction commit must be done.

Test cases for xfstests follow in separate patches.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-03-01 08:23:29 -08:00
Filipe Manana
1ec9a1ae1e Btrfs: fix unreplayable log after snapshot delete + parent dir fsync
If we delete a snapshot, fsync its parent directory and crash/power fail
before the next transaction commit, on the next mount when we attempt to
replay the log tree of the root containing the parent directory we will
fail and prevent the filesystem from mounting, which is solvable by wiping
out the log trees with the btrfs-zero-log tool but very inconvenient as
we will lose any data and metadata fsynced before the parent directory
was fsynced.

For example:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt
  $ mkdir /mnt/testdir
  $ btrfs subvolume snapshot /mnt /mnt/testdir/snap
  $ btrfs subvolume delete /mnt/testdir/snap
  $ xfs_io -c "fsync" /mnt/testdir
  < crash / power failure and reboot >
  $ mount /dev/sdc /mnt
  mount: mount(2) failed: No such file or directory

And in dmesg/syslog we get the following message and trace:

[192066.361162] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257
[192066.363010] ------------[ cut here ]------------
[192066.365268] WARNING: CPU: 4 PID: 5130 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x17a/0x354 [btrfs]()
[192066.367250] BTRFS: Transaction aborted (error -2)
[192066.368401] Modules linked in: btrfs dm_flakey dm_mod ppdev sha256_generic xor raid6_pq hmac drbg ansi_cprng aesni_intel acpi_cpufreq tpm_tis aes_x86_64 tpm ablk_helper evdev cryptd sg parport_pc i2c_piix4 psmouse lrw parport i2c_core pcspkr gf128mul processor serio_raw glue_helper button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs]
[192066.377154] CPU: 4 PID: 5130 Comm: mount Tainted: G        W       4.4.0-rc6-btrfs-next-20+ #1
[192066.378875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[192066.380889]  0000000000000000 ffff880143923670 ffffffff81257570 ffff8801439236b8
[192066.382561]  ffff8801439236a8 ffffffff8104ec07 ffffffffa039dc2c 00000000fffffffe
[192066.384191]  ffff8801ed31d000 ffff8801b9fc9c88 ffff8801086875e0 ffff880143923710
[192066.385827] Call Trace:
[192066.386373]  [<ffffffff81257570>] dump_stack+0x4e/0x79
[192066.387387]  [<ffffffff8104ec07>] warn_slowpath_common+0x99/0xb2
[192066.388429]  [<ffffffffa039dc2c>] ? __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.389236]  [<ffffffff8104ec68>] warn_slowpath_fmt+0x48/0x50
[192066.389884]  [<ffffffffa039dc2c>] __btrfs_unlink_inode+0x17a/0x354 [btrfs]
[192066.390621]  [<ffffffff81184b55>] ? iput+0xb0/0x266
[192066.391200]  [<ffffffffa039ea25>] btrfs_unlink_inode+0x1c/0x3d [btrfs]
[192066.391930]  [<ffffffffa03ca623>] check_item_in_log+0x1fe/0x29b [btrfs]
[192066.392715]  [<ffffffffa03ca827>] replay_dir_deletes+0x167/0x1cf [btrfs]
[192066.393510]  [<ffffffffa03cccc7>] replay_one_buffer+0x417/0x570 [btrfs]
[192066.394241]  [<ffffffffa03ca164>] walk_up_log_tree+0x10e/0x1dc [btrfs]
[192066.394958]  [<ffffffffa03cac72>] walk_log_tree+0xa5/0x190 [btrfs]
[192066.395628]  [<ffffffffa03ce8b8>] btrfs_recover_log_trees+0x239/0x32c [btrfs]
[192066.396790]  [<ffffffffa03cc8b0>] ? replay_one_extent+0x50a/0x50a [btrfs]
[192066.397891]  [<ffffffffa0394041>] open_ctree+0x1d8b/0x2167 [btrfs]
[192066.398897]  [<ffffffffa03706e1>] btrfs_mount+0x5ef/0x729 [btrfs]
[192066.399823]  [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.400739]  [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.401700]  [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.402482]  [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.403930]  [<ffffffffa03702bd>] btrfs_mount+0x1cb/0x729 [btrfs]
[192066.404831]  [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf
[192066.405726]  [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3
[192066.406621]  [<ffffffff811714b9>] mount_fs+0x67/0x131
[192066.407401]  [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde
[192066.408247]  [<ffffffff8118ae36>] do_mount+0x893/0x9d2
[192066.409047]  [<ffffffff8113009b>] ? strndup_user+0x3f/0x8c
[192066.409842]  [<ffffffff8118b187>] SyS_mount+0x75/0xa1
[192066.410621]  [<ffffffff8147e517>] entry_SYSCALL_64_fastpath+0x12/0x6b
[192066.411572] ---[ end trace 2de42126c1e0a0f0 ]---
[192066.412344] BTRFS: error (device dm-0) in __btrfs_unlink_inode:3986: errno=-2 No such entry
[192066.413748] BTRFS: error (device dm-0) in btrfs_replay_log:2464: errno=-2 No such entry (Failed to recover log tree)
[192066.415458] BTRFS error (device dm-0): cleaner transaction attach returned -30
[192066.444613] BTRFS: open_ctree failed

This happens because when we are replaying the log and processing the
directory entry pointing to the snapshot in the subvolume tree, we treat
its btrfs_dir_item item as having a location with a key type matching
BTRFS_INODE_ITEM_KEY, which is wrong because the type matches
BTRFS_ROOT_ITEM_KEY and therefore must be processed differently, as the
object id refers to a root number and not to an inode in the root
containing the parent directory.

So fix this by triggering a transaction commit if an fsync against the
parent directory is requested after deleting a snapshot. This is the
simplest approach for a rare use case. Some alternative that avoids the
transaction commit would require more code to explicitly delete the
snapshot at log replay time (factoring out common code from ioctl.c:
btrfs_ioctl_snap_destroy()), special care at fsync time to remove the
log tree of the snapshot's root from the log root of the root of tree
roots, amongst other steps.

A test case for xfstests that triggers the issue follows.

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      cd /
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_dm_target flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create a snapshot at the root of our filesystem (mount point path), delete it,
  # fsync the mount point path, crash and mount to replay the log. This should
  # succeed and after the filesystem is mounted the snapshot should not be visible
  # anymore.
  _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap1
  _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap1
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT
  _flakey_drop_and_remount
  [ -e $SCRATCH_MNT/snap1 ] && \
      echo "Snapshot snap1 still exists after log replay"

  # Similar scenario as above, but this time the snapshot is created inside a
  # directory and not directly under the root (mount point path).
  mkdir $SCRATCH_MNT/testdir
  _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/testdir/snap2
  _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/testdir/snap2
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir
  _flakey_drop_and_remount
  [ -e $SCRATCH_MNT/testdir/snap2 ] && \
      echo "Snapshot snap2 still exists after log replay"

  _unmount_flakey

  echo "Silence is golden"
  status=0
  exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-03-01 08:23:25 -08:00
Filipe Manana
de0ee0edb2 Btrfs: fix race between fsync and lockless direct IO writes
An fsync, using the fast path, can race with a concurrent lockless direct
IO write and end up logging a file extent item that points to an extent
that wasn't written to yet. This is because the fast fsync path collects
ordered extents into a local list and then collects all the new extent
maps to log file extent items based on them, while the direct IO write
path creates the new extent map before it creates the corresponding
ordered extent (and submitting the respective bio(s)).

So fix this by making the direct IO write path create ordered extents
before the extent maps and make the fast fsync path collect any new
ordered extents after it collects the extent maps.
Note that making the fsync handler call inode_dio_wait() (after acquiring
the inode's i_mutex) would not work and lead to a deadlock when doing
AIO, as through AIO we end up in a path where the fsync handler is called
(through dio_aio_complete_work() -> dio_complete() -> vfs_fsync_range())
before the inode's dio counter is decremented (inode_dio_wait() waits
for this counter to have a value of zero).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-25 16:50:26 -08:00
Filipe Manana
b06c4bf5c8 Btrfs: fix regression running delayed references when using qgroups
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:

  commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")

Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:

  static int run_delayed_tree_ref(...)
  {
     (...)
     BUG_ON(node->ref_mod != 1);
     (...)
  }

This happens on a scenario like the following:

  1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.

  2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
     It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.

  3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
     It's not merged with the reference at the tail of the list of refs
     for bytenr X because the reference at the tail, Ref2 is incompatible
     due to Ref2->no_quota != Ref3->no_quota.

  4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
     It's not merged with the reference at the tail of the list of refs
     for bytenr X because the reference at the tail, Ref3 is incompatible
     due to Ref3->no_quota != Ref4->no_quota.

  5) We run delayed references, trigger merging of delayed references,
     through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().

  6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
     all other conditions are satisfied too. So Ref1 gets a ref_mod
     value of 2.

  7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
     all other conditions are satisfied too. So Ref2 gets a ref_mod
     value of 2.

  8) Ref1 and Ref2 aren't merged, because they have different values
     for their no_quota field.

  9) Delayed reference Ref1 is picked for running (select_delayed_ref()
     always prefers references with an action == BTRFS_ADD_DELAYED_REF).
     So run_delayed_tree_ref() is called for Ref1 which triggers the
     BUG_ON because Ref1->red_mod != 1 (equals 2).

So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").

The use of no_quota was also buggy in at least two places:

1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
   no_quota to 0 instead of 1 when the following condition was true:
   is_fstree(ref_root) || !fs_info->quota_enabled

2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
   reset a node's no_quota when the condition "!is_fstree(root_objectid)
   || !root->fs_info->quota_enabled" was true but we did it only in
   an unused local stack variable, that is, we never reset the no_quota
   value in the node itself.

This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.

Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).

Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:

  INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
  (...)
  Call Trace:
    [<ffffffff86999201>] schedule+0x74/0x83
    [<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
    [<ffffffff86137ed7>] ? wait_woken+0x74/0x74
    [<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
    [<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
    [<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
    [<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
    [<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
    [<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
    [<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
    [<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
    [<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
    [<ffffffff863e852e>] check_ref+0x64/0xc4
    [<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
    [<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
    [<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
    [<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
  (...)

The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).

Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org  # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
2015-10-25 19:53:26 +00:00
Chris Mason
6db4a7335d Merge branch 'fix/waitqueue-barriers' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4 2015-10-12 16:24:40 -07:00
David Sterba
779adf0f64 btrfs: remove extra barrier before waitqueue_active
Removing barriers is scary, but a call to atomic_dec_and_test implies
a barrier, so we don't need to issue another one.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-10 18:40:33 +02:00
David Sterba
33a9eca7e4 btrfs: comment waitqueue_active implied by locks
Suggested-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-10 18:35:10 +02:00
Anand Jain
a4553fefb5 Btrfs: consolidate btrfs_error() to btrfs_std_error()
btrfs_error() and btrfs_std_error() does the same thing
and calls _btrfs_std_error(), so consolidate them together.
And the main motivation is that btrfs_error() is closely
named with btrfs_err(), one handles error action the other
is to log the error, so don't closely name them.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Suggested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2015-09-29 16:30:00 +02:00
Filipe Manana
b84b8390d6 Btrfs: fix file read corruption after extent cloning and fsync
If we partially clone one extent of a file into a lower offset of the
file, fsync the file, power fail and then mount the fs to trigger log
replay, we can get multiple checksum items in the csum tree that overlap
each other and result in checksum lookup failures later. Those failures
can make file data read requests assume a checksum value of 0, but they
will not return an error (-EIO for example) to userspace exactly because
the expected checksum value 0 is a special value that makes the read bio
endio callback return success and set all the bytes of the corresponding
page with the value 0x01 (at fs/btrfs/inode.c:__readpage_endio_check()).
From a userspace perspective this is equivalent to file corruption
because we are not returning what was written to the file.

Details about how this can happen, and why, are included inline in the
following reproducer test case for fstests and the comment added to
tree-log.c.

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_cloner
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with a single 100K extent starting at file
  # offset 800K. We fsync the file here to make the fsync log tree gets
  # a single csum item that covers the whole 100K extent, which causes
  # the second fsync, done after the cloning operation below, to not
  # leave in the log tree two csum items covering two sub-ranges
  # ([0, 20K[ and [20K, 100K[)) of our extent.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 800K 100K"  \
                  -c "fsync"                     \
                   $SCRATCH_MNT/foo | _filter_xfs_io

  # Now clone part of our extent into file offset 400K. This adds a file
  # extent item to our inode's metadata that points to the 100K extent
  # we created before, using a data offset of 20K and a data length of
  # 20K, so that it refers to the sub-range [20K, 40K[ of our original
  # extent.
  $CLONER_PROG -s $((800 * 1024 + 20 * 1024)) -d $((400 * 1024)) \
      -l $((20 * 1024)) $SCRATCH_MNT/foo $SCRATCH_MNT/foo

  # Now fsync our file to make sure the extent cloning is durably
  # persisted. This fsync will not add a second csum item to the log
  # tree containing the checksums for the blocks in the sub-range
  # [20K, 40K[ of our extent, because there was already a csum item in
  # the log tree covering the whole extent, added by the first fsync
  # we did before.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  echo "File digest before power failure:"
  md5sum $SCRATCH_MNT/foo | _filter_scratch

  # Silently drop all writes and ummount to simulate a crash/power
  # failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger log replay and validate file
  # contents.
  # The fsync log replay first processes the file extent item
  # corresponding to the file offset 400K (the one which refers to the
  # [20K, 40K[ sub-range of our 100K extent) and then processes the file
  # extent item for file offset 800K. It used to happen that when
  # processing the later, it erroneously left in the csum tree 2 csum
  # items that overlapped each other, 1 for the sub-range [20K, 40K[ and
  # 1 for the whole range of our extent. This introduced a problem where
  # subsequent lookups for the checksums of blocks within the range
  # [40K, 100K[ of our extent would not find anything because lookups in
  # the csum tree ended up looking only at the smaller csum item, the
  # one covering the subrange [20K, 40K[. This made read requests assume
  # an expected checksum with a value of 0 for those blocks, which caused
  # checksum verification failure when the read operations finished.
  # However those checksum failure did not result in read requests
  # returning an error to user space (like -EIO for e.g.) because the
  # expected checksum value had the special value 0, and in that case
  # btrfs set all bytes of the corresponding pages with the value 0x01
  # and produce the following warning in dmesg/syslog:
  #
  #  "BTRFS warning (device dm-0): csum failed ino 257 off 917504 csum\
  #   1322675045 expected csum 0"
  #
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  echo "File digest after log replay:"
  # Must match the same digest he had after cloning the extent and
  # before the power failure happened.
  md5sum $SCRATCH_MNT/foo | _filter_scratch

  _unmount_flakey

  status=0
  exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:27:46 -07:00
Zhaolei
60d53eb310 btrfs: Remove unused arguments in tree-log.c
Following arguments are not used in tree-log.c:
 insert_one_name(): path, type
 wait_log_commit(): trans
 wait_for_writer(): trans

This patch remove them.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:25:15 -07:00
Zhaolei
34eb2a5249 btrfs: Remove useless condition in start_log_trans()
Dan Carpenter <dan.carpenter@oracle.com> reported a smatch warning
for start_log_trans():
 fs/btrfs/tree-log.c:178 start_log_trans()
 warn: we tested 'root->log_root' before and it was 'false'

 fs/btrfs/tree-log.c
 147          if (root->log_root) {
 We test "root->log_root" here.
 ...

Reason:
 Condition of:
 fs/btrfs/tree-log.c:178: if (!root->log_root) {
 is not necessary after commit: 7237f1833

 It caused a smatch warning, and no functionally error.

Fix:
 Deleting above condition will make smatch shut up,
 but a better way is to do cleanup for start_log_trans()
 to remove duplicated code and make code more readable.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:24:49 -07:00
Filipe Manana
18aa092297 Btrfs: fix stale dir entries after removing a link and fsync
We have one more case where after a log tree is replayed we get
inconsistent metadata leading to stale directory entries, due to
some directories having entries pointing to some inode while the
inode does not have a matching BTRFS_INODE_[REF|EXTREF]_KEY item.

To trigger the problem we need to have a file with multiple hard links
belonging to different parent directories. Then if one of those hard
links is removed and we fsync the file using one of its other links
that belongs to a different parent directory, we end up not logging
the fact that the removed hard link doesn't exists anymore in the
parent directory.

Simple reproducer:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test directory and file.
  mkdir $SCRATCH_MNT/testdir
  touch $SCRATCH_MNT/foo
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/testdir/foo2
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/testdir/foo3

  # Make sure everything done so far is durably persisted.
  sync

  # Now we remove one of our file's hardlinks in the directory testdir.
  unlink $SCRATCH_MNT/testdir/foo3

  # We now fsync our file using the "foo" link, which has a parent that
  # is not the directory "testdir".
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Silently drop all writes and unmount to simulate a crash/power
  # failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger journal/log replay.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After the journal/log is replayed we expect to not see the "foo3"
  # link anymore and we should be able to remove all names in the
  # directory "testdir" and then remove it (no stale directory entries
  # left after the journal/log replay).
  echo "Entries in testdir:"
  ls -1 $SCRATCH_MNT/testdir

  rm -f $SCRATCH_MNT/testdir/*
  rmdir $SCRATCH_MNT/testdir

  _unmount_flakey

  status=0
  exit

The test fails with:

  $ ./check generic/107
  FSTYP         -- btrfs
  PLATFORM      -- Linux/x86_64 debian3 4.1.0-rc6-btrfs-next-11+
  MKFS_OPTIONS  -- /dev/sdc
  MOUNT_OPTIONS -- /dev/sdc /home/fdmanana/btrfs-tests/scratch_1

  generic/107 3s ... - output mismatch (see .../results/generic/107.out.bad)
    --- tests/generic/107.out	2015-08-01 01:39:45.807462161 +0100
    +++ /home/fdmanana/git/hub/xfstests/results//generic/107.out.bad
    @@ -1,3 +1,5 @@
     QA output created by 107
     Entries in testdir:
     foo2
    +foo3
    +rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
    ...
    _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent \
      (see /home/fdmanana/git/hub/xfstests/results//generic/107.full)
    _check_dmesg: something found in dmesg (see .../results/generic/107.dmesg)
  Ran: generic/107
  Failures: generic/107
  Failed 1 of 1 tests

  $ cat /home/fdmanana/git/hub/xfstests/results//generic/107.full
  (...)
  checking fs roots
  root 5 inode 257 errors 200, dir isize wrong
	unresolved ref dir 257 index 3 namelen 4 name foo3 filetype 1 errors 5, no dir item, no inode ref
  (...)

And produces the following warning in dmesg:

  [127298.759064] BTRFS info (device dm-0): failed to delete reference to foo3, inode 258 parent 257
  [127298.762081] ------------[ cut here ]------------
  [127298.763311] WARNING: CPU: 10 PID: 7891 at fs/btrfs/inode.c:3956 __btrfs_unlink_inode+0x182/0x35a [btrfs]()
  [127298.767327] BTRFS: Transaction aborted (error -2)
  (...)
  [127298.788611] Call Trace:
  [127298.789137]  [<ffffffff8145f077>] dump_stack+0x4f/0x7b
  [127298.790090]  [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2
  [127298.791157]  [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
  [127298.792323]  [<ffffffffa065ad09>] ? __btrfs_unlink_inode+0x182/0x35a [btrfs]
  [127298.793633]  [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
  [127298.794699]  [<ffffffffa065ad09>] __btrfs_unlink_inode+0x182/0x35a [btrfs]
  [127298.797640]  [<ffffffffa065be8f>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
  [127298.798876]  [<ffffffffa065bf11>] btrfs_unlink+0x60/0x9b [btrfs]
  [127298.800154]  [<ffffffff8116fb48>] vfs_unlink+0x9c/0xed
  [127298.801303]  [<ffffffff81173481>] do_unlinkat+0x12b/0x1fb
  [127298.802450]  [<ffffffff81253855>] ? lockdep_sys_exit_thunk+0x12/0x14
  [127298.803797]  [<ffffffff81174056>] SyS_unlinkat+0x29/0x2b
  [127298.805017]  [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
  [127298.806310] ---[ end trace bbfddacb7aaada7b ]---
  [127298.807325] BTRFS warning (device dm-0): __btrfs_unlink_inode:3956: Aborting unused transaction(No such entry).

So fix this by logging all parent inodes, current and old ones, to make
sure we do not get stale entries after log replay. This is not a simple
solution such as triggering a full transaction commit because it would
imply full transaction commit when an inode is fsynced in the same
transaction that modified it and reloaded it after eviction (because its
last_unlink_trans is set to the same value as its last_trans as of the
commit with the title "Btrfs: fix stale dir entries after unlink, inode
eviction and fsync"), and it would also make fstest generic/066 fail
since one of the fsyncs triggers a full commit and the next fsync will
not find the inode in the log anymore (therefore not removing the xattr).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 06:17:04 -07:00
Filipe Manana
bb53eda902 Btrfs: fix stale directory entries after fsync log replay
We have another case where after an fsync log replay we get an inode with
a wrong link count (smaller than it should be) and a number of directory
entries greater than its link count. This happens when we add a new link
hard link to our inode A and then we fsync some other inode B that has
the side effect of logging the parent directory inode too. In this case
at log replay time we add the new hard link to our inode (the item with
key BTRFS_INODE_REF_KEY) when processing the parent directory but we
never adjust the link count of our inode A. As a result we get stale dir
entries for our inode A that can never be deleted and therefore it makes
it impossible to remove the parent directory (as its i_size can never
decrease back to 0).

A simple reproducer for fstests that triggers this issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test directory and files.
  mkdir $SCRATCH_MNT/testdir
  touch $SCRATCH_MNT/testdir/foo
  touch $SCRATCH_MNT/testdir/bar

  # Make sure everything done so far is durably persisted.
  sync

  # Create one hard link for file foo and another one for file bar. After
  # that fsync only the file bar.
  ln $SCRATCH_MNT/testdir/bar $SCRATCH_MNT/testdir/bar_link
  ln $SCRATCH_MNT/testdir/foo $SCRATCH_MNT/testdir/foo_link
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir/bar

  # Silently drop all writes on scratch device to simulate power failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again and mount the fs to trigger log/journal replay.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Now verify both our files have a link count of 2.
  echo "Link count for file foo: $(stat --format=%h $SCRATCH_MNT/testdir/foo)"
  echo "Link count for file bar: $(stat --format=%h $SCRATCH_MNT/testdir/bar)"

  # We should be able to remove all the links of our files in testdir, and
  # after that the parent directory should become empty and therefore
  # possible to remove it.
  rm -f $SCRATCH_MNT/testdir/*
  rmdir $SCRATCH_MNT/testdir

  _unmount_flakey

  # The fstests framework will call fsck against our filesystem which will verify
  # that all metadata is in a consistent state.

  status=0
  exit

The test fails with:

 -Link count for file foo: 2
 +Link count for file foo: 1
  Link count for file bar: 2
 +rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/testdir/foo_link': Stale file handle
 +rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
 (...)
 _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent

And fsck's output:

  (...)
  checking fs roots
  root 5 inode 258 errors 2001, no inode item, link count wrong
      unresolved ref dir 257 index 5 namelen 8 name foo_link filetype 1 errors 4, no inode ref
  Checking filesystem on /dev/sdc
  (...)

So fix this by marking inodes for link count fixup at log replay time
whenever a directory entry is replayed if the entry was created in the
transaction where the fsync was made and if it points to a non-directory
inode.

This isn't a new problem/regression, the issue exists for a long time,
possibly since the log tree feature was added (2008).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 06:16:56 -07:00
Filipe Manana
a89ca6f24f Btrfs: fix fsync after truncate when no_holes feature is enabled
When we have the no_holes feature enabled, if a we truncate a file to a
smaller size, truncate it again but to a size greater than or equals to
its original size and fsync it, the log tree will not have any information
about the hole covering the range [truncate_1_offset, new_file_size[.
Which means if the fsync log is replayed, the file will remain with the
state it had before both truncate operations.

Without the no_holes feature this does not happen, since when the inode
is logged (full sync flag is set) it will find in the fs/subvol tree a
leaf with a generation matching the current transaction id that has an
explicit extent item representing the hole.

Fix this by adding an explicit extent item representing a hole between
the last extent and the inode's i_size if we are doing a full sync.

The issue is easy to reproduce with the following test case for fstests:

  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey

  # This test was motivated by an issue found in btrfs when the btrfs
  # no-holes feature is enabled (introduced in kernel 3.14). So enable
  # the feature if the fs being tested is btrfs.
  if [ $FSTYP == "btrfs" ]; then
      _require_btrfs_fs_feature "no_holes"
      _require_btrfs_mkfs_feature "no-holes"
      MKFS_OPTIONS="$MKFS_OPTIONS -O no-holes"
  fi

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test files and make sure everything is durably persisted.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 64K"         \
                  -c "pwrite -S 0xbb 64K 61K"       \
                  $SCRATCH_MNT/foo | _filter_xfs_io
  $XFS_IO_PROG -f -c "pwrite -S 0xee 0 64K"         \
                  -c "pwrite -S 0xff 64K 61K"       \
                  $SCRATCH_MNT/bar | _filter_xfs_io
  sync

  # Now truncate our file foo to a smaller size (64Kb) and then truncate
  # it to the size it had before the shrinking truncate (125Kb). Then
  # fsync our file. If a power failure happens after the fsync, we expect
  # our file to have a size of 125Kb, with the first 64Kb of data having
  # the value 0xaa and the second 61Kb of data having the value 0x00.
  $XFS_IO_PROG -c "truncate 64K" \
               -c "truncate 125K" \
               -c "fsync" \
               $SCRATCH_MNT/foo

  # Do something similar to our file bar, but the first truncation sets
  # the file size to 0 and the second truncation expands the size to the
  # double of what it was initially.
  $XFS_IO_PROG -c "truncate 0" \
               -c "truncate 253K" \
               -c "fsync" \
               $SCRATCH_MNT/bar

  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger log replay and validate file
  # contents.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # We expect foo to have a size of 125Kb, the first 64Kb of data all
  # having the value 0xaa and the remaining 61Kb to be a hole (all bytes
  # with value 0x00).
  echo "File foo content after log replay:"
  od -t x1 $SCRATCH_MNT/foo

  # We expect bar to have a size of 253Kb and no extents (any byte read
  # from bar has the value 0x00).
  echo "File bar content after log replay:"
  od -t x1 $SCRATCH_MNT/bar

  status=0
  exit

The expected file contents in the golden output are:

  File foo content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0200000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0372000
  File bar content after log replay:
  0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0772000

Without this fix, their contents are:

  File foo content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0200000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
  *
  0372000
  File bar content after log replay:
  0000000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee
  *
  0200000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0372000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0772000

A test case submission for fstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-07-01 17:17:12 -07:00
Filipe Manana
36283bf777 Btrfs: fix fsync xattr loss in the fast fsync path
After commit 4f764e5153 ("Btrfs: remove deleted xattrs on fsync log
replay"), we can end up in a situation where during log replay we end up
deleting xattrs that were never deleted when their file was last fsynced.

This happens in the fast fsync path (flag BTRFS_INODE_NEEDS_FULL_SYNC is
not set in the inode) if the inode has the flag BTRFS_INODE_COPY_EVERYTHING
set, the xattr was added in a past transaction and the leaf where the
xattr is located was not updated (COWed or created) in the current
transaction. In this scenario the xattr item never ends up in the log
tree and therefore at log replay time, which makes the replay code delete
the xattr from the fs/subvol tree as it thinks that xattr was deleted
prior to the last fsync.

Fix this by always logging all xattrs, which is the simplest and most
reliable way to detect deleted xattrs and replay the deletes at log replay
time.

This issue is reproducible with the following test case for fstests:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"

  here=`pwd`
  tmp=/tmp/$$
  status=1	# failure is the default!

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }
  trap "_cleanup; exit \$status" 0 1 2 3 15

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey
  . ./common/attr

  # real QA test starts here

  # We create a lot of xattrs for a single file. Only btrfs and xfs are currently
  # able to store such a large mount of xattrs per file, other filesystems such
  # as ext3/4 and f2fs for example, fail with ENOSPC even if we attempt to add
  # less than 1000 xattrs with very small values.
  _supported_fs btrfs xfs
  _supported_os Linux
  _need_to_be_root
  _require_scratch
  _require_dm_flakey
  _require_attrs
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create the test file with some initial data and make sure everything is
  # durably persisted.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 32k" $SCRATCH_MNT/foo | _filter_xfs_io
  sync

  # Add many small xattrs to our file.
  # We create such a large amount because it's needed to trigger the issue found
  # in btrfs - we need to have an amount that causes the fs to have at least 3
  # btree leafs with xattrs stored in them, and it must work on any leaf size
  # (maximum leaf/node size is 64Kb).
  num_xattrs=2000
  for ((i = 1; i <= $num_xattrs; i++)); do
      name="user.attr_$(printf "%04d" $i)"
      $SETFATTR_PROG -n $name -v "val_$(printf "%04d" $i)" $SCRATCH_MNT/foo
  done

  # Sync the filesystem to force a commit of the current btrfs transaction, this
  # is a necessary condition to trigger the bug on btrfs.
  sync

  # Now update our file's data and fsync the file.
  # After a successful fsync, if the fsync log/journal is replayed we expect to
  # see all the xattrs we added before with the same values (and the updated file
  # data of course). Btrfs used to delete some of these xattrs when it replayed
  # its fsync log/journal.
  $XFS_IO_PROG -c "pwrite -S 0xbb 8K 16K" \
               -c "fsync" \
               $SCRATCH_MNT/foo | _filter_xfs_io

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again and mount. This makes the fs replay its fsync log.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  echo "File content after crash and log replay:"
  od -t x1 $SCRATCH_MNT/foo

  echo "File xattrs after crash and log replay:"
  for ((i = 1; i <= $num_xattrs; i++)); do
      name="user.attr_$(printf "%04d" $i)"
      echo -n "$name="
      $GETFATTR_PROG --absolute-names -n $name --only-values $SCRATCH_MNT/foo
      echo
  done

  status=0
  exit

The golden output expects all xattrs to be available, and with the correct
values, after the fsync log is replayed.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-30 14:36:47 -07:00
Filipe Manana
e4545de5b0 Btrfs: fix fsync data loss after append write
If we do an append write to a file (which increases its inode's i_size)
that does not have the flag BTRFS_INODE_NEEDS_FULL_SYNC set in its inode,
and the previous transaction added a new hard link to the file, which sets
the flag BTRFS_INODE_COPY_EVERYTHING in the file's inode, and then fsync
the file, the inode's new i_size isn't logged. This has the consequence
that after the fsync log is replayed, the file size remains what it was
before the append write operation, which means users/applications will
not be able to read the data that was successsfully fsync'ed before.

This happens because neither the inode item nor the delayed inode get
their i_size updated when the append write is made - doing so would
require starting a transaction in the buffered write path, something that
we do not do intentionally for performance reasons.

Fix this by making sure that when the flag BTRFS_INODE_COPY_EVERYTHING is
set the inode is logged with its current i_size (log the in-memory inode
into the log tree).

This issue is not a recent regression and is easy to reproduce with the
following test case for fstests:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"

  here=`pwd`
  tmp=/tmp/$$
  status=1	# failure is the default!

  _cleanup()
  {
          _cleanup_flakey
          rm -f $tmp.*
  }
  trap "_cleanup; exit \$status" 0 1 2 3 15

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _supported_fs generic
  _supported_os Linux
  _need_to_be_root
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  _crash_and_mount()
  {
          # Simulate a crash/power loss.
          _load_flakey_table $FLAKEY_DROP_WRITES
          _unmount_flakey
          # Allow writes again and mount. This makes the fs replay its fsync log.
          _load_flakey_table $FLAKEY_ALLOW_WRITES
          _mount_flakey
  }

  rm -f $seqres.full

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create the test file with some initial data and then fsync it.
  # The fsync here is only needed to trigger the issue in btrfs, as it causes the
  # the flag BTRFS_INODE_NEEDS_FULL_SYNC to be removed from the btrfs inode.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 32k" \
                  -c "fsync" \
                  $SCRATCH_MNT/foo | _filter_xfs_io
  sync

  # Add a hard link to our file.
  # On btrfs this sets the flag BTRFS_INODE_COPY_EVERYTHING on the btrfs inode,
  # which is a necessary condition to trigger the issue.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/bar

  # Sync the filesystem to force a commit of the current btrfs transaction, this
  # is a necessary condition to trigger the bug on btrfs.
  sync

  # Now append more data to our file, increasing its size, and fsync the file.
  # In btrfs because the inode flag BTRFS_INODE_COPY_EVERYTHING was set and the
  # write path did not update the inode item in the btree nor the delayed inode
  # item (in memory struture) in the current transaction (created by the fsync
  # handler), the fsync did not record the inode's new i_size in the fsync
  # log/journal. This made the data unavailable after the fsync log/journal is
  # replayed.
  $XFS_IO_PROG -c "pwrite -S 0xbb 32K 32K" \
               -c "fsync" \
               $SCRATCH_MNT/foo | _filter_xfs_io

  echo "File content after fsync and before crash:"
  od -t x1 $SCRATCH_MNT/foo

  _crash_and_mount

  echo "File content after crash and log replay:"
  od -t x1 $SCRATCH_MNT/foo

  status=0
  exit

The expected file output before and after the crash/power failure expects the
appended data to be available, which is:

  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0100000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
  *
  0200000

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-30 14:36:47 -07:00
Liu Bo
0c304304fe Btrfs: remove csum_bytes_left
After commit 8407f55326
("Btrfs: fix data corruption after fast fsync and writeback error"),
during wait_ordered_extents(), we wait for ordered extent setting
BTRFS_ORDERED_IO_DONE or BTRFS_ORDERED_IOERR, at which point we've
already got checksum information, so we don't need to check
(csum_bytes_left == 0) in the whole logging path.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-03 04:03:06 -07:00
Linus Torvalds
9ec3a646fe Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fourth vfs update from Al Viro:
 "d_inode() annotations from David Howells (sat in for-next since before
  the beginning of merge window) + four assorted fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  RCU pathwalk breakage when running into a symlink overmounting something
  fix I_DIO_WAKEUP definition
  direct-io: only inc/dec inode->i_dio_count for file systems
  fs/9p: fix readdir()
  VFS: assorted d_backing_inode() annotations
  VFS: fs/inode.c helpers: d_inode() annotations
  VFS: fs/cachefiles: d_backing_inode() annotations
  VFS: fs library helpers: d_inode() annotations
  VFS: assorted weird filesystems: d_inode() annotations
  VFS: normal filesystems (and lustre): d_inode() annotations
  VFS: security/: d_inode() annotations
  VFS: security/: d_backing_inode() annotations
  VFS: net/: d_inode() annotations
  VFS: net/unix: d_backing_inode() annotations
  VFS: kernel/: d_inode() annotations
  VFS: audit: d_backing_inode() annotations
  VFS: Fix up some ->d_inode accesses in the chelsio driver
  VFS: Cachefiles should perform fs modifications on the top layer only
  VFS: AF_UNIX sockets should call mknod on the top layer only
2015-04-26 17:22:07 -07:00
David Howells
2b0143b5c9 VFS: normal filesystems (and lustre): d_inode() annotations
that's the bulk of filesystem drivers dealing with inodes of their own

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-15 15:06:57 -04:00
Chris Mason
28ed1345a5 btrfs: actively run the delayed refs while deleting large files
When we are deleting large files with large extents, we are building up
a huge set of delayed refs for processing.  Truncate isn't checking
often enough to see if we need to back off and process those, or let
a commit proceed.

The end result is long stalls after the rm, and very long commit times.
During the commits, other processes back up waiting to start new
transactions and we get into trouble.

Signed-off-by: Chris Mason <clm@fb.com>
2015-04-10 14:00:14 -07:00
Filipe Manana
2f2ff0ee5e Btrfs: fix metadata inconsistencies after directory fsync
We can get into inconsistency between inodes and directory entries
after fsyncing a directory. The issue is that while a directory gets
the new dentries persisted in the fsync log and replayed at mount time,
the link count of the inode that directory entries point to doesn't
get updated, staying with an incorrect link count (smaller then the
correct value). This later leads to stale file handle errors when
accessing (including attempt to delete) some of the links if all the
other ones are removed, which also implies impossibility to delete the
parent directories, since the dentries can not be removed.

Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2),
when fsyncing a directory, new files aren't logged (their metadata and
dentries) nor any child directories. So this patch fixes this issue too,
since it has the same resolution as the incorrect inode link count issue
mentioned before.

This is very easy to reproduce, and the following excerpt from my test
case for xfstests shows how:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our main test file and directory.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io
  mkdir $SCRATCH_MNT/mydir

  # Make sure all metadata and data are durably persisted.
  sync

  # Add a hard link to 'foo' inside our test directory and fsync only the
  # directory. The btrfs fsync implementation had a bug that caused the new
  # directory entry to be visible after the fsync log replay but, the inode
  # of our file remained with a link count of 1.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2

  # Add a few more links and new files.
  # This is just to verify nothing breaks or gives incorrect results after the
  # fsync log is replayed.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3
  $XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io
  ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2

  # Add some subdirectories and new files and links to them. This is to verify
  # that after fsyncing our top level directory 'mydir', all the subdirectories
  # and their files/links are registered in the fsync log and exist after the
  # fsync log is replayed.
  mkdir -p $SCRATCH_MNT/mydir/x/y/z
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link
  touch $SCRATCH_MNT/mydir/x/y/z/qwerty

  # Now fsync only our top directory.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir

  # And fsync now our new file named 'hello', just to verify later that it has
  # the expected content and that the previous fsync on the directory 'mydir' had
  # no bad influence on this fsync.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Verify the content of our file 'foo' remains the same as before, 8192 bytes,
  # all with the value 0xaa.
  echo "File 'foo' content after log replay:"
  od -t x1 $SCRATCH_MNT/foo

  # Remove the first name of our inode. Because of the directory fsync bug, the
  # inode's link count was 1 instead of 5, so removing the 'foo' name ended up
  # deleting the inode and the other names became stale directory entries (still
  # visible to applications). Attempting to remove or access the remaining
  # dentries pointing to that inode resulted in stale file handle errors and
  # made it impossible to remove the parent directories since it was impossible
  # for them to become empty.
  echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)"
  rm -f $SCRATCH_MNT/foo

  # Now verify that all files, links and directories created before fsyncing our
  # directory exist after the fsync log was replayed.
  [ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing"
  [ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing"
  [ -f $SCRATCH_MNT/hello ] || echo "File hello is missing"
  [ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \
      echo "Link mydir/x/y/foo_y_link is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \
      echo "Link mydir/x/y/z/foo_z_link is missing"
  [ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \
      echo "File mydir/x/y/z/qwerty is missing"

  # We expect our file here to have a size of 64Kb and all the bytes having the
  # value 0xff.
  echo "file 'hello' content after log replay:"
  od -t x1 $SCRATCH_MNT/hello

  # Now remove all files/links, under our test directory 'mydir', and verify we
  # can remove all the directories.
  rm -f $SCRATCH_MNT/mydir/x/y/z/*
  rmdir $SCRATCH_MNT/mydir/x/y/z
  rm -f $SCRATCH_MNT/mydir/x/y/*
  rmdir $SCRATCH_MNT/mydir/x/y
  rmdir $SCRATCH_MNT/mydir/x
  rm -f $SCRATCH_MNT/mydir/*
  rmdir $SCRATCH_MNT/mydir

  # An fsck, run by the fstests framework everytime a test finishes, also detected
  # the inconsistency and printed the following error message:
  #
  # root 5 inode 257 errors 2001, no inode item, link count wrong
  #    unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
  #    unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref

  status=0
  exit

The expected golden output for the test is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 65536/65536 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File 'foo' content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000
  file 'foo' link count after log replay: 5
  file 'hello' content after log replay:
  0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0200000

Which is the output after this patch and when running the test against
ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's
output is:

  wrote 8192/8192 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  wrote 65536/65536 bytes at offset 0
  XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
  File 'foo' content after log replay:
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0020000
  file 'foo' link count after log replay: 1
  Link mydir/foo_2 is missing
  Link mydir/foo_3 is missing
  Link mydir/x/y/foo_y_link is missing
  Link mydir/x/y/z/foo_z_link is missing
  File mydir/x/y/z/qwerty is missing
  file 'hello' content after log replay:
  0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
  *
  0200000
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory
  rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle
  rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle
  rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty

Fsck, without this fix, also complains about the wrong link count:

  root 5 inode 257 errors 2001, no inode item, link count wrong
      unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref
      unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref

So fix this by logging the inodes that the dentries point to when
fsyncing a directory.

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-26 17:56:23 -07:00
Filipe Manana
4f764e5153 Btrfs: remove deleted xattrs on fsync log replay
If we deleted xattrs from a file and fsynced the file, after a log replay
the xattrs would remain associated to the file. This was an unexpected
behaviour and differs from what other filesystems do, such as for example
xfs and ext3/4.

Fix this by, on fsync log replay, check if every xattr in the fs/subvol
tree (that belongs to a logged inode) has a matching xattr in the log,
and if it does not, delete it from the fs/subvol tree. This is a similar
approach to what we do for dentries when we replay a directory from the
fsync log.

This issue is trivial to reproduce, and the following excerpt from my
test for xfstests triggers the issue:

  _crash_and_mount()
  {
       # Simulate a crash/power loss.
       _load_flakey_table $FLAKEY_DROP_WRITES
       _unmount_flakey
       _load_flakey_table $FLAKEY_ALLOW_WRITES
       _mount_flakey
  }

  rm -f $seqres.full

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create out test file and add 3 xattrs to it.
  touch $SCRATCH_MNT/foobar
  $SETFATTR_PROG -n user.attr1 -v val1 $SCRATCH_MNT/foobar
  $SETFATTR_PROG -n user.attr2 -v val2 $SCRATCH_MNT/foobar
  $SETFATTR_PROG -n user.attr3 -v val3 $SCRATCH_MNT/foobar

  # Make sure everything is durably persisted.
  sync

  # Now delete the second xattr and fsync the inode.
  $SETFATTR_PROG -x user.attr2 $SCRATCH_MNT/foobar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar

  _crash_and_mount

  # After the fsync log is replayed, the file should have only 2 xattrs, the ones
  # named user.attr1 and user.attr3. The btrfs fsync log replay bug left the file
  # with the 3 xattrs that we had before deleting the second one and fsyncing the
  # file.
  echo "xattr names and values after first fsync log replay:"
  $GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch

  # Now write some data to our file, fsync it, remove the first xattr, add a new
  # hard link to our file and commit the fsync log by fsyncing some other new
  # file. This is to verify that after log replay our first xattr does not exist
  # anymore.
  echo "hello world!" >> $SCRATCH_MNT/foobar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
  $SETFATTR_PROG -x user.attr1 $SCRATCH_MNT/foobar
  ln $SCRATCH_MNT/foobar $SCRATCH_MNT/foobar_link
  touch $SCRATCH_MNT/qwerty
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/qwerty

  _crash_and_mount

  # Now only the xattr with name user.attr3 should be set in our file.
  echo "xattr names and values after second fsync log replay:"
  $GETFATTR_PROG --absolute-names --dump $SCRATCH_MNT/foobar | _filter_scratch

  status=0
  exit

The expected golden output, which is produced with this patch applied or
when testing against xfs or ext3/4, is:

  xattr names and values after first fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr1="val1"
  user.attr3="val3"

  xattr names and values after second fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr3="val3"

Without this patch applied, the output is:

  xattr names and values after first fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr1="val1"
  user.attr2="val2"
  user.attr3="val3"

  xattr names and values after second fsync log replay:
  # file: SCRATCH_MNT/foobar
  user.attr1="val1"
  user.attr2="val2"
  user.attr3="val3"

A patch with a test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-26 17:55:51 -07:00
Chris Mason
fc4c3c872f Merge branch 'cleanups-post-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.1
Signed-off-by: Chris Mason <clm@fb.com>

Conflicts:
	fs/btrfs/disk-io.c
2015-03-25 10:52:48 -07:00
Linus Torvalds
84399bb075 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Outside of misc fixes, Filipe has a few fsync corners and we're
  pulling in one more of Josef's fixes from production use here"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
  Btrfs: fix data loss in the fast fsync path
  Btrfs: remove extra run_delayed_refs in update_cowonly_root
  Btrfs: incremental send, don't rename a directory too soon
  btrfs: fix lost return value due to variable shadowing
  Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
  Btrfs: fix off-by-one logic error in btrfs_realloc_node
  Btrfs: add missing inode update when punching hole
  Btrfs: abort the transaction if we fail to update the free space cache inode
  Btrfs: fix fsync race leading to ordered extent memory leaks
2015-03-06 13:52:54 -08:00
Quentin Casasnovas
dd9ef135e3 Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
Improper arithmetics when calculting the address of the extended ref could
lead to an out of bounds memory read and kernel panic.

Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
cc: stable@vger.kernel.org # v3.7+
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-05 17:28:33 -08:00
Linus Torvalds
2b9fb532d4 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This pull is mostly cleanups and fixes:

   - The raid5/6 cleanups from Zhao Lei fixup some long standing warts
     in the code and add improvements on top of the scrubbing support
     from 3.19.

   - Josef has round one of our ENOSPC fixes coming from large btrfs
     clusters here at FB.

   - Dave Sterba continues a long series of cleanups (thanks Dave), and
     Filipe continues hammering on corner cases in fsync and others

  This all was held up a little trying to track down a use-after-free in
  btrfs raid5/6.  It's not clear yet if this is just made easier to
  trigger with this pull or if its a new bug from the raid5/6 cleanups.
  Dave Sterba is the only one to trigger it so far, but he has a
  consistent way to reproduce, so we'll get it nailed shortly"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
  Btrfs: don't remove extents and xattrs when logging new names
  Btrfs: fix fsync data loss after adding hard link to inode
  Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
  Btrfs: account for large extents with enospc
  Btrfs: don't set and clear delalloc for O_DIRECT writes
  Btrfs: only adjust outstanding_extents when we do a short write
  btrfs: Fix out-of-space bug
  Btrfs: scrub, fix sleep in atomic context
  Btrfs: fix scheduler warning when syncing log
  Btrfs: Remove unnecessary placeholder in btrfs_err_code
  btrfs: cleanup init for list in free-space-cache
  btrfs: delete chunk allocation attemp when setting block group ro
  btrfs: clear bio reference after submit_one_bio()
  Btrfs: fix scrub race leading to use-after-free
  Btrfs: add missing cleanup on sysfs init failure
  Btrfs: fix race between transaction commit and empty block group removal
  btrfs: add more checks to btrfs_read_sys_array
  btrfs: cleanup, rename a few variables in btrfs_read_sys_array
  btrfs: add checks for sys_chunk_array sizes
  btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
  ...
2015-02-19 14:36:00 -08:00
Daniel Dressler
01d58472a8 Btrfs: disk-io: replace root args iff only fs_info used
This is the 3rd independent patch of a larger project to cleanup btrfs's
internal usage of btrfs_root. Many functions take btrfs_root only to
grab the fs_info struct.

By requiring a root these functions cause programmer overhead. That
these functions can accept any valid root is not obvious until
inspection.

This patch reduces the specificity of such functions to accept the
fs_info directly.

These patches can be applied independently and thus are not being
submitted as a patch series. There should be about 26 patches by the
project's completion. Each patch will cleanup between 1 and 34 functions
apiece.  Each patch covers a single file's functions.

This patch affects the following function(s):
  1) csum_tree_block
  2) csum_dirty_buffer
  3) check_tree_block_fsid
  4) btrfs_find_tree_block
  5) clean_tree_block

Signed-off-by: Daniel Dressler <danieru.dressler@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-02-16 18:48:43 +01:00
Filipe Manana
a742994aa2 Btrfs: don't remove extents and xattrs when logging new names
If we are recording in the tree log that an inode has new names (new hard
links were added), we would drop items, belonging to the inode, that we
shouldn't:

1) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
   flags, we ended up dropping all the extent and xattr items that were
   previously logged. This was done only in memory, since logging a new
   name doesn't imply syncing the log;

2) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
   flags, we ended up dropping all the xattr items that were previously
   logged. Like the case before, this was done only in memory because
   logging a new name doesn't imply syncing the log.

This led to some surprises in scenarios such as the following:

1) write some extents to an inode;
2) fsync the inode;
3) truncate the inode or delete/modify some of its xattrs
4) add a new hard link for that inode
5) fsync some other file, to force the log tree to be durably persisted
6) power failure happens

The next time the fs is mounted, the fsync log replay code is executed,
and the resulting file doesn't have the content it had when the last fsync
against it was performed, instead if has a content matching what it had
when the last transaction commit happened.

So change the behaviour such that when a new name is logged, only the inode
item and reference items are processed.

This is easy to reproduce with the test I just made for xfstests, whose
main body is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with some data.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Make sure the file is durably persisted.
  sync

  # Append some data to our file, to increase its size.
  $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, so from this point on if a crash/power failure happens, our
  # new data is guaranteed to be there next time the fs is mounted.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Now shrink our file to 5000 bytes.
  $XFS_IO_PROG -c "truncate 5000" $SCRATCH_MNT/foo

  # Now do an expanding truncate to a size larger than what we had when we last
  # fsync'ed our file. This is just to verify that after power failure and
  # replaying the fsync log, our file matches what it was when we last fsync'ed
  # it - 12Kb size, first 8Kb of data had a value of 0xaa and the last 4Kb of
  # data had a value of 0xcc.
  $XFS_IO_PROG -c "truncate 32K" $SCRATCH_MNT/foo

  # Add one hard link to our file. This made btrfs drop all of our file's
  # metadata from the fsync log, including the metadata relative to the
  # extent we just wrote and fsync'ed. This change was made only to the fsync
  # log in memory, so adding the hard link alone doesn't change the persisted
  # fsync log. This happened because the previous truncates set the runtime
  # flag BTRFS_INODE_NEEDS_FULL_SYNC in the btrfs inode structure.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now make sure the in memory fsync log is durably persisted.
  # Creating and fsync'ing another file will do it.
  # After this our persisted fsync log will no longer have metadata for our file
  # foo that points to the extent we wrote and fsync'ed before.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # As expected, before the crash/power failure, we should be able to see a file
  # with a size of 32Kb, with its first 5000 bytes having the value 0xaa and all
  # the remaining bytes with value 0x00.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After mounting the fs again, the fsync log was replayed.
  # The expected result is to see a file with a size of 12Kb, with its first 8Kb
  # of data having the value 0xaa and its last 4Kb of data having a value of 0xcc.
  # The btrfs bug used to leave the file as it used te be as of the last
  # transaction commit - that is, with a size of 8Kb with all bytes having a
  # value of 0xaa.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

The test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Filipe Manana
1a4bcf470c Btrfs: fix fsync data loss after adding hard link to inode
We have a scenario where after the fsync log replay we can lose file data
that had been previously fsync'ed if we added an hard link for our inode
and after that we sync'ed the fsync log (for example by fsync'ing some
other file or directory).

This is because when adding an hard link we updated the inode item in the
log tree with an i_size value of 0. At that point the new inode item was
in memory only and a subsequent fsync log replay would not make us lose
the file data. However if after adding the hard link we sync the log tree
to disk, by fsync'ing some other file or directory for example, we ended
up losing the file data after log replay, because the inode item in the
persisted log tree had an an i_size of zero.

This is easy to reproduce, and the following excerpt from my test for
xfstests shows this:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create one file with data and fsync it.
  # This made the btrfs fsync log persist the data and the inode metadata with
  # a correct inode->i_size (4096 bytes).
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 4K 0 4K" -c "fsync" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Now add one hard link to our file. This made the btrfs code update the fsync
  # log, in memory only, with an inode metadata having a size of 0.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now force persistence of the fsync log to disk, for example, by fsyncing some
  # other file.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # Before a power loss or crash, we could read the 4Kb of data from our file as
  # expected.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After the fsync log replay, because the fsync log had a value of 0 for our
  # inode's i_size, we couldn't read anymore the 4Kb of data that we previously
  # wrote and fsync'ed. The size of the file became 0 after the fsync log replay.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

Another alternative test, that doesn't need to fsync an inode in the same
transaction it was created, is:

  _scratch_mkfs >> $seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with some data.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Make sure the file is durably persisted.
  sync

  # Append some data to our file, to increase its size.
  $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
       $SCRATCH_MNT/foo | _filter_xfs_io

  # Fsync the file, so from this point on if a crash/power failure happens, our
  # new data is guaranteed to be there next time the fs is mounted.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  # Add one hard link to our file. This made btrfs write into the in memory fsync
  # log a special inode with generation 0 and an i_size of 0 too. Note that this
  # didn't update the inode in the fsync log on disk.
  ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link

  # Now make sure the in memory fsync log is durably persisted.
  # Creating and fsync'ing another file will do it.
  touch $SCRATCH_MNT/bar
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar

  # As expected, before the crash/power failure, we should be able to read the
  # 12Kb of file data.
  echo "File content before:"
  od -t x1 $SCRATCH_MNT/foo

  # Simulate a crash/power loss.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # After mounting the fs again, the fsync log was replayed.
  # The btrfs fsync log replay code didn't update the i_size of the persisted
  # inode because the inode item in the log had a special generation with a
  # value of 0 (and it couldn't know the correct i_size, since that inode item
  # had a 0 i_size too). This made the last 4Kb of file data inaccessible and
  # effectively lost.
  echo "File content after:"
  od -t x1 $SCRATCH_MNT/foo

This isn't a new issue/regression. This problem has been around since the
log tree code was added in 2008:

  Btrfs: Add a write ahead tree log to optimize synchronous operations
  (commit e02119d5a7)

Test cases for xfstests follow soon.

CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:49 -08:00
Filipe Manana
575849ecf5 Btrfs: fix scheduler warning when syncing log
We try to lock a mutex while the current task state is not TASK_RUNNING,
which results in the following warning when CONFIG_DEBUG_LOCK_ALLOC=y:

[30736.772501] ------------[ cut here ]------------
[30736.774545] WARNING: CPU: 9 PID: 19972 at kernel/sched/core.c:7300 __might_sleep+0x8b/0xa8()
[30736.783453] do not call blocking ops when !TASK_RUNNING; state=2 set at [<ffffffff8107499b>] prepare_to_wait+0x43/0x89
[30736.786261] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc psmouse parport pcspkr microcode serio_raw evdev processor thermal_sys i2c_piix4 i2c_core button ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring e1000 virtio scsi_mod
[30736.794323] CPU: 9 PID: 19972 Comm: fsstress Not tainted 3.19.0-rc7-btrfs-next-5+ #1
[30736.795821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[30736.798788]  0000000000000009 ffff88042743fbd8 ffffffff814248ed ffff88043d32f2d8
[30736.800504]  ffff88042743fc28 ffff88042743fc18 ffffffff81045338 0000000000000001
[30736.802131]  ffffffff81064514 ffffffff817c52d1 000000000000026d 0000000000000000
[30736.803676] Call Trace:
[30736.804256]  [<ffffffff814248ed>] dump_stack+0x4c/0x65
[30736.805245]  [<ffffffff81045338>] warn_slowpath_common+0xa1/0xbb
[30736.806360]  [<ffffffff81064514>] ? __might_sleep+0x8b/0xa8
[30736.807391]  [<ffffffff81045398>] warn_slowpath_fmt+0x46/0x48
[30736.808511]  [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89
[30736.809620]  [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89
[30736.810691]  [<ffffffff81064514>] __might_sleep+0x8b/0xa8
[30736.811703]  [<ffffffff81426eaf>] mutex_lock_nested+0x2f/0x3a0
[30736.812889]  [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[30736.814138]  [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf
[30736.819878]  [<ffffffffa038cfff>] wait_for_writer.isra.12+0x91/0xaa [btrfs]
[30736.821260]  [<ffffffff810748bd>] ? signal_pending_state+0x31/0x31
[30736.822410]  [<ffffffffa0391f0a>] btrfs_sync_log+0x160/0x947 [btrfs]
[30736.823574]  [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[30736.824847]  [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf
[30736.825972]  [<ffffffffa036e555>] btrfs_sync_file+0x2b0/0x319 [btrfs]
[30736.827684]  [<ffffffff8117901a>] vfs_fsync_range+0x21/0x23
[30736.828932]  [<ffffffff81179038>] vfs_fsync+0x1c/0x1e
[30736.829917]  [<ffffffff8117928b>] do_fsync+0x34/0x4e
[30736.830862]  [<ffffffff811794b3>] SyS_fsync+0x10/0x14
[30736.831819]  [<ffffffff8142a512>] system_call_fastpath+0x12/0x17
[30736.832982] ---[ end trace c0b57df60d32ae5c ]---

Fix this my acquiring the mutex after calling finish_wait(), which sets the
task's state to TASK_RUNNING.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Forrest Liu
3da5ab5648 Btrfs: add missing blk_finish_plug in btrfs_sync_log()
Add missing blk_finish_plug in btrfs_sync_log()

Signed-off-by: Forrest Liu <forrestl@synology.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-04 18:02:37 -08:00
David Sterba
a937b9791e btrfs: kill btrfs_inode_*time helpers
They just opencode taking address of the timespec member.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 18:39:07 -08:00
Filipe Manana
df8d116ffa Btrfs: fix fsync log replay for inodes with a mix of regular refs and extrefs
If we have an inode with a large number of hard links, some of which may
be extrefs, turn a regular ref into an extref, fsync the inode and then
replay the fsync log (after a crash/reboot), we can endup with an fsync
log that makes the replay code always fail with -EOVERFLOW when processing
the inode's references.

This is easy to reproduce with the test case I made for xfstests. Its steps
are the following:

   _scratch_mkfs "-O extref" >> $seqres.full 2>&1
   _init_flakey
   _mount_flakey

   # Create a test file with 3001 hard links. This number is large enough to
   # make btrfs start using extrefs at some point even if the fs has the maximum
   # possible leaf/node size (64Kb).
   echo "hello world" > $SCRATCH_MNT/foo
   for i in `seq 1 3000`; do
       ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
   done

   # Make sure all metadata and data are durably persisted.
   sync

   # Now remove one link, add a new one with a new name, add another new one with
   # the same name as the one we just removed and fsync the inode.
   rm -f $SCRATCH_MNT/foo_link_0001
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_0001
   rm -f $SCRATCH_MNT/foo_link_0002
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3002
   ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3003
   $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

   # Simulate a crash/power loss. This makes sure the next mount
   # will see an fsync log and will replay that log.

   _load_flakey_table $FLAKEY_DROP_WRITES
   _unmount_flakey

   _load_flakey_table $FLAKEY_ALLOW_WRITES
   _mount_flakey

   # Check that the number of hard links is correct, we are able to remove all
   # the hard links and read the file's data. This is just to verify we don't
   # get stale file handle errors (due to dangling directory index entries that
   # point to inodes that no longer exist).
   echo "Link count: $(stat --format=%h $SCRATCH_MNT/foo)"
   [ -f $SCRATCH_MNT/foo ] || echo "Link foo is missing"
   for ((i = 1; i <= 3003; i++)); do
       name=foo_link_`printf "%04d" $i`
       if [ $i -eq 2 ]; then
           [ -f $SCRATCH_MNT/$name ] && echo "Link $name found"
       else
           [ -f $SCRATCH_MNT/$name ] || echo "Link $name is missing"
       fi
   done
   rm -f $SCRATCH_MNT/foo_link_*
   cat $SCRATCH_MNT/foo
   rm -f $SCRATCH_MNT/foo

   status=0
   exit

The fix is simply to correct the overflow condition when overwriting a
reference item because it was wrong, trying to increase the item in the
fs/subvol tree by an impossible amount. Also ensure that we don't insert
one normal ref and one ext ref for the same dentry - this happened because
processing a dir index entry from the parent in the log happened when
the normal ref item was full, which made the logic insert an extref and
later when the normal ref had enough room, it would be inserted again
when processing the ref item from the child inode in the log.

This issue has been present since the introduction of the extrefs feature
(2012).

A test case for xfstests follows soon. This test only passes if the previous
patch titled "Btrfs: fix fsync when extend references are added to an inode"
is applied too.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:05 -08:00
Filipe Manana
2c2c452b0c Btrfs: fix fsync when extend references are added to an inode
If we added an extended reference to an inode and fsync'ed it, the log
replay code would make our inode have an incorrect link count, which
was lower then the expected/correct count.
This resulted in stale directory index entries after deleting some of
the hard links, and any access to the dangling directory entries resulted
in -ESTALE errors because the entries pointed to inode items that don't
exist anymore.

This is easy to reproduce with the test case I made for xfstests, and
the bulk of that test is:

    _scratch_mkfs "-O extref" >> $seqres.full 2>&1
    _init_flakey
    _mount_flakey

    # Create a test file with 3001 hard links. This number is large enough to
    # make btrfs start using extrefs at some point even if the fs has the maximum
    # possible leaf/node size (64Kb).
    echo "hello world" > $SCRATCH_MNT/foo
    for i in `seq 1 3000`; do
        ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i`
    done

    # Make sure all metadata and data are durably persisted.
    sync

    # Add one more link to the inode that ends up being a btrfs extref and fsync
    # the inode.
    ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001
    $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

    # Simulate a crash/power loss. This makes sure the next mount
    # will see an fsync log and will replay that log.

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    # Now after the fsync log replay btrfs left our inode with a wrong link count N,
    # which was smaller than the correct link count M (N < M).
    # So after removing N hard links, the remaining M - N directory entries were
    # still visible to user space but it was impossible to do anything with them
    # because they pointed to an inode that didn't exist anymore. This resulted in
    # stale file handle errors (-ESTALE) when accessing those dentries for example.
    #
    # So remove all hard links except the first one and then attempt to read the
    # file, to verify we don't get an -ESTALE error when accessing the inodel
    #
    # The btrfs fsck tool also detected the incorrect inode link count and it
    # reported an error message like the following:
    #
    # root 5 inode 257 errors 2001, no inode item, link count wrong
    #   unresolved ref dir 256 index 2978 namelen 13 name foo_link_2976 filetype 1 errors 4, no inode ref
    #
    # The fstests framework automatically calls fsck after a test is run, so we
    # don't need to call fsck explicitly here.

    rm -f $SCRATCH_MNT/foo_link_*
    cat $SCRATCH_MNT/foo

    status=0
    exit

So make sure an fsync always flushes the delayed inode item, so that the
fsync log contains it (needed in order to trigger the link count fixup
code) and fix the extref counting function, which always return -ENOENT
to its caller (and made it assume there were always 0 extrefs).

This issue has been present since the introduction of the extrefs feature
(2012).

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
Filipe Manana
d36808e0d4 Btrfs: fix directory inconsistency after fsync log replay
If we have an inode (file) with a link count greater than 1, remove
one of its hard links, fsync the inode, power fail/crash and then
replay the fsync log on the next mount, we end up getting the parent
directory's metadata inconsistent - its i_size still reflects the
deleted hard link and has dangling index entries (with no matching
inode reference entries). This prevents the directory from ever being
deletable, as its i_size can never decrease to BTRFS_EMPTY_DIR_SIZE
even if all of its children inodes are deleted, and the dangling index
entries can never be removed (as they point to an inode that does not
exist anymore).

This is easy to reproduce with the following excerpt from the test case
for xfstests that I just made:

    _scratch_mkfs >> $seqres.full 2>&1

    _init_flakey
    _mount_flakey

    # Create a test file with 2 hard links in the same directory.
    mkdir -p $SCRATCH_MNT/a/b
    echo "hello world" > $SCRATCH_MNT/a/b/foo
    ln $SCRATCH_MNT/a/b/foo $SCRATCH_MNT/a/b/bar

    # Make sure all metadata and data are durably persisted.
    sync

    # Now remove one of the hard links and fsync the inode.
    rm -f $SCRATCH_MNT/a/b/bar
    $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/a/b/foo

    # Simulate a crash/power loss. This makes sure the next mount
    # will see an fsync log and will replay that log.

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    # Remove the last hard link of the file and attempt to remove its parent
    # directory - this failed in btrfs because the fsync log and replay code
    # didn't decrement the parent directory's i_size and left dangling directory
    # index entries - this made the btrfs rmdir implementation always fail with
    # the error -ENOTEMPTY.
    #
    # The dangling directory index entries were visible to user space, but it was
    # impossible to do anything on them (unlink, open, read, write, stat, etc)
    # because the inode they pointed to did not exist anymore.
    #
    # The parent directory's metadata inconsistency (stale index entries) was
    # also detected by btrfs' fsck tool, which is run automatically by the fstests
    # framework when the test finishes. The error message reported by fsck was:
    #
    # root 5 inode 259 errors 2001, no inode item, link count wrong
    #   unresolved ref dir 258 index 3 namelen 3 name bar filetype 1 errors 4, no inode ref
    #
    rm -f $SCRATCH_MNT/a/b/*
    rmdir $SCRATCH_MNT/a/b
    rmdir $SCRATCH_MNT/a

To fix this just make sure that after an unlink, if the inode is fsync'ed,
he parent inode is fully logged in the fsync log.

A test case for xfstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
Chris Mason
57bbddd7fb Merge branch 'cleanup/blocksize-diet-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 2015-01-21 17:49:35 -08:00
David Sterba
9c4f61f01d btrfs: simplify insert_orphan_item
We can search and add the orphan item in one go,
btrfs_insert_orphan_item will find out if the item already exists.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:48 +01:00
David Sterba
381cf6587f btrfs: fix leak of path in btrfs_find_item
If btrfs_find_item is called with NULL path it allocates one locally but
does not free it. Affected paths are inserting an orphan item for a file
and for a subvol root.

Move the path allocation to the callers.

CC: <stable@vger.kernel.org> # 3.14+
Fixes: 3f870c2899 ("btrfs: expand btrfs_find_item() to include find_orphan_item functionality")
Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:46 +01:00
David Sterba
a83fffb75d btrfs: sink blocksize parameter to btrfs_find_create_tree_block
Finally it's clear that the requested blocksize is always equal to
nodesize, with one exception, the superblock.

Superblock has fixed size regardless of the metadata block size, but
uses the same helpers to initialize sys array/chunk tree and to work
with the chunk items. So it pretends to be an extent_buffer for a
moment, btrfs_read_sys_array is full of special cases, we're adding one
more.

Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-12 18:07:21 +01:00
Filipe Manana
b38ef71cb1 Btrfs: ensure ordered extent errors aren't missed on fsync
When doing a fsync with a fast path we have a time window where we can miss
the fact that writeback of some file data failed, and therefore we endup
returning success (0) from fsync when we should return an error.
The steps that lead to this are the following:

1) We start all ordered extents by calling filemap_fdatawrite_range();

2) We do some other work like locking the inode's i_mutex, start a transaction,
   start a log transaction, etc;

3) We enter btrfs_log_inode(), acquire the inode's log_mutex and collect all the
   ordered extents from inode's ordered tree into a list;

4) But by the time we do ordered extent collection, some ordered extents we started
   at step 1) might have already completed with an error, and therefore we didn't
   found them in the ordered tree and had no idea they finished with an error. This
   makes our fsync return success (0) to userspace, but has no bad effects on the log
   like for example insertion of file extent items into the log that point to unwritten
   extents, because the invalid extent maps were removed before the ordered extent
   completed (in inode.c:btrfs_finish_ordered_io).

So after collecting the ordered extents just check if the inode's i_mapping has any
error flags set (AS_EIO or AS_ENOSPC) and leave with an error if it does. Whenever
writeback fails for a page of an ordered extent, we call mapping_set_error (done in
extent_io.c:end_extent_writepage, called by extent_io.c:end_bio_extent_writepage)
that sets one of those error flags in the inode's i_mapping flags.

This change also has the side effect of fixing the issue where for fast fsyncs we
never checked/cleared the error flags from the inode's i_mapping flags, which means
that a full fsync performed after a fast fsync could get such errors that belonged
to the fast fsync - because the full fsync calls btrfs_wait_ordered_range() which
calls filemap_fdatawait_range(), and the later checks for and clears those flags,
while for fast fsyncs we never call filemap_fdatawait_range() or anything else
that checks for and clears the error flags from the inode's i_mapping.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:57 -08:00
Filipe Manana
0870295b23 Btrfs: collect only the necessary ordered extents on ranged fsync
Instead of collecting all ordered extents from the inode's ordered tree
and then wait for all of them to complete, just collect the ones that
overlap the fsync range.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:56 -08:00
Filipe Manana
5ab5e44a36 Btrfs: don't ignore log btree writeback errors
If an error happens during writeback of log btree extents, make sure the
error is returned to the caller (fsync), so that it takes proper action
(commit current transaction) instead of writing a superblock that points
to log btrees with all or some nodes that weren't durably persisted.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:59:55 -08:00
Josef Bacik
50d9aa99bd Btrfs: make sure logged extents complete in the current transaction V3
Liu Bo pointed out that my previous fix would lose the generation update in the
scenario I described.  It is actually much worse than that, we could lose the
entire extent if we lose power right after the transaction commits.  Consider
the following

write extent 0-4k
log extent in log tree
commit transaction
	< power fail happens here
ordered extent completes

We would lose the 0-4k extent because it hasn't updated the actual fs tree, and
the transaction commit will reset the log so it isn't replayed.  If we lose
power before the transaction commit we are save, otherwise we are not.

Fix this by keeping track of all extents we logged in this transaction.  Then
when we go to commit the transaction make sure we wait for all of those ordered
extents to complete before proceeding.  This will make sure that if we lose
power after the transaction commit we still have our data.  This also fixes the
problem of the improperly updated extent generation.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-21 11:58:32 -08:00
Josef Bacik
9dba8cf128 Btrfs: make sure we wait on logged extents when fsycning two subvols
If we have two fsync()'s race on different subvols one will do all of its work
to get into the log_tree, wait on it's outstanding IO, and then allow the
log_tree to finish it's commit.  The problem is we were just free'ing that
subvols logged extents instead of waiting on them, so whoever lost the race
wouldn't really have their data on disk.  Fix this by waiting properly instead
of freeing the logged extents.  Thanks,

cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-20 17:20:10 -08:00
Linus Torvalds
4f4274af70 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Filipe is nailing down some problems with our skinny extent variation,
  and Dave's patch fixes endian problems in the new super block checks"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix race that makes btrfs_lookup_extent_info miss skinny extent items
  Btrfs: properly clean up btrfs_end_io_wq_cache
  Btrfs: fix invalid leaf slot access in btrfs_lookup_extent()
  btrfs: use macro accessors in superblock validation checks
2014-11-01 10:41:26 -07:00
Filipe Manana
1a4ed8fdca Btrfs: fix invalid leaf slot access in btrfs_lookup_extent()
If we couldn't find our extent item, we accessed the current slot
(path->slots[0]) to check if it corresponds to an equivalent skinny
metadata item. However this slot could be beyond our last item in the
leaf (i.e. path->slots[0] >= btrfs_header_nritems(leaf)), in which case
we shouldn't process it.

Since btrfs_lookup_extent() is only used to find extent items for data
extents, fix this by removing completely the logic that looks up for an
equivalent skinny metadata item, since it can not exist.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-10-27 13:16:52 -07:00
Linus Torvalds
90d0c376f5 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "The largest set of changes here come from Miao Xie.  He's cleaning up
  and improving read recovery/repair for raid, and has a number of
  related fixes.

  I've merged another set of fsync fixes from Filipe, and he's also
  improved the way we handle metadata write errors to make sure we force
  the FS readonly if things go wrong.

  Otherwise we have a collection of fixes and cleanups.  Dave Sterba
  gets a cookie for removing the most lines (thanks Dave)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (139 commits)
  btrfs: Fix compile error when CONFIG_SECURITY is not set.
  Btrfs: fix compiles when CONFIG_BTRFS_FS_RUN_SANITY_TESTS is off
  btrfs: Make btrfs handle security mount options internally to avoid losing security label.
  Btrfs: send, don't delay dir move if there's a new parent inode
  btrfs: add more superblock checks
  Btrfs: fix race in WAIT_SYNC ioctl
  Btrfs: be aware of btree inode write errors to avoid fs corruption
  Btrfs: remove redundant btrfs_verify_qgroup_counts declaration.
  btrfs: fix shadow warning on cmp
  Btrfs: fix compilation errors under DEBUG
  Btrfs: fix crash of btrfs_release_extent_buffer_page
  Btrfs: add missing end_page_writeback on submit_extent_page failure
  btrfs: Fix the wrong condition judgment about subset extent map
  Btrfs: fix build_backref_tree issue with multiple shared blocks
  Btrfs: cleanup error handling in build_backref_tree
  btrfs: move checks for DUMMY_ROOT into a helper
  btrfs: new define for the inline extent data start
  btrfs: kill extent_buffer_page helper
  btrfs: drop constant param from btrfs_release_extent_buffer_page
  btrfs: hide typecast to definition of BTRFS_SEND_TRANS_STUB
  ...
2014-10-11 08:03:52 -04:00
Linus Torvalds
28596c9722 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull "trivial tree" updates from Jiri Kosina:
 "Usual pile from trivial tree everyone is so eagerly waiting for"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
  Remove MN10300_PROC_MN2WS0038
  mei: fix comments
  treewide: Fix typos in Kconfig
  kprobes: update jprobe_example.c for do_fork() change
  Documentation: change "&" to "and" in Documentation/applying-patches.txt
  Documentation: remove obsolete pcmcia-cs from Changes
  Documentation: update links in Changes
  Documentation: Docbook: Fix generated DocBook/kernel-api.xml
  score: Remove GENERIC_HAS_IOMAP
  gpio: fix 'CONFIG_GPIO_IRQCHIP' comments
  tty: doc: Fix grammar in serial/tty
  dma-debug: modify check_for_stack output
  treewide: fix errors in printk
  genirq: fix reference in devm_request_threaded_irq comment
  treewide: fix synchronize_rcu() in comments
  checkstack.pl: port to AArch64
  doc: queue-sysfs: minor fixes
  init/do_mounts: better syntax description
  MIPS: fix comment spelling
  powerpc/simpleboot: fix comment
  ...
2014-10-07 21:16:26 -04:00
Filipe Manana
8407f55326 Btrfs: fix data corruption after fast fsync and writeback error
When we do a fast fsync, we start all ordered operations and then while
they're running in parallel we visit the list of modified extent maps
and construct their matching file extent items and write them to the
log btree. After that, in btrfs_sync_log() we wait for all the ordered
operations to finish (via btrfs_wait_logged_extents).

The problem with this is that we were completely ignoring errors that
can happen in the extent write path, such as -ENOSPC, a temporary -ENOMEM
or -EIO errors for example. When such error happens, it means we have parts
of the on disk extent that weren't written to, and so we end up logging
file extent items that point to these extents that contain garbage/random
data - so after a crash/reboot plus log replay, we get our inode's metadata
pointing to those extents.

This worked in contrast with the full (non-fast) fsync path, where we
start all ordered operations, wait for them to finish and then write
to the log btree. In this path, after each ordered operation completes
we check if it's flagged with an error (BTRFS_ORDERED_IOERR) and return
-EIO if so (via btrfs_wait_ordered_range).

So if an error happens with any ordered operation, just return a -EIO
error to userspace, so that it knows that not all of its previous writes
were durably persisted and the application can take proper action (like
redo the writes for e.g.) - and definitely not leave any file extent items
in the log refer to non fully written extents.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-19 06:57:51 -07:00
Filipe Manana
a2cc11db24 Btrfs: fix directory recovery from fsync log
When replaying a directory from the fsync log, if a directory entry
exists both in the fs/subvol tree and in the log, the directory's inode
got its i_size updated incorrectly, accounting for the dentry's name
twice.

Reproducer, from a test for xfstests:

    _scratch_mkfs >> $seqres.full 2>&1
    _init_flakey
    _mount_flakey

    touch $SCRATCH_MNT/foo
    sync

    touch $SCRATCH_MNT/bar
    xfs_io -c "fsync" $SCRATCH_MNT
    xfs_io -c "fsync" $SCRATCH_MNT/bar

    _load_flakey_table $FLAKEY_DROP_WRITES
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    _mount_flakey

    [ -f $SCRATCH_MNT/foo ] || echo "file foo is missing"
    [ -f $SCRATCH_MNT/bar ] || echo "file bar is missing"

    _unmount_flakey
    _check_scratch_fs $FLAKEY_DEV

The filesystem check at the end failed with the message:
"root 5 root dir 256 error".

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:38:27 -07:00
Filipe Manana
f98de9b9c0 Btrfs: make btrfs_search_forward return with nodes unlocked
None of the uses of btrfs_search_forward() need to have the path
nodes (level >= 1) read locked, only the leaf needs to be locked
while the caller processes it. Therefore make it return a path
with all nodes unlocked, except for the leaf.

This change is motivated by the observation that during a file
fsync we repeatdly call btrfs_search_forward() and process the
returned leaf while upper nodes of the returned path (level >= 1)
are read locked, which unnecessarily blocks other tasks that want
to write to the same fs/subvol btree.
Therefore instead of modifying the fsync code to unlock all nodes
with level >= 1 immediately after calling btrfs_search_forward(),
change btrfs_search_forward() to do it, so that it benefits all
callers.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:38:02 -07:00
David Sterba
707e8a0715 btrfs: use nodesize everywhere, kill leafsize
The nodesize and leafsize were never of different values. Unify the
usage and make nodesize the one. Cleanup the redundant checks and
helpers.

Shaves a few bytes from .text:

  text    data     bss     dec     hex filename
852418   24560   23112  900090   dbbfa btrfs.ko.before
851074   24584   23112  898770   db6d2 btrfs.ko.after

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:37:14 -07:00
David Sterba
962a298f35 btrfs: kill the key type accessor helpers
btrfs_set_key_type and btrfs_key_type are used inconsistently along with
open coded variants. Other members of btrfs_key are accessed directly
without any helpers anyway.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-17 13:37:12 -07:00
Filipe Manana
125c4cf9f3 Btrfs: set inode's logged_trans/last_log_commit after ranged fsync
When a ranged fsync finishes if there are still extent maps in the modified
list, still set the inode's logged_trans and last_log_commit. This is important
in case an inode is fsync'ed and unlinked in the same transaction, to ensure its
inode ref gets deleted from the log and the respective dentries in its parent
are deleted too from the log (if the parent directory was fsync'ed in the same
transaction).

Instead make btrfs_inode_in_log() return false if the list of modified extent
maps isn't empty.

This is an incremental on top of the v4 version of the patch:

    "Btrfs: fix fsync data loss after a ranged fsync"

which was added to its v5, but didn't make it on time.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-16 16:12:19 -07:00
Filipe Manana
49dae1bc1c Btrfs: fix fsync data loss after a ranged fsync
While we're doing a full fsync (when the inode has the flag
BTRFS_INODE_NEEDS_FULL_SYNC set) that is ranged too (covers only a
portion of the file), we might have ordered operations that are started
before or while we're logging the inode and that fall outside the fsync
range.

Therefore when a full ranged fsync finishes don't remove every extent
map from the list of modified extent maps - as for some of them, that
fall outside our fsync range, their respective ordered operation hasn't
finished yet, meaning the corresponding file extent item wasn't inserted
into the fs/subvol tree yet and therefore we didn't log it, and we must
let the next fast fsync (one that checks only the modified list) see this
extent map and log a matching file extent item to the log btree and wait
for its ordered operation to finish (if it's still ongoing).

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-09-08 13:56:43 -07:00
Rasmus Villemoes
a71db86e86 fs/btrfs/tree-log.c: Fix closing brace followed by if
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2014-08-26 09:35:51 +02:00
Filipe Manana
74121f7cbb Btrfs: fix hole detection during file fsync
The file hole detection logic during a file fsync wasn't correct,
because it didn't look back (in a previous leaf) for the last file
extent item that can be in a leaf to the left of our leaf and that
has a generation lower than the current transaction id. This made it
assume that a hole exists when it really doesn't exist in the file.

Such false positive hole detection happens in the following scenario:

* We have a file that has many file extent items, covering 3 or more
  btree leafs (the first leaf must contain non file extent items too).

* Two ranges of the file are modified, with their extent items being
  located at 2 different leafs and those leafs aren't consecutive.

* When processing the second modified leaf, we weren't checking if
  some file extent item exists that is located in some leaf that is
  between our 2 modified leafs, and therefore assumed the range defined
  between the last file extent item in the first leaf and the first file
  extent item in the second leaf matched a hole.

Fortunately this didn't result in overriding the log with wrong data,
instead it made the last loop in copy_items() attempt to insert a
duplicated key (for a hole file extent item), which makes the file
fsync code return with -EEXIST to file.c:btrfs_sync_file() which in
turn ends up doing a full transaction commit, which is much more
expensive then writing only to the log tree and wait for it to be
durably persisted (as well as the file's modified extents/pages).
Therefore fix the hole detection logic, so that we don't pay the
cost of doing full transaction commits.

I could trigger this issue with the following test for xfstests (which
never fails, either without or with this patch). The last fsync call
results in a full transaction commit, due to the -EEXIST error mentioned
above. I could also observe this behaviour happening frequently when
running xfstests/generic/075 in a loop.

Test:

    _cleanup()
    {
        _cleanup_flakey
        rm -fr $tmp
    }

    # get standard environment, filters and checks
    . ./common/rc
    . ./common/filter
    . ./common/dmflakey

    # real QA test starts here
    _supported_fs btrfs
    _supported_os Linux
    _require_scratch
    _require_dm_flakey
    _need_to_be_root

    rm -f $seqres.full

    # Create a file with many file extent items, each representing a 4Kb extent.
    # These items span 3 btree leaves, of 16Kb each (default mkfs.btrfs leaf size
    # as of btrfs-progs 3.12).
    _scratch_mkfs -l 16384 >/dev/null 2>&1
    _init_flakey
    SAVE_MOUNT_OPTIONS="$MOUNT_OPTIONS"
    MOUNT_OPTIONS="$MOUNT_OPTIONS -o commit=999"
    _mount_flakey

    # First fsync, inode has BTRFS_INODE_NEEDS_FULL_SYNC flag set.
    $XFS_IO_PROG -f -c "pwrite -S 0x01 -b 4096 0 4096" -c "fsync" \
            $SCRATCH_MNT/foo | _filter_xfs_io

    # For any of the following fsync calls, inode doesn't have the flag
    # BTRFS_INODE_NEEDS_FULL_SYNC set.
    for ((i = 1; i <= 500; i++)); do
        OFFSET=$((4096 * i))
        LEN=4096
        $XFS_IO_PROG -c "pwrite -S 0x01 $OFFSET $LEN" -c "fsync" \
                $SCRATCH_MNT/foo | _filter_xfs_io
    done

    # Commit transaction and bump next transaction's id (to 7).
    sync

    # Truncate will set the BTRFS_INODE_NEEDS_FULL_SYNC flag in the btrfs's
    # inode runtime flags.
    $XFS_IO_PROG -c "truncate 2048000" $SCRATCH_MNT/foo

    # Commit transaction and bump next transaction's id (to 8).
    sync

    # Touch 1 extent item from the first leaf and 1 from the last leaf. The leaf
    # in the middle, containing only file extent items, isn't touched. So the
    # next fsync, when calling btrfs_search_forward(), won't visit that middle
    # leaf. First and 3rd leaf have now a generation with value 8, while the
    # middle leaf remains with a generation with value 6.
    $XFS_IO_PROG \
        -c "pwrite -S 0xee -b 4096 0 4096" \
        -c "pwrite -S 0xff -b 4096 2043904 4096" \
        -c "fsync" \
        $SCRATCH_MNT/foo | _filter_xfs_io

    _load_flakey_table $FLAKEY_DROP_WRITES
    md5sum $SCRATCH_MNT/foo | _filter_scratch
    _unmount_flakey

    _load_flakey_table $FLAKEY_ALLOW_WRITES
    # During mount, we'll replay the log created by the fsync above, and the file's
    # md5 digest should be the same we got before the unmount.
    _mount_flakey
    md5sum $SCRATCH_MNT/foo | _filter_scratch
    _unmount_flakey
    MOUNT_OPTIONS="$SAVE_MOUNT_OPTIONS"

    status=0
    exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-08-21 07:55:24 -07:00
Miao Xie
995946dd29 Btrfs: use helpers for last_trans_log_full_commit instead of opencode
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:45 -07:00
Miao Xie
27cdeb7096 Btrfs: use bitfield instead of integer data type for the some variants in btrfs_root
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09 17:20:40 -07:00
Miao Xie
50471a388c Btrfs: stop joining the log transaction if sync log fails
If the log sync fails, there is something wrong in the log tree, we
should not continue to join the log transaction and log the metadata.
What we should do is to do a full commit.

This patch fixes this problem by setting ->last_trans_log_full_commit
to the current transaction id, it will tell the tasks not to join
the log transaction, and do a full commit.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-03-10 15:16:44 -04:00