Booting an i486 with "no387 nofxsr" ends with with the following crash:
math_emulate: 0060:c101987d
Kernel panic - not syncing: Math emulation needed in kernel
on the first context switch in user land.
The reason is that copy_fpregs_to_fpstate() tries FNSAVE which does not work
as the FPU is turned off.
This bug was introduced in:
f1c8cd0176 ("x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active")
Add a check for X86_FEATURE_FPU before trying to save FPU registers (we
have such a check in switch_fpu_finish() already).
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: f1c8cd0176 ("x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active")
Link: http://lkml.kernel.org/r/20181016202525.29437-4-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The payload associated with a #PF exception is the linear address of
the fault to be loaded into CR2 when the fault is delivered. The
payload associated with a #DB exception is a mask of the DR6 bits to
be set (or in the case of DR6.RTM, cleared) when the fault is
delivered. Add fields has_payload and payload to kvm_queued_exception
to track payloads for pending exceptions.
The new fields are introduced here, but for now, they are just cleared.
Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for get/set of nested state when Enlightened VMCS is in use.
A new KVM_STATE_NESTED_EVMCS flag to indicate eVMCS on the vCPU was enabled
is added.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enlightened VMCS is opt-in. The current version does not contain all
fields supported by nested VMX so we must not advertise the
corresponding VMX features if enlightened VMCS is enabled.
Userspace is given the enlightened VMCS version supported by KVM as
part of enabling KVM_CAP_HYPERV_ENLIGHTENED_VMCS. The version is to
be advertised to the nested hypervisor, currently done via a cpuid
leaf for Hyper-V.
Suggested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recently the minimum required version of binutils was changed to 2.20,
which supports all VMX instruction mnemonics. The patch removes
all .byte #defines and uses real instruction mnemonics instead.
The compiler is now able to pass memory operand to the instruction,
so there is no need for memory clobber anymore. Also, the compiler
adds CC register clobber automatically to all extended asm clauses,
so the patch also removes explicit CC clobber.
The immediate benefit of the patch is removal of many unnecesary
register moves, resulting in 1434 saved bytes in vmx.o:
text data bss dec hex filename
151257 18246 8500 178003 2b753 vmx.o
152691 18246 8500 179437 2bced vmx-old.o
Some examples of improvement include removal of unneeded moves
of %rsp to %rax in front of invept and invvpid instructions:
a57e: b9 01 00 00 00 mov $0x1,%ecx
a583: 48 89 04 24 mov %rax,(%rsp)
a587: 48 89 e0 mov %rsp,%rax
a58a: 48 c7 44 24 08 00 00 movq $0x0,0x8(%rsp)
a591: 00 00
a593: 66 0f 38 80 08 invept (%rax),%rcx
to:
a45c: 48 89 04 24 mov %rax,(%rsp)
a460: b8 01 00 00 00 mov $0x1,%eax
a465: 48 c7 44 24 08 00 00 movq $0x0,0x8(%rsp)
a46c: 00 00
a46e: 66 0f 38 80 04 24 invept (%rsp),%rax
and the ability to use more optimal registers and memory operands
in the instruction:
8faa: 48 8b 44 24 28 mov 0x28(%rsp),%rax
8faf: 4c 89 c2 mov %r8,%rdx
8fb2: 0f 79 d0 vmwrite %rax,%rdx
to:
8e7c: 44 0f 79 44 24 28 vmwrite 0x28(%rsp),%r8
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMU reconfiguration in init_kvm_tdp_mmu()/kvm_init_shadow_mmu() can be
avoided if the source data used to configure it didn't change; enhance
MMU extended role with the required fields and consolidate common code in
kvm_calc_mmu_role_common().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMU re-initialization is expensive, in particular,
update_permission_bitmask() and update_pkru_bitmask() are.
Cache the data used to setup shadow EPT MMU and avoid full re-init when
it is unchanged.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to MMU reconfiguration avoidance we need a space to
cache source data. As this partially intersects with kvm_mmu_page_role,
create 64bit sized union kvm_mmu_role holding both base and extended data.
No functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just inline the contents into the sole caller, kvm_init_mmu is now
public.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
When EPT is used for nested guest we need to re-init MMU as shadow
EPT MMU (nested_ept_init_mmu_context() does that). When we return back
from L2 to L1 kvm_mmu_reset_context() in nested_vmx_load_cr3() resets
MMU back to normal TDP mode. Add a special 'guest_mmu' so we can use
separate root caches; the improved hit rate is not very important for
single vCPU performance, but it avoids contention on the mmu_lock for
many vCPUs.
On the nested CPUID benchmark, with 16 vCPUs, an L2->L1->L2 vmexit
goes from 42k to 26k cycles.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an option to specify which MMU root we want to free. This will
be used when nested and non-nested MMUs for L1 are split.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
As a preparation to full MMU split between L1 and L2 make vcpu->arch.mmu
a pointer to the currently used mmu. For now, this is always
vcpu->arch.root_mmu. No functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Regardless of whether your TLB is lush or not it still needs flushing.
Reported-by: Roman Kagan <rkagan@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In most common cases VP index of a vcpu matches its vcpu index. Userspace
is, however, free to set any mapping it wishes and we need to account for
that when we need to find a vCPU with a particular VP index. To keep search
algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
counter showing how many vCPUs with mismatching VP index we have. In case
the counter is zero we can assume vp_index == vcpu_idx.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, there are two definitions related to huge page, but a little bit
far from each other and seems loosely connected:
* KVM_NR_PAGE_SIZES defines the number of different size a page could map
* PT_MAX_HUGEPAGE_LEVEL means the maximum level of huge page
The number of different size a page could map equals the maximum level
of huge page, which is implied by current definition.
While current implementation may not be kind to readers and further
developers:
* KVM_NR_PAGE_SIZES looks like a stand alone definition at first sight
* in case we need to support more level, two places need to change
This patch tries to make these two definition more close, so that reader
and developer would feel more comfortable to manipulate.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On a 64bits machine, struct is naturally aligned with 8 bytes. Since
kvm_mmu_page member *unsync* and *role* are less then 4 bytes, we can
rearrange the sequence to compace the struct.
As the comment shows, *role* and *gfn* are used to key the shadow page. In
order to keep the comment valid, this patch moves the *unsync* up and
exchange the position of *role* and *gfn*.
From /proc/slabinfo, it shows the size of kvm_mmu_page is 8 bytes less and
with one more object per slap after applying this patch.
# name <active_objs> <num_objs> <objsize> <objperslab>
kvm_mmu_page_header 0 0 168 24
kvm_mmu_page_header 0 0 160 25
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit
qualification field for debug exceptions are reserved (cleared to
0). However, the SDM is incorrect about bit 16 (corresponding to
DR6.RTM). This bit should be set if a debug exception (#DB) or a
breakpoint exception (#BP) occurred inside an RTM region while
advanced debugging of RTM transactional regions was enabled. Note that
this is the opposite of DR6.RTM, which "indicates (when clear) that a
debug exception (#DB) or breakpoint exception (#BP) occurred inside an
RTM region while advanced debugging of RTM transactional regions was
enabled."
There is still an issue with stale DR6 bits potentially being
misreported for the current debug exception. DR6 should not have been
modified before vectoring the #DB exception, and the "new DR6 bits"
should be available somewhere, but it was and they aren't.
Fixes: b96fb43977 ("KVM: nVMX: fixes to nested virt interrupt injection")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On x86 we cannot do fetch_or() with a single instruction and thus end up
using a cmpxchg loop, this reduces determinism. Replace the fetch_or()
with a composite operation: tas-pending + load.
Using two instructions of course opens a window we previously did not
have. Consider the scenario:
CPU0 CPU1 CPU2
1) lock
trylock -> (0,0,1)
2) lock
trylock /* fail */
3) unlock -> (0,0,0)
4) lock
trylock -> (0,0,1)
5) tas-pending -> (0,1,1)
load-val <- (0,1,0) from 3
6) clear-pending-set-locked -> (0,0,1)
FAIL: _2_ owners
where 5) is our new composite operation. When we consider each part of
the qspinlock state as a separate variable (as we can when
_Q_PENDING_BITS == 8) then the above is entirely possible, because
tas-pending will only RmW the pending byte, so the later load is able
to observe prior tail and lock state (but not earlier than its own
trylock, which operates on the whole word, due to coherence).
To avoid this we need 2 things:
- the load must come after the tas-pending (obviously, otherwise it
can trivially observe prior state).
- the tas-pending must be a full word RmW instruction, it cannot be an XCHGB for
example, such that we cannot observe other state prior to setting
pending.
On x86 we can realize this by using "LOCK BTS m32, r32" for
tas-pending followed by a regular load.
Note that observing later state is not a problem:
- if we fail to observe a later unlock, we'll simply spin-wait for
that store to become visible.
- if we observe a later xchg_tail(), there is no difference from that
xchg_tail() having taken place before the tas-pending.
Suggested-by: Will Deacon <will.deacon@arm.com>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: andrea.parri@amarulasolutions.com
Cc: longman@redhat.com
Fixes: 59fb586b4a ("locking/qspinlock: Remove unbounded cmpxchg() loop from locking slowpath")
Link: https://lkml.kernel.org/r/20181003130957.183726335@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the GEN_*_RMWcc() macros include a return statement, which
pretty much mandates we directly wrap them in a (inline) function.
Macros with return statements are tricky and, as per the above, limit
use, so remove the return statement and make them
statement-expressions. This allows them to be used more widely.
Also, shuffle the arguments a bit. Place the @cc argument as 3rd, this
makes it consistent between UNARY and BINARY, but more importantly, it
makes the @arg0 argument last.
Since the @arg0 argument is now last, we can do CPP trickery and make
it an optional argument, simplifying the users; 17 out of 18
occurences do not need this argument.
Finally, change to asm symbolic names, instead of the numeric ordering
of operands, which allows us to get rid of __BINARY_RMWcc_ARG and get
cleaner code overall.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: JBeulich@suse.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@linux.intel.com
Link: https://lkml.kernel.org/r/20181003130957.108960094@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Eric reported that a sequence count loop using this_cpu_read() got
optimized out. This is wrong, this_cpu_read() must imply READ_ONCE()
because the interface is IRQ-safe, therefore an interrupt can have
changed the per-cpu value.
Fixes: 7c3576d261 ("[PATCH] i386: Convert PDA into the percpu section")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Eric Dumazet <edumazet@google.com>
Cc: hpa@zytor.com
Cc: eric.dumazet@gmail.com
Cc: bp@alien8.de
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181011104019.748208519@infradead.org
* Fix a livelock in dax_layout_busy_page() present since v4.18. The
lockup triggers when truncating an actively mapped huge page out of a
mapping pinned for direct-I/O.
* Fix mprotect() clobbers of _PAGE_DEVMAP. Broken since v4.5 mprotect()
clears this flag that is needed to communicate the liveness of device
pages to the get_user_pages() path.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbwiZhAAoJEB7SkWpmfYgCYFoQAL8ED6c1bfGUPRsWSrTRChU0
ungVZ/Vf1+2ERd3ivUXPQzahNtqH5EWvEVp0aboVpyJUoVllrztInVS2hxaGJE+e
w7WnzaXh36MY0kvLpK+Ny1Cxk7qg2rXnmzOAPRVdSUoSvh0TXOn5HFX1i/OdI7WK
wgJwXraCoyKP9aTItw7oHQy9S36bi1RJVUakOAoEpEx4Vn+fwFxLNIt34G5CRJ+k
iflicM7CPngxlFzwfoiX9v3DhV7toexk1A4LAzzwypG0Aiqd5tW2FG1lwLMPncNk
8FezBm9VjkMwzv6hj7nD9UfU2lbh3GqqGDW0cPX1DPSgDxr/4pOLtKcbYWHh6yas
NtCXk37q90ey3GtD2wYBRkBNly6UWvHJ0d3srtO6ZSl1VN6JQu8rhVhQ6KnON24B
NcWlEVf2brqf0uaW4byCVbdVfIDp96/qgEvCo1pq3olXwCdDyOBJjYxaBcnu5JDV
YsItMCJ49AxS/qoCt3vam7vC5TGhfYHL5xJPaF06cdjYvgfqOIV3VQT1ujBx4cvh
MBFRBKDc6oDiJFgkrdYqHwJfn5fCQVS180Oy5S0AFGsVAzsJalKBZBLx2f2RQn8c
r+kczvvPjpczEeEqzaqsxTgjowo/75Q8PRXc2PbwQzNxfkHuKf+xxQpnUg0mN6Hf
w8zPSaCcCs2Wo21Kd/ua
=VXnU
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-fixes-4.19-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Dan writes:
"libnvdimm/dax 4.19-rc8
* Fix a livelock in dax_layout_busy_page() present since v4.18. The
lockup triggers when truncating an actively mapped huge page out of
a mapping pinned for direct-I/O.
* Fix mprotect() clobbers of _PAGE_DEVMAP. Broken since v4.5
mprotect() clears this flag that is needed to communicate the
liveness of device pages to the get_user_pages() path."
* tag 'libnvdimm-fixes-4.19-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
mm: Preserve _PAGE_DEVMAP across mprotect() calls
filesystem-dax: Fix dax_layout_busy_page() livelock
Add regs_get_argument() which returns N th argument of the
function call.
Note that this chooses most probably assignment, in some case
it can be incorrect (e.g. passing data structure or floating
point etc.)
This is expected to be called from kprobes or ftrace with regs
where the top of stack is the return address.
Link: http://lkml.kernel.org/r/152465885737.26224.2822487520472783854.stgit@devbox
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In case the RSDP address in struct boot_params is specified don't try
to find the table by searching, but take the address directly as set
by the boot loader.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jia Zhang <qianyue.zj@alibaba-inc.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: linux-kernel@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181010061456.22238-4-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xen PVH guests receive the address of the RSDP table from Xen. In order
to support booting a Xen PVH guest via Grub2 using the standard x86
boot entry we need a way for Grub2 to pass the RSDP address to the
kernel.
For this purpose expand the struct setup_header to hold the physical
address of the RSDP address. Being zero means it isn't specified and
has to be located the legacy way (searching through low memory or
EBDA).
While documenting the new setup_header layout and protocol version
2.14 add the missing documentation of protocol version 2.13.
There are Grub2 versions in several distros with a downstream patch
violating the boot protocol by writing past the end of setup_header.
This requires another update of the boot protocol to enable the kernel
to distinguish between a specified RSDP address and one filled with
garbage by such a broken Grub2.
From protocol 2.14 on Grub2 will write the version it is supporting
(but never a higher value than found to be supported by the kernel)
ored with 0x8000 to the version field of setup_header. This enables
the kernel to know up to which field Grub2 has written information
to. All fields after that are supposed to be clobbered.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: bp@alien8.de
Cc: corbet@lwn.net
Cc: linux-doc@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181010061456.22238-3-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently _PAGE_DEVMAP bit is not preserved in mprotect(2) calls. As a
result we will see warnings such as:
BUG: Bad page map in process JobWrk0013 pte:800001803875ea25 pmd:7624381067
addr:00007f0930720000 vm_flags:280000f9 anon_vma: (null) mapping:ffff97f2384056f0 index:0
file:457-000000fe00000030-00000009-000000ca-00000001_2001.fileblock fault:xfs_filemap_fault [xfs] mmap:xfs_file_mmap [xfs] readpage: (null)
CPU: 3 PID: 15848 Comm: JobWrk0013 Tainted: G W 4.12.14-2.g7573215-default #1 SLE12-SP4 (unreleased)
Hardware name: Intel Corporation S2600WFD/S2600WFD, BIOS SE5C620.86B.01.00.0833.051120182255 05/11/2018
Call Trace:
dump_stack+0x5a/0x75
print_bad_pte+0x217/0x2c0
? enqueue_task_fair+0x76/0x9f0
_vm_normal_page+0xe5/0x100
zap_pte_range+0x148/0x740
unmap_page_range+0x39a/0x4b0
unmap_vmas+0x42/0x90
unmap_region+0x99/0xf0
? vma_gap_callbacks_rotate+0x1a/0x20
do_munmap+0x255/0x3a0
vm_munmap+0x54/0x80
SyS_munmap+0x1d/0x30
do_syscall_64+0x74/0x150
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
...
when mprotect(2) gets used on DAX mappings. Also there is a wide variety
of other failures that can result from the missing _PAGE_DEVMAP flag
when the area gets used by get_user_pages() later.
Fix the problem by including _PAGE_DEVMAP in a set of flags that get
preserved by mprotect(2).
Fixes: 69660fd797 ("x86, mm: introduce _PAGE_DEVMAP")
Fixes: ebd3119793 ("powerpc/mm: Add devmap support for ppc64")
Cc: <stable@vger.kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The only use of KEXEC_BACKUP_SRC_END is as an argument to
walk_system_ram_res():
int crash_load_segments(struct kimage *image)
{
...
walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
image, determine_backup_region);
walk_system_ram_res() expects "start, end" arguments that are inclusive,
i.e., the range to be walked includes both the start and end addresses.
KEXEC_BACKUP_SRC_END was previously defined as (640 * 1024UL), which is the
first address *past* the desired 0-640KB range.
Define KEXEC_BACKUP_SRC_END as (640 * 1024UL - 1) so the KEXEC_BACKUP_SRC
region is [0-0x9ffff], not [0-0xa0000].
Fixes: dd5f726076 ("kexec: support for kexec on panic using new system call")
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Brijesh Singh <brijesh.singh@amd.com>
CC: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CC: Ingo Molnar <mingo@redhat.com>
CC: Lianbo Jiang <lijiang@redhat.com>
CC: Takashi Iwai <tiwai@suse.de>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Tom Lendacky <thomas.lendacky@amd.com>
CC: Vivek Goyal <vgoyal@redhat.com>
CC: baiyaowei@cmss.chinamobile.com
CC: bhe@redhat.com
CC: dan.j.williams@intel.com
CC: dyoung@redhat.com
CC: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/153805811578.1157.6948388946904655969.stgit@bhelgaas-glaptop.roam.corp.google.com
On most workloads, the number of context switches far exceeds the
number of TLB flushes sent. Optimizing the context switches, by always
using lazy TLB mode, speeds up those workloads.
This patch results in about a 1% reduction in CPU use on a two socket
Broadwell system running a memcache like workload.
Cc: npiggin@gmail.com
Cc: efault@gmx.de
Cc: will.deacon@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Cc: hpa@zytor.com
Cc: luto@kernel.org
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
(cherry picked from commit 95b0e6357d)
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180716190337.26133-7-riel@surriel.com
Use the new tlb_get_unmap_shift() to determine the stride of the
INVLPG loop.
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Implement the required wait and kick callbacks to support PV spinlocks in
Hyper-V guests.
[ tglx: Document the requirement for disabling interrupts in the wait()
callback. Remove goto and unnecessary includes. Add prototype
for hv_vcpu_is_preempted(). Adapted to pending paravirt changes. ]
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Michael Kelley (EOSG) <Michael.H.Kelley@microsoft.com>
Cc: chao.p.peng@intel.com
Cc: chao.gao@intel.com
Cc: isaku.yamahata@intel.com
Cc: tianyu.lan@microsoft.com
Link: https://lkml.kernel.org/r/1538987374-51217-3-git-send-email-yi.y.sun@linux.intel.com
Hyper-V may expose a HV_X64_MSR_GUEST_IDLE MSR via HYPERV_CPUID_FEATURES.
Reading this MSR triggers the host to transition the guest vCPU into an
idle state. This state can be exited via an IPI even if the read in the
guest happened from an interrupt disabled section.
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: chao.p.peng@intel.com
Cc: chao.gao@intel.com
Cc: isaku.yamahata@intel.com
Cc: tianyu.lan@microsoft.com
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Link: https://lkml.kernel.org/r/1538028104-114050-2-git-send-email-yi.y.sun@linux.intel.com
So:
- use 'extern' consistently for APIs
- fix weird header guard
- clarify code comments
- reorder APIs by type
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have a special segment descriptor entry in the GDT, whose sole purpose is to
encode the CPU and node numbers in its limit (size) field. There are user-space
instructions that allow the reading of the limit field, which gives us a really
fast way to read the CPU and node IDs from the vDSO for example.
But the naming of related functionality does not make this clear, at all:
VDSO_CPU_SIZE
VDSO_CPU_MASK
__CPU_NUMBER_SEG
GDT_ENTRY_CPU_NUMBER
vdso_encode_cpu_node
vdso_read_cpu_node
There's a number of problems:
- The 'VDSO_CPU_SIZE' doesn't really make it clear that these are number
of bits, nor does it make it clear which 'CPU' this refers to, i.e.
that this is about a GDT entry whose limit encodes the CPU and node number.
- Furthermore, the 'CPU_NUMBER' naming is actively misleading as well,
because the segment limit encodes not just the CPU number but the
node ID as well ...
So use a better nomenclature all around: name everything related to this trick
as 'CPUNODE', to make it clear that this is something special, and add
_BITS to make it clear that these are number of bits, and propagate this to
every affected name:
VDSO_CPU_SIZE => VDSO_CPUNODE_BITS
VDSO_CPU_MASK => VDSO_CPUNODE_MASK
__CPU_NUMBER_SEG => __CPUNODE_SEG
GDT_ENTRY_CPU_NUMBER => GDT_ENTRY_CPUNODE
vdso_encode_cpu_node => vdso_encode_cpunode
vdso_read_cpu_node => vdso_read_cpunode
This, beyond being less confusing, also makes it easier to grep for all related
functionality:
$ git grep -i cpunode arch/x86
Also, while at it, fix "return is not a function" style sloppiness in vdso_encode_cpunode().
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up the CPU/node number related code a bit, to make it more apparent
how we are encoding/extracting the CPU and node fields from the
segment limit.
No change in functionality intended.
[ mingo: Wrote new changelog. ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/1537312139-5580-8-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old 'per CPU' naming was misleading: 64-bit kernels don't use this
GDT entry for per CPU data, but to store the CPU (and node) ID.
[ mingo: Wrote new changelog. ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/1537312139-5580-7-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace open-coded rdmsr()'s with their <asm/fsgsbase.h> API
counterparts.
No change in functionality intended.
[ mingo: Wrote new changelog. ]
Based-on-code-from: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/1537312139-5580-5-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the new FS/GS base helper functions in <asm/fsgsbase.h> in the platform
specific ptrace implementation of the following APIs:
PTRACE_ARCH_PRCTL,
PTRACE_SETREG,
PTRACE_GETREG,
etc.
The fsgsbase code is more abstracted out this way and the FS/GS-update
mechanism will be easier to change this way.
[ mingo: Wrote new changelog. ]
Based-on-code-from: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1537312139-5580-4-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce FS/GS base access functionality via <asm/fsgsbase.h>,
not yet used by anything directly.
Factor out task_seg_base() from x86/ptrace.c and rename it to
x86_fsgsbase_read_task() to make it part of the new helpers.
This will allow us to enhance FSGSBASE support and eventually enable
the FSBASE/GSBASE instructions.
An "inactive" GS base refers to a base saved at kernel entry
and being part of an inactive, non-running/stopped user-task.
(The typical ptrace model.)
Here are the new functions:
x86_fsbase_read_task()
x86_gsbase_read_task()
x86_fsbase_write_task()
x86_gsbase_write_task()
x86_fsbase_read_cpu()
x86_fsbase_write_cpu()
x86_gsbase_read_cpu_inactive()
x86_gsbase_write_cpu_inactive()
As an advantage of the unified namespace we can now see all FS/GSBASE
API use in the kernel via the following 'git grep' pattern:
$ git grep x86_.*sbase
[ mingo: Wrote new changelog. ]
Based-on-code-from: Andy Lutomirski <luto@kernel.org>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1537312139-5580-3-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block - which is also a minor cleanup for the jump-label code.
As a result the code size is slightly increased, but inlining decisions
are better:
text data bss dec hex filename
18163528 10226300 2957312 31347140 1de51c4 ./vmlinux before
18163608 10227348 2957312 31348268 1de562c ./vmlinux after (+1128)
And functions such as intel_pstate_adjust_policy_max(),
kvm_cpu_accept_dm_intr(), kvm_register_readl() are inlined.
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181005202718.229565-4-namit@vmware.com
Link: https://lore.kernel.org/lkml/20181003213100.189959-11-namit@vmware.com/T/#u
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block - which is pretty pointless indirection in the static_cpu_has()
case, but is worth it to improve overall inlining quality.
The patch slightly increases the kernel size:
text data bss dec hex filename
18162879 10226256 2957312 31346447 1de4f0f ./vmlinux before
18163528 10226300 2957312 31347140 1de51c4 ./vmlinux after (+693)
And enables the inlining of function such as free_ldt_pgtables().
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181005202718.229565-3-namit@vmware.com
Link: https://lore.kernel.org/lkml/20181003213100.189959-10-namit@vmware.com/T/#u
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block - which is also a minor cleanup for the exception table
code.
Text size goes up a bit:
text data bss dec hex filename
18162555 10226288 2957312 31346155 1de4deb ./vmlinux before
18162879 10226256 2957312 31346447 1de4f0f ./vmlinux after (+292)
But this allows the inlining of functions such as nested_vmx_exit_reflected(),
set_segment_reg(), __copy_xstate_to_user() which is a net benefit.
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181005202718.229565-2-namit@vmware.com
Link: https://lore.kernel.org/lkml/20181003213100.189959-9-namit@vmware.com/T/#u
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently CONFIG_RANDOMIZE_BASE=y is set by default, which makes some of the
old comments above the KERNEL_IMAGE_SIZE definition out of date. Update them
to the current state of affairs.
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: corbet@lwn.net
Cc: linux-doc@vger.kernel.org
Cc: thgarnie@google.com
Link: http://lkml.kernel.org/r/20181006084327.27467-2-bhe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When SME is enabled, the memory is encrypted in the first kernel. In
this case, SME also needs to be enabled in the kdump kernel, and we have
to remap the old memory with the memory encryption mask.
The case of concern here is if SME is active in the first kernel,
and it is active too in the kdump kernel. There are four cases to be
considered:
a. dump vmcore
It is encrypted in the first kernel, and needs be read out in the
kdump kernel.
b. crash notes
When dumping vmcore, the people usually need to read useful
information from notes, and the notes is also encrypted.
c. iommu device table
It's encrypted in the first kernel, kdump kernel needs to access its
content to analyze and get information it needs.
d. mmio of AMD iommu
not encrypted in both kernels
Add a new bool parameter @encrypted to __ioremap_caller(). If set,
memory will be remapped with the SME mask.
Add a new function ioremap_encrypted() to explicitly pass in a true
value for @encrypted. Use ioremap_encrypted() for the above a, b, c
cases.
[ bp: cleanup commit message, extern defs in io.h and drop forgotten
include. ]
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: kexec@lists.infradead.org
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: akpm@linux-foundation.org
Cc: dan.j.williams@intel.com
Cc: bhelgaas@google.com
Cc: baiyaowei@cmss.chinamobile.com
Cc: tiwai@suse.de
Cc: brijesh.singh@amd.com
Cc: dyoung@redhat.com
Cc: bhe@redhat.com
Cc: jroedel@suse.de
Link: https://lkml.kernel.org/r/20180927071954.29615-2-lijiang@redhat.com
Ingo writes:
"perf fixes:
- fix a CPU#0 hot unplug bug and a PCI enumeration bug in the x86 Intel uncore PMU driver
- fix a CPU event enumeration bug in the x86 AMD PMU driver
- fix a perf ring-buffer corruption bug when using tracepoints
- fix a PMU unregister locking bug"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/amd/uncore: Set ThreadMask and SliceMask for L3 Cache perf events
perf/x86/intel/uncore: Fix PCI BDF address of M3UPI on SKX
perf/ring_buffer: Prevent concurent ring buffer access
perf/x86/intel/uncore: Use boot_cpu_data.phys_proc_id instead of hardcorded physical package ID 0
perf/core: Fix perf_pmu_unregister() locking
After reading do_hres() and do_course() and scratching my head a
bit, I figured out why the arithmetic is strange. Document it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f66f53d81150bbad47d7b282c9207a71a3ce1c16.1538689401.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the storage array in place it's now trivial to support CLOCK_TAI in
the vdso. Extend the base time storage array and add the update code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Matt Rickard <matt@softrans.com.au>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.823878601@linutronix.de
It's desired to support more clocks in the VDSO, e.g. CLOCK_TAI. This
results either in indirect calls due to the larger switch case, which then
requires retpolines or when the compiler is forced to avoid jump tables it
results in even more conditionals.
To avoid both variants which are bad for performance the high resolution
functions and the coarse grained functions will be collapsed into one for
each. That requires to store the clock specific base time in an array.
Introcude struct vgtod_ts for storage and convert the data store, the
update function and the individual clock functions over to use it.
The new storage does not longer use gtod_long_t for seconds depending on 32
or 64 bit compile because this needs to be the full 64bit value even for
32bit when a Y2038 function is added. No point in keeping the distinction
alive in the internal representation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.324679401@linutronix.de
The sequence count in vgtod_data is unsigned int, but the call sites use
unsigned long, which is a pointless exercise. Fix the call sites and
replace 'unsigned' with unsinged 'int' while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.236250416@linutronix.de
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block. As a result GCC considers the inline assembly block as
a single instruction. (Which it isn't, but that's the best we can get.)
In this patch we wrap the paravirt call section tricks in a macro,
to hide it from GCC.
The effect of the patch is a more aggressive inlining, which also
causes a size increase of kernel.
text data bss dec hex filename
18147336 10226688 2957312 31331336 1de1408 ./vmlinux before
18162555 10226288 2957312 31346155 1de4deb ./vmlinux after (+14819)
The number of static text symbols (non-inlined functions) goes down:
Before: 40053
After: 39942 (-111)
[ mingo: Rewrote the changelog. ]
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20181003213100.189959-8-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block. As a result GCC considers the inline assembly block as
a single instruction. (Which it isn't, but that's the best we can get.)
This patch increases the kernel size:
text data bss dec hex filename
18146889 10225380 2957312 31329581 1de0d2d ./vmlinux before
18147336 10226688 2957312 31331336 1de1408 ./vmlinux after (+1755)
But enables more aggressive inlining (and probably better branch decisions).
The number of static text symbols in vmlinux is much lower:
Before: 40218
After: 40053 (-165)
The assembly code gets harder to read due to the extra macro layer.
[ mingo: Rewrote the changelog. ]
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181003213100.189959-7-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block - i.e. to macrify the affected block.
As a result GCC considers the inline assembly block as a single instruction.
This patch handles the LOCK prefix, allowing more aggresive inlining:
text data bss dec hex filename
18140140 10225284 2957312 31322736 1ddf270 ./vmlinux before
18146889 10225380 2957312 31329581 1de0d2d ./vmlinux after (+6845)
This is the reduction in non-inlined functions:
Before: 40286
After: 40218 (-68)
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181003213100.189959-6-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block. As a result GCC considers the inline assembly block as
a single instruction. (Which it isn't, but that's the best we can get.)
This patch allows GCC to inline simple functions such as __get_seccomp_filter().
To no-one's surprise the result is that GCC performs more aggressive (read: correct)
inlining decisions in these senarios, which reduces the kernel size and presumably
also speeds it up:
text data bss dec hex filename
18140970 10225412 2957312 31323694 1ddf62e ./vmlinux before
18140140 10225284 2957312 31322736 1ddf270 ./vmlinux after (-958)
16 fewer static text symbols:
Before: 40302
After: 40286 (-16)
these got inlined instead.
Functions such as kref_get(), free_user(), fuse_file_get() now get inlined. Hurray!
[ mingo: Rewrote the changelog. ]
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181003213100.189959-5-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Linus recently observed that if we did not worry about the padding
member in struct siginfo it is only about 48 bytes, and 48 bytes is
much nicer than 128 bytes for allocating on the stack and copying
around in the kernel.
The obvious thing of only adding the padding when userspace is
including siginfo.h won't work as there are sigframe definitions in
the kernel that embed struct siginfo.
So split siginfo in two; kernel_siginfo and siginfo. Keeping the
traditional name for the userspace definition. While the version that
is used internally to the kernel and ultimately will not be padded to
128 bytes is called kernel_siginfo.
The definition of struct kernel_siginfo I have put in include/signal_types.h
A set of buildtime checks has been added to verify the two structures have
the same field offsets.
To make it easy to verify the change kernel_siginfo retains the same
size as siginfo. The reduction in size comes in a following change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Rework the defintion of struct siginfo so that the array padding
struct siginfo to SI_MAX_SIZE can be placed in a union along side of
the rest of the struct siginfo members. The result is that we no
longer need the __ARCH_SI_PREAMBLE_SIZE or SI_PAD_SIZE definitions.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
As 32bit system is not using 4-level page, rename it
to temp_pgt so that it can be reused for both 32bit
and 64bit hibernation.
No functional change.
Signed-off-by: Zhimin Gu <kookoo.gu@intel.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reduce the hibernation code duplication between x86-32 and x86-64
by extracting the common code into hibernate.c.
Currently only pfn_is_nosave() is the activated common
function in hibernate.c
No functional change.
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Zhimin Gu <kookoo.gu@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
swsusp_arch_suspend() is callable non-leaf function which doesn't
honor CONFIG_FRAME_POINTER, which can result in bad stack traces.
Also it's not annotated as ELF callable function which can confuse tooling.
Create a stack frame for it when CONFIG_FRAME_POINTER is enabled and
give it proper ELF function annotation.
Also in this patch introduces the restore_registers() symbol and
gives it ELF function annotation, thus to prepare for later register
restore.
Analogous changes were made for 64bit before in commit ef0f3ed5a4
(x86/asm/power: Create stack frames in hibernate_asm_64.S) and
commit 4ce827b4cc (x86/power/64: Fix hibernation return address
corruption).
Signed-off-by: Zhimin Gu <kookoo.gu@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Introduce is_early_uv_system() which uses efi.uv_systab to decide early
in the boot process whether the kernel runs on a UV system.
This is needed to skip other early setup/init code that might break
the UV platform if done too early such as before necessary ACPI tables
parsing takes place.
Suggested-by: Hedi Berriche <hedi.berriche@hpe.com>
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Russ Anderson <rja@hpe.com>
Reviewed-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Xiaoming Gao <gxm.linux.kernel@gmail.com>
Cc: Rajvi Jingar <rajvi.jingar@intel.com>
Link: https://lkml.kernel.org/r/20181002180144.801700401@stormcage.americas.sgi.com
Going primarily by:
https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors
with additional information gleaned from other related pages; notably:
- Bonnell shrink was called Saltwell
- Moorefield is the Merriefield refresh which makes it Airmont
The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE
for i in `git grep -l FAM6_ATOM` ; do
sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \
-e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \
-e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \
-e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \
-e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \
-e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \
-e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \
-e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \
-e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \
-e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \
-e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dave.hansen@linux.intel.com
Cc: len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implements counter freezing for Arch Perfmon v4 (Skylake and
newer). This allows to speed up the PMI handler by avoiding
unnecessary MSR writes and make it more accurate.
The Arch Perfmon v4 PMI handler is substantially different than
the older PMI handler.
Differences to the old handler:
- It relies on counter freezing, which eliminates several MSR
writes from the PMI handler and lowers the overhead significantly.
It makes the PMI handler more accurate, as all counters get
frozen atomically as soon as any counter overflows. So there is
much less counting of the PMI handler itself.
With the freezing we don't need to disable or enable counters or
PEBS. Only BTS which does not support auto-freezing still needs to
be explicitly managed.
- The PMU acking is done at the end, not the beginning.
This makes it possible to avoid manual enabling/disabling
of the PMU, instead we just rely on the freezing/acking.
- The APIC is acked before reenabling the PMU, which avoids
problems with LBRs occasionally not getting unfreezed on Skylake.
- Looping is only needed to workaround a corner case which several PMIs
are very close to each other. For common cases, the counters are freezed
during PMI handler. It doesn't need to do re-check.
This patch:
- Adds code to enable v4 counter freezing
- Fork <=v3 and >=v4 PMI handlers into separate functions.
- Add kernel parameter to disable counter freezing. It took some time to
debug counter freezing, so in case there are new problems we added an
option to turn it off. Would not expect this to be used until there
are new bugs.
- Only for big core. The patch for small core will be posted later
separately.
Performance:
When profiling a kernel build on Kabylake with different perf options,
measuring the length of all NMI handlers using the nmi handler
trace point:
V3 is without counter freezing.
V4 is with counter freezing.
The value is the average cost of the PMI handler.
(lower is better)
perf options ` V3(ns) V4(ns) delta
-c 100000 1088 894 -18%
-g -c 100000 1862 1646 -12%
--call-graph lbr -c 100000 3649 3367 -8%
--c.g. dwarf -c 100000 2248 1982 -12%
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: http://lkml.kernel.org/r/1533712328-2834-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Family 17h, some L3 Cache Performance events require the ThreadMask
and SliceMask to be set. For other events, these fields do not affect
the count either way.
Set ThreadMask and SliceMask to 0xFF and 0xF respectively.
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAluw4MIACgkQONu9yGCS
aT7+8xAAiYnc4khUsxeInm3z44WPfRX1+UF51frTNSY5C8Nn5nvRSnTUNLuKkkrz
8RbwCL6UYyJxF9I/oZdHPsPOD4IxXkQY55tBjz7ZbSBIFEwYM6RJMm8mAGlXY7wq
VyWA5MhlpGHM9DjrguB4DMRipnrSc06CVAnC+ZyKLjzblzU1Wdf2dYu+AW9pUVXP
j4r74lFED5djPY1xfqfzEwmYRCeEGYGx7zMqT3GrrF5uFPqj1H6O5klEsAhIZvdl
IWnJTU2coC8R/Sd17g4lHWPIeQNnMUGIUbu+PhIrZ/lDwFxlocg4BvarPXEdzgYi
gdZzKBfovpEsSu5RCQsKWG4IGQxY7I1p70IOP9eqEFHZy77qT1YcHVAWrK1Y/bJd
UA08gUOSzRnhKkNR3+PsaMflUOl9WkpyHECZu394cyRGMutSS50aWkavJPJ/o1Qi
D/oGqZLLcKFyuNcchG+Met1TzY3LvYEDgSburqwqeUZWtAsGs8kmiiq7qvmXx4zV
IcgM8ERqJ8mbfhfsXQU7hwydIrPJ3JdIq19RnM5ajbv2Q4C/qJCyAKkQoacrlKR4
aiow/qvyNrP80rpXfPJB8/8PiWeDtAnnGhM+xySZNlw3t8GR6NYpUkIzf5TdkSb3
C8KuKg6FY9QAS62fv+5KK3LB/wbQanxaPNruQFGe5K1iDQ5Fvzw=
=dMl4
-----END PGP SIGNATURE-----
Merge tag 'v4.19-rc6' into for-4.20/block
Merge -rc6 in, for two reasons:
1) Resolve a trivial conflict in the blk-mq-tag.c documentation
2) A few important regression fixes went into upstream directly, so
they aren't in the 4.20 branch.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
* tag 'v4.19-rc6': (780 commits)
Linux 4.19-rc6
MAINTAINERS: fix reference to moved drivers/{misc => auxdisplay}/panel.c
cpufreq: qcom-kryo: Fix section annotations
perf/core: Add sanity check to deal with pinned event failure
xen/blkfront: correct purging of persistent grants
Revert "xen/blkfront: When purging persistent grants, keep them in the buffer"
selftests/powerpc: Fix Makefiles for headers_install change
blk-mq: I/O and timer unplugs are inverted in blktrace
dax: Fix deadlock in dax_lock_mapping_entry()
x86/boot: Fix kexec booting failure in the SEV bit detection code
bcache: add separate workqueue for journal_write to avoid deadlock
drm/amd/display: Fix Edid emulation for linux
drm/amd/display: Fix Vega10 lightup on S3 resume
drm/amdgpu: Fix vce work queue was not cancelled when suspend
Revert "drm/panel: Add device_link from panel device to DRM device"
xen/blkfront: When purging persistent grants, keep them in the buffer
clocksource/drivers/timer-atmel-pit: Properly handle error cases
block: fix deadline elevator drain for zoned block devices
ACPI / hotplug / PCI: Don't scan for non-hotplug bridges if slot is not bridge
drm/syncobj: Don't leak fences when WAIT_FOR_SUBMIT is set
...
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Replace open-coded use of the SETcc instruction with CC_SET()/CC_OUT()
in __cmpxchg_double().
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/CAFULd4YdvwwhXWHqqPsGk5+TLG71ozgSscTZNsqmrm+Jzg941w@mail.gmail.com
perf_event_read_local() is the safest way to obtain measurements
associated with performance events. In some cases the overhead
introduced by perf_event_read_local() affects the measurements and the
use of rdpmcl() is needed. rdpmcl() requires the index
of the performance counter used so a helper is introduced to determine
the index used by a provided performance event.
The index used by a performance event may change when interrupts are
enabled. A check is added to ensure that the index is only accessed
with interrupts disabled. Even with this check the use of this counter
needs to be done with care to ensure it is queried and used within the
same disabled interrupts section.
This change introduces a new checkpatch warning:
CHECK: extern prototypes should be avoided in .h files
+extern int x86_perf_rdpmc_index(struct perf_event *event);
This warning was discussed and designated as a false positive in
http://lkml.kernel.org/r/20180919091759.GZ24124@hirez.programming.kicks-ass.net
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b277ffa78a51254f5414f7b1bc1923826874566e.1537377064.git.reinette.chatre@intel.com
The Hygon Dhyana CPU has a topology extensions bit in CPUID. With
this bit, the kernel can get the cache information. So add support in
cpuid4_cache_lookup_regs() to get the correct cache size.
The Hygon Dhyana CPU also discovers num_cache_leaves via CPUID leaf
0x8000001d, so add support to it in find_num_cache_leaves().
Also add cacheinfo_hygon_init_llc_id() and init_hygon_cacheinfo()
functions to initialize Dhyana cache info. Setup cache cpumap in the
same way as AMD does.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: bp@alien8.de
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/2a686b2ac0e2f5a1f2f5f101124d9dd44f949731.1537533369.git.puwen@hygon.cn
Similar to the arm64 case, 64-bit x86 can benefit from using relative
references rather than absolute ones when emitting struct jump_entry
instances. Not only does this reduce the memory footprint of the entries
themselves by 33%, it also removes the need for carrying relocation
metadata on relocatable builds (i.e., for KASLR) which saves a fair
chunk of .init space as well (although the savings are not as dramatic
as on arm64)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-7-ard.biesheuvel@linaro.org
Add support for R_X86_64_PC64 relocations, which operate on 64-bit
quantities holding a relative symbol reference. Also remove the
definition of R_X86_64_NUM: given that it is currently unused, it
is unclear what the new value should be.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-5-ard.biesheuvel@linaro.org
- Add support for enlisting the help of the EFI firmware to create memory
reservations that persist across kexec.
- Add page fault handling to the runtime services support code on x86 so
we can gracefully recover from buggy EFI firmware.
- Fix command line handling on x86 for the boot path that omits the stub's
PE/COFF entry point.
- Other assorted fixes.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEnNKg2mrY9zMBdeK7wjcgfpV0+n0FAlurXR8ACgkQwjcgfpV0
+n2CGwf/V4exixXjTDwkqE6gY5bq0Y3AL8tp89wdbJzjgGOIJLKh3CrGr8xEFHrv
oYObcvB3SfNEIyGeBjc/8ZMw1P/j98s6ucsMm0u+V52k7xxu/xJoIPw3bX2R8LLc
QhedUmKWLFQXxottaqzRFi1m0rP9TlAlc2n2pjIPCywjTPzeT/jBTtnRGRRdpDkN
uxwv59eXc6MXuwJGhM9lGIBCu8ra54SiSByJSKoMwNYXQRCLtiBUg5iibWkKigHp
9rQiimQnDOuPiZ6JGFx6pwSu7cqv3d8LYk5EnU3zYfzxAvHRfxuf40joSeZzySby
vZ4zRog79DxkSnuvaQ0+phQHiq+yQg==
=HZGk
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
Pull EFI updates for v4.20 from Ard Biesheuvel:
- Add support for enlisting the help of the EFI firmware to create memory
reservations that persist across kexec.
- Add page fault handling to the runtime services support code on x86 so
we can gracefully recover from buggy EFI firmware.
- Fix command line handling on x86 for the boot path that omits the stub's
PE/COFF entry point.
- Other assorted fixes.
Add x86 architecture support for a new processor: Hygon Dhyana Family
18h. Carve out initialization code needed by Dhyana into a separate
compilation unit.
To identify Hygon Dhyana CPU, add a new vendor type X86_VENDOR_HYGON.
Since Dhyana uses AMD functionality to a large degree, select
CPU_SUP_AMD which provides that functionality.
[ bp: drop explicit license statement as it has an SPDX tag already. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/1a882065223bacbde5726f3beaa70cebd8dcd814.1537533369.git.puwen@hygon.cn
Nothing Xen specific in these headers, which get included from a lot
of code in the kernel. So prune the includes and move them to the
Xen-specific files that actually use them instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Take the Xen check into the core code instead of delegating it to
the architectures.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Having multiple externs in arch headers is not a good way to provide
a common interface.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Memory accesses performed by UEFI runtime services should be limited to:
- reading/executing from EFI_RUNTIME_SERVICES_CODE memory regions
- reading/writing from/to EFI_RUNTIME_SERVICES_DATA memory regions
- reading/writing by-ref arguments
- reading/writing from/to the stack.
Accesses outside these regions may cause the kernel to hang because the
memory region requested by the firmware isn't mapped in efi_pgd, which
causes a page fault in ring 0 and the kernel fails to handle it, leading
to die(). To save kernel from hanging, add an EFI specific page fault
handler which recovers from such faults by
1. If the efi runtime service is efi_reset_system(), reboot the machine
through BIOS.
2. If the efi runtime service is _not_ efi_reset_system(), then freeze
efi_rts_wq and schedule a new process.
The EFI page fault handler offers us two advantages:
1. Avoid potential hangs caused by buggy firmware.
2. Shout loud that the firmware is buggy and hence is not a kernel bug.
Tested-by: Bhupesh Sharma <bhsharma@redhat.com>
Suggested-by: Matt Fleming <matt@codeblueprint.co.uk>
Based-on-code-from: Ricardo Neri <ricardo.neri@intel.com>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
[ardb: clarify commit log]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
To reuse the static functions and the struct declarations, move them to
corresponding header files and export the needed functions.
Cc: Lu Baolu <baolu.lu@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Turn the macro into an inline, move it to blk.h and simplify the
arch hooks a bit.
Also rename the function to biovec_phys_mergeable as there is no need
to shout.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
..so that they match their asm counterpart.
Add the missing ANNOTATE_NOSPEC_ALTERNATIVE in CALL_NOSPEC, while at it.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wang YanQing <udknight@gmail.com>
Cc: dhaval.giani@oracle.com
Cc: srinivas.eeda@oracle.com
Link: http://lkml.kernel.org/r/c3975665-173e-4d70-8dee-06c926ac26ee@default
Thomas writes:
"A set of fixes for x86:
- Resolve the kvmclock regression on AMD systems with memory
encryption enabled. The rework of the kvmclock memory allocation
during early boot results in encrypted storage, which is not
shareable with the hypervisor. Create a new section for this data
which is mapped unencrypted and take care that the later
allocations for shared kvmclock memory is unencrypted as well.
- Fix the build regression in the paravirt code introduced by the
recent spectre v2 updates.
- Ensure that the initial static page tables cover the fixmap space
correctly so early console always works. This worked so far by
chance, but recent modifications to the fixmap layout can -
depending on kernel configuration - move the relevant entries to a
different place which is not covered by the initial static page
tables.
- Address the regressions and issues which got introduced with the
recent extensions to the Intel Recource Director Technology code.
- Update maintainer entries to document reality"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Expand static page table for fixmap space
MAINTAINERS: Add X86 MM entry
x86/intel_rdt: Add Reinette as co-maintainer for RDT
MAINTAINERS: Add Borislav to the x86 maintainers
x86/paravirt: Fix some warning messages
x86/intel_rdt: Fix incorrect loop end condition
x86/intel_rdt: Fix exclusive mode handling of MBA resource
x86/intel_rdt: Fix incorrect loop end condition
x86/intel_rdt: Do not allow pseudo-locking of MBA resource
x86/intel_rdt: Fix unchecked MSR access
x86/intel_rdt: Fix invalid mode warning when multiple resources are managed
x86/intel_rdt: Global closid helper to support future fixes
x86/intel_rdt: Fix size reporting of MBA resource
x86/intel_rdt: Fix data type in parsing callbacks
x86/kvm: Use __bss_decrypted attribute in shared variables
x86/mm: Add .bss..decrypted section to hold shared variables
We met a kernel panic when enabling earlycon, which is due to the fixmap
address of earlycon is not statically setup.
Currently the static fixmap setup in head_64.S only covers 2M virtual
address space, while it actually could be in 4M space with different
kernel configurations, e.g. when VSYSCALL emulation is disabled.
So increase the static space to 4M for now by defining FIXMAP_PMD_NUM to 2,
and add a build time check to ensure that the fixmap is covered by the
initial static page tables.
Fixes: 1ad83c858c ("x86_64,vsyscall: Make vsyscall emulation configurable")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com> (Xen parts)
Cc: H Peter Anvin <hpa@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180920025828.23699-1-feng.tang@intel.com
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access
to reads of MSR_PLATFORM_INFO.
Disabling access to reads of this MSR gives userspace the control to "expose"
this platform-dependent information to guests in a clear way. As it exists
today, guests that read this MSR would get unpopulated information if userspace
hadn't already set it (and prior to this patch series, only the CPUID faulting
information could have been populated). This existing interface could be
confusing if guests don't handle the potential for incorrect/incomplete
information gracefully (e.g. zero reported for base frequency).
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state,
it is possible for a vCPU to be blocked while it is in guest-mode.
According to Intel SDM 26.6.5 Interrupt-Window Exiting and
Virtual-Interrupt Delivery: "These events wake the logical processor
if it just entered the HLT state because of a VM entry".
Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending
deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU
should be waken from the HLT state and injected with the interrupt.
In addition, if while the vCPU is blocked (while it is in guest-mode),
it receives a nested posted-interrupt, then the vCPU should also be
waken and injected with the posted interrupt.
To handle these cases, this patch enhances kvm_vcpu_has_events() to also
check if there is a pending interrupt in L2 virtual APICv provided by
L1. That is, it evaluates if there is a pending virtual interrupt for L2
by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1
Evaluation of Pending Interrupts.
Note that this also handles the case of nested posted-interrupt by the
fact RVI is updated in vmx_complete_nested_posted_interrupt() which is
called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() ->
kvm_vcpu_running() -> vmx_check_nested_events() ->
vmx_complete_nested_posted_interrupt().
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These structures are going to be used from KVM code so let's make
their names reflect their Hyper-V origin.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMX preemption timer value of '0' is guaranteed to cause a VMExit
prior to the CPU executing any instructions in the guest. Use the
preemption timer (if it's supported) to trigger immediate VMExit
in place of the current method of sending a self-IPI. This ensures
that pending VMExit injection to L1 occurs prior to executing any
instructions in the guest (regardless of nesting level).
When deferring VMExit injection, KVM generates an immediate VMExit
from the (possibly nested) guest by sending itself an IPI. Because
hardware interrupts are blocked prior to VMEnter and are unblocked
(in hardware) after VMEnter, this results in taking a VMExit(INTR)
before any guest instruction is executed. But, as this approach
relies on the IPI being received before VMEnter executes, it only
works as intended when KVM is running as L0. Because there are no
architectural guarantees regarding when IPIs are delivered, when
running nested the INTR may "arrive" long after L2 is running e.g.
L0 KVM doesn't force an immediate switch to L1 to deliver an INTR.
For the most part, this unintended delay is not an issue since the
events being injected to L1 also do not have architectural guarantees
regarding their timing. The notable exception is the VMX preemption
timer[1], which is architecturally guaranteed to cause a VMExit prior
to executing any instructions in the guest if the timer value is '0'
at VMEnter. Specifically, the delay in injecting the VMExit causes
the preemption timer KVM unit test to fail when run in a nested guest.
Note: this approach is viable even on CPUs with a broken preemption
timer, as broken in this context only means the timer counts at the
wrong rate. There are no known errata affecting timer value of '0'.
[1] I/O SMIs also have guarantees on when they arrive, but I have
no idea if/how those are emulated in KVM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Use a hook for SVM instead of leaving the default in x86.c - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When VMX is used with flexpriority disabled (because of no support or
if disabled with module parameter) MMIO interface to lAPIC is still
available in x2APIC mode while it shouldn't be (kvm-unit-tests):
PASS: apic_disable: Local apic enabled in x2APIC mode
PASS: apic_disable: CPUID.1H:EDX.APIC[bit 9] is set
FAIL: apic_disable: *0xfee00030: 50014
The issue appears because we basically do nothing while switching to
x2APIC mode when APIC access page is not used. apic_mmio_{read,write}
only check if lAPIC is disabled before proceeding to actual write.
When APIC access is virtualized we correctly manipulate with VMX controls
in vmx_set_virtual_apic_mode() and we don't get vmexits from memory writes
in x2APIC mode so there's no issue.
Disabling MMIO interface seems to be easy. The question is: what do we
do with these reads and writes? If we add apic_x2apic_mode() check to
apic_mmio_in_range() and return -EOPNOTSUPP these reads and writes will
go to userspace. When lAPIC is in kernel, Qemu uses this interface to
inject MSIs only (see kvm_apic_mem_write() in hw/i386/kvm/apic.c). This
somehow works with disabled lAPIC but when we're in xAPIC mode we will
get a real injected MSI from every write to lAPIC. Not good.
The simplest solution seems to be to just ignore writes to the region
and return ~0 for all reads when we're in x2APIC mode. This is what this
patch does. However, this approach is inconsistent with what currently
happens when flexpriority is enabled: we allocate APIC access page and
create KVM memory region so in x2APIC modes all reads and writes go to
this pre-allocated page which is, btw, the same for all vCPUs.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This separates the logic of generating the signal from the logic of
gathering the information about the bounds violation.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The value passed in to addr_referenced is of type void __user *, so update
the addr_referenced parameter in trace_mpx_bounds_register_exception to match.
Also update the addr_referenced paramater in TP_STRUCT__entry as it again
holdes the same value.
I don't know why this was missed earlier but sparse was complaining when
testing test branch so fix this now.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Replace user_single_step_siginfo with user_single_step_report
that allocates siginfo structure on the stack and sends it.
This allows tracehook_report_syscall_exit to become a simple
if statement that calls user_single_step_report or ptrace_report_syscall
depending on the value of step.
Update the default helper function now called user_single_step_report
to explicitly set si_code to SI_USER and to set si_uid and si_pid to 0.
The default helper has always been doing this (using memset) but it
was far from obvious.
The powerpc helper can now just call force_sig_fault.
The x86 helper can now just call send_sigtrap.
Unfortunately the default implementation of user_single_step_report
can not use force_sig_fault as it does not use a SIGTRAP si_code.
So it has to carefully setup the siginfo and use use force_sig_info.
The net result is code that is easier to understand and simpler
to maintain.
Ref: 85ec7fd9f8 ("ptrace: introduce user_single_step_siginfo() helper")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
kvmclock defines few static variables which are shared with the
hypervisor during the kvmclock initialization.
When SEV is active, memory is encrypted with a guest-specific key, and
if the guest OS wants to share the memory region with the hypervisor
then it must clear the C-bit before sharing it.
Currently, we use kernel_physical_mapping_init() to split large pages
before clearing the C-bit on shared pages. But it fails when called from
the kvmclock initialization (mainly because the memblock allocator is
not ready that early during boot).
Add a __bss_decrypted section attribute which can be used when defining
such shared variable. The so-defined variables will be placed in the
.bss..decrypted section. This section will be mapped with C=0 early
during boot.
The .bss..decrypted section has a big chunk of memory that may be unused
when memory encryption is not active, free it when memory encryption is
not active.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Radim Krčmář<rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/1536932759-12905-2-git-send-email-brijesh.singh@amd.com
This reverts commit 1f40a46cf4.
It turned out that this patch is not sufficient to enable PTI on 32 bit
systems with legacy 2-level page-tables. In this paging mode the huge-page
PTEs are in the top-level page-table directory, where also the mirroring to
the user-space page-table happens. So every huge PTE exits twice, in the
kernel and in the user page-table.
That means that accessed/dirty bits need to be fetched from two PTEs in
this mode to be safe, but this is not trivial to implement because it needs
changes to generic code just for the sake of enabling PTI with 32-bit
legacy paging. As all systems that need PTI should support PAE anyway,
remove support for PTI when 32-bit legacy paging is used.
Fixes: 7757d607c6 ('x86/pti: Allow CONFIG_PAGE_TABLE_ISOLATION for x86_32')
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: https://lkml.kernel.org/r/1536922754-31379-1-git-send-email-joro@8bytes.org
The SYSCALL64 trampoline has a couple of nice properties:
- The usual sequence of SWAPGS followed by two GS-relative accesses to
set up RSP is somewhat slow because the GS-relative accesses need
to wait for SWAPGS to finish. The trampoline approach allows
RIP-relative accesses to set up RSP, which avoids the stall.
- The trampoline avoids any percpu access before CR3 is set up,
which means that no percpu memory needs to be mapped in the user
page tables. This prevents using Meltdown to read any percpu memory
outside the cpu_entry_area and prevents using timing leaks
to directly locate the percpu areas.
The downsides of using a trampoline may outweigh the upsides, however.
It adds an extra non-contiguous I$ cache line to system calls, and it
forces an indirect jump to transfer control back to the normal kernel
text after CR3 is set up. The latter is because x86 lacks a 64-bit
direct jump instruction that could jump from the trampoline to the entry
text. With retpolines enabled, the indirect jump is extremely slow.
Change the code to map the percpu TSS into the user page tables to allow
the non-trampoline SYSCALL64 path to work under PTI. This does not add a
new direct information leak, since the TSS is readable by Meltdown from the
cpu_entry_area alias regardless. It does allow a timing attack to locate
the percpu area, but KASLR is more or less a lost cause against local
attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned,
on current hardware, KASLR is only useful to mitigate remote attacks that
try to attack the kernel without first gaining RCE against a vulnerable
user process.
On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall
overhead from ~237ns to ~228ns.
There is a possible alternative approach: Move the trampoline within 2G of
the entry text and make a separate copy for each CPU. This would allow a
direct jump to rejoin the normal entry path. There are pro's and con's for
this approach:
+ It avoids a pipeline stall
- It executes from an extra page and read from another extra page during
the syscall. The latter is because it needs to use a relative
addressing mode to find sp1 -- it's the same *cacheline*, but accessed
using an alias, so it's an extra TLB entry.
- Slightly more memory. This would be one page per CPU for a simple
implementation and 64-ish bytes per CPU or one page per node for a more
complex implementation.
- More code complexity.
The current approach is chosen for simplicity and because the alternative
does not provide a significant benefit, which makes it worth.
[ tglx: Added the alternative discussion to the changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org
I use memcpy_flushcache() in my persistent memory driver for metadata
updates, there are many 8-byte and 16-byte updates and it turns out that
the overhead of memcpy_flushcache causes 2% performance degradation
compared to "movnti" instruction explicitly coded using inline assembler.
The tests were done on a Skylake processor with persistent memory emulated
using the "memmap" kernel parameter. dd was used to copy data to the
dm-writecache target.
This patch recognizes memcpy_flushcache calls with constant short length
and turns them into inline assembler - so that I don't have to use inline
assembler in the driver.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: device-mapper development <dm-devel@redhat.com>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1808081720460.24747@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Prevent multiplication result truncation on 32bit. Introduced with
the early timestamp reworrk.
- Ensure microcode revision storage to be consistent under all
circumstances
- Prevent write tearing of PTEs
- Prevent confusion of user and kernel reegisters when dumping fatal
signals verbosely
- Make an error return value in a failure path of the vector
allocation negative. Returning EINVAL might the caller assume
success and causes further wreckage.
- A trivial kernel doc warning fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Use WRITE_ONCE() when setting PTEs
x86/apic/vector: Make error return value negative
x86/process: Don't mix user/kernel regs in 64bit __show_regs()
x86/tsc: Prevent result truncation on 32bit
x86: Fix kernel-doc atomic.h warnings
x86/microcode: Update the new microcode revision unconditionally
x86/microcode: Make sure boot_cpu_data.microcode is up-to-date
When page-table entries are set, the compiler might optimize their
assignment by using multiple instructions to set the PTE. This might
turn into a security hazard if the user somehow manages to use the
interim PTE. L1TF does not make our lives easier, making even an interim
non-present PTE a security hazard.
Using WRITE_ONCE() to set PTEs and friends should prevent this potential
security hazard.
I skimmed the differences in the binary with and without this patch. The
differences are (obviously) greater when CONFIG_PARAVIRT=n as more
code optimizations are possible. For better and worse, the impact on the
binary with this patch is pretty small. Skimming the code did not cause
anything to jump out as a security hazard, but it seems that at least
move_soft_dirty_pte() caused set_pte_at() to use multiple writes.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180902181451.80520-1-namit@vmware.com
In the non-trampoline SYSCALL64 path, a percpu variable is used to
temporarily store the user RSP value.
Instead of a separate variable, use the otherwise unused sp2 slot in the
TSS. This will improve cache locality, as the sp1 slot is already used in
the same code to find the kernel stack. It will also simplify a future
change to make the non-trampoline path work in PTI mode.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/08e769a0023dbad4bac6f34f3631dbaf8ad59f4f.1536015544.git.luto@kernel.org
Dan Carpenter reported that the untrusted data returns from kvm_register_read()
results in the following static checker warning:
arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi()
error: buffer underflow 'map->phys_map' 's32min-s32max'
KVM guest can easily trigger this by executing the following assembly sequence
in Ring0:
mov $10, %rax
mov $0xFFFFFFFF, %rbx
mov $0xFFFFFFFF, %rdx
mov $0, %rsi
vmcall
As this will cause KVM to execute the following code-path:
vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi()
which will reach out-of-bounds access.
This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id,
ignoring destinations that are not present and delivering the rest. We also check
whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the
max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm
unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Add second "if (min > map->max_apic_id)" to complete the fix. -Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
- Fix a VFP corruption in 32-bit guest
- Add missing cache invalidation for CoW pages
- Two small cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJbkngmAAoJEEtpOizt6ddyeaoH/15bbGHlwWf23tGjSoDzhyD4
zAXfy+SJdm4cR8K7jEkVrNffkEMAby7Zl28hTHKB9jsY1K8DD+EuCE3Nd4kkVAsc
iHJwV4aiHil/zC5SyE0MqMzELeS8UhsxESYebG6yNF0ElQDQ0SG+QAFr47/OBN9S
u4I7x0rhyJP6Kg8z9U4KtEX0hM6C7VVunGWu44/xZSAecTaMuJnItCIM4UMdEkSs
xpAoI59lwM6BWrXLvEunekAkxEXoR7AVpQER2PDINoLK2I0i0oavhPim9Xdt2ZXs
rqQqfmwmPOVvYbexDp97JtfWo3/psGLqvgoK1tq9bzF3u6Y3ylnUK5IspyVYwuQ=
=TK8A
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.19-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
Fixes for KVM/ARM for Linux v4.19 v2:
- Fix a VFP corruption in 32-bit guest
- Add missing cache invalidation for CoW pages
- Two small cleanups
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to
deal with. Drop the now obsolete code.
Fixes: fb1522e099 ("KVM: update to new mmu_notifier semantic v2")
Cc: James Hogan <jhogan@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
The PARAVIRT_XXL changes introduced a redefinition of SAVE_FLAGS under
certain configurations. Cure it
Fixes: 6da63eb241 ("x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella").
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180905053720.13710-1-jgross@suse.com
When the kernel.print-fatal-signals sysctl has been enabled, a simple
userspace crash will cause the kernel to write a crash dump that contains,
among other things, the kernel gsbase into dmesg.
As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE
in this case.
This also moves the bitness-specific logic from show_regs() into
process_{32,64}.c.
Fixes: 45807a1df9 ("vdso: print fatal signals")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com
This is preparation for looking at trap number and fault address in the
handlers for uaccess errors. No functional change.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-kernel@vger.kernel.org
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-6-jannh@google.com
Currently, most fixups for attempting to access userspace memory are
handled using _ASM_EXTABLE, which is also used for various other types of
fixups (e.g. safe MSR access, IRET failures, and a bunch of other things).
In order to make it possible to add special safety checks to uaccess fixups
(in particular, checking whether the fault address is actually in
userspace), introduce a new exception table handler ex_handler_uaccess()
and wire it up to all the user access fixups (excluding ones that
already use _ASM_EXTABLE_EX).
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-5-jannh@google.com
Fix kernel-doc warnings in arch/x86/include/asm/atomic.h that are caused by
having a #define macro between the kernel-doc notation and the function
name. Fixed by moving the #define macro to after the function
implementation.
Make the same change for atomic64_{32,64}.h for consistency even though
there were no kernel-doc warnings found in these header files, but there
would be if they were used in generation of documentation.
Fixes these kernel-doc warnings:
../arch/x86/include/asm/atomic.h:84: warning: Excess function parameter 'i' description in 'arch_atomic_sub_and_test'
../arch/x86/include/asm/atomic.h:84: warning: Excess function parameter 'v' description in 'arch_atomic_sub_and_test'
../arch/x86/include/asm/atomic.h:96: warning: Excess function parameter 'v' description in 'arch_atomic_inc'
../arch/x86/include/asm/atomic.h:109: warning: Excess function parameter 'v' description in 'arch_atomic_dec'
../arch/x86/include/asm/atomic.h:124: warning: Excess function parameter 'v' description in 'arch_atomic_dec_and_test'
../arch/x86/include/asm/atomic.h:138: warning: Excess function parameter 'v' description in 'arch_atomic_inc_and_test'
../arch/x86/include/asm/atomic.h:153: warning: Excess function parameter 'i' description in 'arch_atomic_add_negative'
../arch/x86/include/asm/atomic.h:153: warning: Excess function parameter 'v' description in 'arch_atomic_add_negative'
Fixes: 18cc1814d4 ("atomics/treewide: Make test ops optional")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/0a1e678d-c8c5-b32c-2640-ed4e94d399d2@infradead.org
Pull x86 fixes from Thomas Gleixner:
"Speculation:
- Make the microcode check more robust
- Make the L1TF memory limit depend on the internal cache physical
address space and not on the CPUID advertised physical address
space, which might be significantly smaller. This avoids disabling
L1TF on machines which utilize the full physical address space.
- Fix the GDT mapping for EFI calls on 32bit PTI
- Fix the MCE nospec implementation to prevent #GP
Fixes and robustness:
- Use the proper operand order for LSL in the VDSO
- Prevent NMI uaccess race against CR3 switching
- Add a lockdep check to verify that text_mutex is held in
text_poke() functions
- Repair the fallout of giving native_restore_fl() a prototype
- Prevent kernel memory dumps based on usermode RIP
- Wipe KASAN shadow stack before rewinding the stack to prevent false
positives
- Move the AMS GOTO enforcement to the actual build stage to allow
user API header extraction without a compiler
- Fix a section mismatch introduced by the on demand VDSO mapping
change
Miscellaneous:
- Trivial typo, GCC quirk removal and CC_SET/OUT() cleanups"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pti: Fix section mismatch warning/error
x86/vdso: Fix lsl operand order
x86/mce: Fix set_mce_nospec() to avoid #GP fault
x86/efi: Load fixmap GDT in efi_call_phys_epilog()
x86/nmi: Fix NMI uaccess race against CR3 switching
x86: Allow generating user-space headers without a compiler
x86/dumpstack: Don't dump kernel memory based on usermode RIP
x86/asm: Use CC_SET()/CC_OUT() in __gen_sigismember()
x86/alternatives: Lockdep-enforce text_mutex in text_poke*()
x86/entry/64: Wipe KASAN stack shadow before rewind_stack_do_exit()
x86/irqflags: Mark native_restore_fl extern inline
x86/build: Remove jump label quirk for GCC older than 4.5.2
x86/Kconfig: Fix trivial typo
x86/speculation/l1tf: Increase l1tf memory limit for Nehalem+
x86/spectre: Add missing family 6 check to microcode check
In the __getcpu function, lsl is using the wrong target and destination
registers. Luckily, the compiler tends to choose %eax for both variables,
so it has been working so far.
Fixes: a582c540ac ("x86/vdso: Use RDPID in preference to LSL when available")
Signed-off-by: Samuel Neves <sneves@dei.uc.pt>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180901201452.27828-1-sneves@dei.uc.pt
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW4lM6AAKCRCAXGG7T9hj
vs8AAQDysFccg97UdopW3B7yklIaRqkfEIAsxe65f191MXsH2AEAp5SKxZqRPqBP
a9WHDj8ShB3BhZ/IxpdO9Y59U3Jo4wA=
=Gt4c
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
- minor cleanup avoiding a warning when building with new gcc
- a patch to add a new sysfs node for Xen frontend/backend drivers to
make it easier to obtain the state of a pv device
- two fixes for 32-bit pv-guests to avoid intermediate L1TF vulnerable
PTEs
* tag 'for-linus-4.19b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/xen: remove redundant variable save_pud
xen: export device state to sysfs
x86/pae: use 64 bit atomic xchg function in native_ptep_get_and_clear
x86/xen: don't write ptes directly in 32-bit PV guests
A NMI can hit in the middle of context switching or in the middle of
switch_mm_irqs_off(). In either case, CR3 might not match current->mm,
which could cause copy_from_user_nmi() and friends to read the wrong
memory.
Fix it by adding a new nmi_uaccess_okay() helper and checking it in
copy_from_user_nmi() and in __copy_from_user_nmi()'s callers.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/dd956eba16646fd0b15c3c0741269dfd84452dac.1535557289.git.luto@kernel.org
show_opcodes() is used both for dumping kernel instructions and for dumping
user instructions. If userspace causes #PF by jumping to a kernel address,
show_opcodes() can be reached with regs->ip controlled by the user,
pointing to kernel code. Make sure that userspace can't trick us into
dumping kernel memory into dmesg.
Fixes: 7cccf0725c ("x86/dumpstack: Add a show_ip() function")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180828154901.112726-1-jannh@google.com
Allowing x86_emulate_instruction() to be called directly has led to
subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE
in the emulation type. While most of the blame lies on re-execute
being opt-out, exporting x86_emulate_instruction() also exposes its
cr2 parameter, which may have contributed to commit d391f12070
("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO
when running nested") using x86_emulate_instruction() instead of
emulate_instruction() because "hey, I have a cr2!", which in turn
introduced its EMULTYPE_NO_REEXECUTE bug.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Lack of the kvm_ prefix gives the impression that it's a VMX or SVM
specific function, and there's no conflict that prevents adding the
kvm_ prefix.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
retry_instruction() and reexecute_instruction() are a package deal,
i.e. there is no scenario where one is allowed and the other is not.
Merge their controlling emulation type flags to enforce this in code.
Name the combined flag EMULTYPE_ALLOW_RETRY to make it abundantly
clear that we are allowing re{try,execute} to occur, as opposed to
explicitly requesting retry of a previously failed instruction.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Re-execution of an instruction after emulation decode failure is
intended to be used only when emulating shadow page accesses. Invert
the flag to make allowing re-execution opt-in since that behavior is
by far in the minority.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Re-execution after an emulation decode failure is only intended to
handle a case where two or vCPUs race to write a shadowed page, i.e.
we should never re-execute an instruction as part of RSM emulation.
Add a new helper, kvm_emulate_instruction_from_buffer(), to support
emulating from a pre-defined buffer. This eliminates the last direct
call to x86_emulate_instruction() outside of kvm_mmu_page_fault(),
which means x86_emulate_instruction() can be unexported in a future
patch.
Fixes: 7607b71744 ("KVM: SVM: install RSM intercept")
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This should have been marked extern inline in order to pick up the out
of line definition in arch/x86/kernel/irqflags.S.
Fixes: 208cbb3255 ("x86/irqflags: Provide a declaration for native_save_fl")
Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180827214011.55428-1-ndesaulniers@google.com
After changing over to 64-bit time_t syscalls, many architectures will
want compat_sys_utimensat() but not respective handlers for utime(),
utimes() and futimesat(). This adds a new __ARCH_WANT_SYS_UTIME32 to
complement __ARCH_WANT_SYS_UTIME. For now, all 64-bit architectures that
support CONFIG_COMPAT set it, but future 64-bit architectures will not
(tile would not have needed it either, but got removed).
As older 32-bit architectures get converted to using CONFIG_64BIT_TIME,
they will have to use __ARCH_WANT_SYS_UTIME32 instead of
__ARCH_WANT_SYS_UTIME. Architectures using the generic syscall ABI don't
need either of them as they never had a utime syscall.
Since the compat_utimbuf structure is now required outside of
CONFIG_COMPAT, I'm moving it into compat_time.h.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
---
changed from last version:
- renamed __ARCH_WANT_COMPAT_SYS_UTIME to __ARCH_WANT_SYS_UTIME32
The sys_llseek sytem call is needed on all 32-bit architectures and
none of the 64-bit ones, so we can remove the __ARCH_WANT_SYS_LLSEEK guard
and simplify the include/asm-generic/unistd.h header further.
Since 32-bit tasks can run either natively or in compat mode on 64-bit
architectures, we have to check for both !CONFIG_64BIT and CONFIG_COMPAT.
There are a few 64-bit architectures that also reference sys_llseek
in their 64-bit ABI (e.g. sparc), but I verified that those all
select CONFIG_COMPAT, so the #if check is still correct here. It's
a bit odd to include it in the syscall table though, as it's the
same as sys_lseek() on 64-bit, but with strange calling conventions.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
While converting compat system call handlers to work on 32-bit
architectures, I found a number of types used in those handlers
that are identical between all architectures.
Let's move all the identical ones into asm-generic/compat.h to avoid
having to add even more identical definitions of those types.
For unknown reasons, mips defines __compat_gid32_t, __compat_uid32_t
and compat_caddr_t as signed, while all others have them unsigned.
This seems to be a mistake, but I'm leaving it alone here. The other
types all differ by size or alignment on at least on architecture.
compat_aio_context_t is currently defined in linux/compat.h but
also needed for compat_sys_io_getevents(), so let's move it into
the same place.
While we still have not decided whether the 32-bit time handling
will always use the compat syscalls, or in which form, I think this
is a useful cleanup that we can merge regardless.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
We have four generations of stat() syscalls:
- the oldstat syscalls that are only used on the older architectures
- the newstat family that is used on all 64-bit architectures but
lacked support for large files on 32-bit architectures.
- the stat64 family that is used mostly on 32-bit architectures to
replace newstat
- statx() to replace all of the above, adding 64-bit timestamps among
other things.
We already compile stat64 only on those architectures that need it,
but newstat is always built, including on those that don't reference
it. This adds a new __ARCH_WANT_NEW_STAT symbol along the lines of
__ARCH_WANT_OLD_STAT and __ARCH_WANT_STAT64 to control compilation of
newstat. All architectures that need it use an explict define, the
others now get a little bit smaller, and future architecture (including
64-bit targets) won't ever see it.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Using only 32-bit writes for the pte will result in an intermediate
L1TF vulnerable PTE. When running as a Xen PV guest this will at once
switch the guest to shadow mode resulting in a loss of performance.
Use arch_atomic64_xchg() instead which will perform the requested
operation atomically with all 64 bits.
Some performance considerations according to:
https://software.intel.com/sites/default/files/managed/ad/dc/Intel-Xeon-Scalable-Processor-throughput-latency.pdf
The main number should be the latency, as there is no tight loop around
native_ptep_get_and_clear().
"lock cmpxchg8b" has a latency of 20 cycles, while "lock xchg" (with a
memory operand) isn't mentioned in that document. "lock xadd" (with xadd
having 3 cycles less latency than xchg) has a latency of 11, so we can
assume a latency of 14 for "lock xchg".
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Tested-by: Jason Andryuk <jandryuk@gmail.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
On Nehalem and newer core CPUs the CPU cache internally uses 44 bits
physical address space. The L1TF workaround is limited by this internal
cache address width, and needs to have one bit free there for the
mitigation to work.
Older client systems report only 36bit physical address space so the range
check decides that L1TF is not mitigated for a 36bit phys/32GB system with
some memory holes.
But since these actually have the larger internal cache width this warning
is bogus because it would only really be needed if the system had more than
43bits of memory.
Add a new internal x86_cache_bits field. Normally it is the same as the
physical bits field reported by CPUID, but for Nehalem and newerforce it to
be at least 44bits.
Change the L1TF memory size warning to use the new cache_bits field to
avoid bogus warnings and remove the bogus comment about memory size.
Fixes: 17dbca1193 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Reported-by: George Anchev <studio@anchev.net>
Reported-by: Christopher Snowhill <kode54@gmail.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Michael Hocko <mhocko@suse.com>
Cc: vbabka@suse.cz
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180824170351.34874-1-andi@firstfloor.org
Pull x86 fixes from Thomas Gleixner:
- Correct the L1TF fallout on 32bit and the off by one in the 'too much
RAM for protection' calculation.
- Add a helpful kernel message for the 'too much RAM' case
- Unbreak the VDSO in case that the compiler desides to use indirect
jumps/calls and emits retpolines which cannot be resolved because the
kernel uses its own thunks, which does not work for the VDSO. Make it
use the builtin thunks.
- Re-export start_thread() which was unexported when the 32/64bit
implementation was unified. start_thread() is required by modular
binfmt handlers.
- Trivial cleanups
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/l1tf: Suggest what to do on systems with too much RAM
x86/speculation/l1tf: Fix off-by-one error when warning that system has too much RAM
x86/kvm/vmx: Remove duplicate l1d flush definitions
x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bit
x86/process: Re-export start_thread()
x86/mce: Add notifier_block forward declaration
x86/vdso: Fix vDSO build if a retpoline is emitted
* memory_failure() gets confused by dev_pagemap backed mappings. The
recovery code has specific enabling for several possible page states
that needs new enabling to handle poison in dax mappings. Teach
memory_failure() about ZONE_DEVICE pages.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT
OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc
75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI
5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM
BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+
3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9
F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6
T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ
MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA
oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7
/kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c
nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0=
=Ftop
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm memory-failure update from Dave Jiang:
"As it stands, memory_failure() gets thoroughly confused by dev_pagemap
backed mappings. The recovery code has specific enabling for several
possible page states and needs new enabling to handle poison in dax
mappings.
In order to support reliable reverse mapping of user space addresses:
1/ Add new locking in the memory_failure() rmap path to prevent races
that would typically be handled by the page lock.
2/ Since dev_pagemap pages are hidden from the page allocator and the
"compound page" accounting machinery, add a mechanism to determine
the size of the mapping that encompasses a given poisoned pfn.
3/ Given pmem errors can be repaired, change the speculatively
accessed poison protection, mce_unmap_kpfn(), to be reversible and
otherwise allow ongoing access from the kernel.
A side effect of this enabling is that MADV_HWPOISON becomes usable
for dax mappings, however the primary motivation is to allow the
system to survive userspace consumption of hardware-poison via dax.
Specifically the current behavior is:
mce: Uncorrected hardware memory error in user-access at af34214200
{1}[Hardware Error]: It has been corrected by h/w and requires no further action
mce: [Hardware Error]: Machine check events logged
{1}[Hardware Error]: event severity: corrected
Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
[..]
Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
mce: Memory error not recovered
<reboot>
...and with these changes:
Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000
Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption
Memory failure: 0x20cb00: recovery action for dax page: Recovered
Given all the cross dependencies I propose taking this through
nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax
folks"
* tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm, pmem: Restore page attributes when clearing errors
x86/memory_failure: Introduce {set, clear}_mce_nospec()
x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses
mm, memory_failure: Teach memory_failure() about dev_pagemap pages
filesystem-dax: Introduce dax_lock_mapping_entry()
mm, memory_failure: Collect mapping size in collect_procs()
mm, madvise_inject_error: Let memory_failure() optionally take a page reference
mm, dev_pagemap: Do not clear ->mapping on final put
mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
filesystem-dax: Set page->index
device-dax: Set page->index
device-dax: Enable page_mapping()
device-dax: Convert to vmf_insert_mixed and vm_fault_t
Including:
- PASID table handling updates for the Intel VT-d driver. It
implements a global PASID space now so that applications
usings multiple devices will just have one PASID.
- A new config option to make iommu passthroug mode the default.
- New sysfs attribute for iommu groups to export the type of the
default domain.
- A debugfs interface (for debug only) usable by IOMMU drivers
to export internals to user-space.
- R-Car Gen3 SoCs support for the ipmmu-vmsa driver
- The ARM-SMMU now aborts transactions from unknown devices and
devices not attached to any domain.
- Various cleanups and smaller fixes all over the place.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJbf/9wAAoJECvwRC2XARrjcuYP/3dIsOFN7Xb4sTOB5wxk4wmD
2Rm5o/18cFekEy4M8fwIBCYkzH/McohgKbOFcH6XiCxIwJ5RdXzITLAwmp4PbvIO
KtwppXSp+MQtboip/bp6NDNBhABErgUtgdXawwENCCrFivXDsB8W4wnXESAOkLv9
4fLXrUgDFCAquLZpLqQobXHhajtGAkSekaasphlhejXFulFyF1YcEUcliU7eXZ0R
rZjL4Zqcyyi5kv6d3WhL+tvmmhr7wfMsMPaW18eRf9tXvMpWRM2GOAj65coI2AWs
1T1kW/jvvrxnewOsmo1nYlw7R07uiRkUfHmJ9tY65xW4120HJFhdFLPUQZXfrX/b
wcGbheYIh6cwAaZBtPJ35bPeW6pREkDOShohbzt45T62Q837cBkr3zyHhNsoOXHS
13YVtTd2vtPa4iLdu2qmEOC1OuhQnMvqHqX0iN8U74QbDxEYYvMfAdx0JL3hmPp/
uynY3QmXIKCeZg+vH2qcWHm07nfaAr5y8WSPA0crnqeznD5zJ4kvJf5dFGmDyTKr
pyTkhidkifm6ZejrJsDZveoZdLpHrOatrqKaoLFh2crMUG3d807NYqQ3JmA3NDjg
zPbYyU4joFGNVjd3XkSnRTGxR6YvLIwNbkQ3b/K/B5AqWJ6VrTbbTCOa4GSms6rF
Qm8wRrmYaycKxkcMqtls
=TeYQ
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
- PASID table handling updates for the Intel VT-d driver. It implements
a global PASID space now so that applications usings multiple devices
will just have one PASID.
- A new config option to make iommu passthroug mode the default.
- New sysfs attribute for iommu groups to export the type of the
default domain.
- A debugfs interface (for debug only) usable by IOMMU drivers to
export internals to user-space.
- R-Car Gen3 SoCs support for the ipmmu-vmsa driver
- The ARM-SMMU now aborts transactions from unknown devices and devices
not attached to any domain.
- Various cleanups and smaller fixes all over the place.
* tag 'iommu-updates-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (42 commits)
iommu/omap: Fix cache flushes on L2 table entries
iommu: Remove the ->map_sg indirection
iommu/arm-smmu-v3: Abort all transactions if SMMU is enabled in kdump kernel
iommu/arm-smmu-v3: Prevent any devices access to memory without registration
iommu/ipmmu-vmsa: Don't register as BUS IOMMU if machine doesn't have IPMMU-VMSA
iommu/ipmmu-vmsa: Clarify supported platforms
iommu/ipmmu-vmsa: Fix allocation in atomic context
iommu: Add config option to set passthrough as default
iommu: Add sysfs attribyte for domain type
iommu/arm-smmu-v3: sync the OVACKFLG to PRIQ consumer register
iommu/arm-smmu: Error out only if not enough context interrupts
iommu/io-pgtable-arm-v7s: Abort allocation when table address overflows the PTE
iommu/io-pgtable-arm: Fix pgtable allocation in selftest
iommu/vt-d: Remove the obsolete per iommu pasid tables
iommu/vt-d: Apply per pci device pasid table in SVA
iommu/vt-d: Allocate and free pasid table
iommu/vt-d: Per PCI device pasid table interfaces
iommu/vt-d: Add for_each_device_domain() helper
iommu/vt-d: Move device_domain_info to header
iommu/vt-d: Apply global PASID in SVA
...
Two users have reported [1] that they have an "extremely unlikely" system
with more than MAX_PA/2 memory and L1TF mitigation is not effective. In
fact it's a CPU with 36bits phys limit (64GB) and 32GB memory, but due to
holes in the e820 map, the main region is almost 500MB over the 32GB limit:
[ 0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000081effffff] usable
Suggestions to use 'mem=32G' to enable the L1TF mitigation while losing the
500MB revealed, that there's an off-by-one error in the check in
l1tf_select_mitigation().
l1tf_pfn_limit() returns the last usable pfn (inclusive) and the range
check in the mitigation path does not take this into account.
Instead of amending the range check, make l1tf_pfn_limit() return the first
PFN which is over the limit which is less error prone. Adjust the other
users accordingly.
[1] https://bugzilla.suse.com/show_bug.cgi?id=1105536
Fixes: 17dbca1193 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Reported-by: George Anchev <studio@anchev.net>
Reported-by: Christopher Snowhill <kode54@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180823134418.17008-1-vbabka@suse.cz
Merge fixes for missing TLB shootdowns.
This fixes a couple of cases that involved us possibly freeing page
table structures before the required TLB shootdown had been done.
There are a few cleanup patches to make the code easier to follow, and
to avoid some of the more problematic cases entirely when not necessary.
To make this easier for backports, it undoes the recent lazy TLB
patches, because the cleanups and fixes are more important, and Rik is
ok with re-doing them later when things have calmed down.
The missing TLB flush was only delayed, and the wrong ordering only
happened under memory pressure (and in theory under a couple of other
fairly theoretical situations), so this may have been all very unlikely
to have hit people in practice.
But getting the TLB shootdown wrong is _so_ hard to debug and see that I
consider this a crticial fix.
Many thanks to Jann Horn for having debugged this.
* tlb-fixes:
x86/mm: Only use tlb_remove_table() for paravirt
mm: mmu_notifier fix for tlb_end_vma
mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE
mm/tlb: Remove tlb_remove_table() non-concurrent condition
mm: move tlb_table_flush to tlb_flush_mmu_free
x86/mm/tlb: Revert the recent lazy TLB patches
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW36rRgAKCRCAXGG7T9hj
vkrcAQC8F+ljGO5PtYUkKcMy17vqvcq/BdetJuUVfk+G1WmLxQEAiaNiqqJGsOyJ
Msa0HHDT31uBYGg/iq7yAWk23tcTZwE=
=Px4D
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19b-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes and cleanups from Juergen Gross:
"Some cleanups, some minor fixes and a fix for a bug introduced in this
merge window hitting 32-bit PV guests"
* tag 'for-linus-4.19b-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/xen: enable early use of set_fixmap in 32-bit Xen PV guest
xen: remove unused hypercall functions
x86/xen: remove unused function xen_auto_xlated_memory_setup()
xen/ACPI: don't upload Px/Cx data for disabled processors
x86/Xen: further refine add_preferred_console() invocations
xen/mcelog: eliminate redundant setting of interface version
x86/Xen: mark xen_setup_gdt() __init
If we don't use paravirt; don't play unnecessary and complicated games
to free page-tables.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commits:
95b0e6357d x86/mm/tlb: Always use lazy TLB mode
64482aafe5 x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
ac03158969 x86/mm/tlb: Make lazy TLB mode lazier
61d0beb579 x86/mm/tlb: Restructure switch_mm_irqs_off()
2ff6ddf19c x86/mm/tlb: Leave lazy TLB mode at page table free time
In order to simplify the TLB invalidate fixes for x86 and unify the
parts that need backporting. We'll try again later.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
optimizations for ARMv8.4 systems, Userspace interface for RAS, Fault
path optimization, Emulated physical timer fixes, Random cleanups
x86: fixes for L1TF, a new test case, non-support for SGX (inject the
right exception in the guest), a lockdep false positive
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbfXfZAAoJEL/70l94x66DL2QH/RnQZW4OaqVdE3pNvRvaNJGQ
41yk9aErbqPcK25aIKnhs9e3S+e32BhArA1YBwdHXwwuanANYv5W+o3HNTL0UFj7
UG6APKm5DR6kJeUZ3vCfyeZ/ZKxDW0uqf5DXQyHUiAhwLGw2wWYJ9Ttv0m0Q4Fxl
x9HEnK/s+komG93QT+2hIXtZdPiB026yBBqDDPyYiWrweyBagYUHz65p6qaPiOEY
HqOyLYKsgrqCv9U0NLTD9U54IWGFIaxMGgjyRdZTMCIQeGj6dAH7vyfURGOeDHvw
C0OZeEKRbMsHLwzXRBDEZp279pYgS7zafe/hMkr/znaac+j6xNwxpWwqg5Sm0UE=
=5yTH
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull second set of KVM updates from Paolo Bonzini:
"ARM:
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
x86:
- fixes for L1TF
- a new test case
- non-support for SGX (inject the right exception in the guest)
- fix lockdep false positive"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (49 commits)
KVM: VMX: fixes for vmentry_l1d_flush module parameter
kvm: selftest: add dirty logging test
kvm: selftest: pass in extra memory when create vm
kvm: selftest: include the tools headers
kvm: selftest: unify the guest port macros
tools: introduce test_and_clear_bit
KVM: x86: SVM: Call x86_spec_ctrl_set_guest/host() with interrupts disabled
KVM: vmx: Inject #UD for SGX ENCLS instruction in guest
KVM: vmx: Add defines for SGX ENCLS exiting
x86/kvm/vmx: Fix coding style in vmx_setup_l1d_flush()
x86: kvm: avoid unused variable warning
KVM: Documentation: rename the capability of KVM_CAP_ARM_SET_SERROR_ESR
KVM: arm/arm64: Skip updating PTE entry if no change
KVM: arm/arm64: Skip updating PMD entry if no change
KVM: arm: Use true and false for boolean values
KVM: arm/arm64: vgic: Do not use spin_lock_irqsave/restore with irq disabled
KVM: arm/arm64: vgic: Move DEBUG_SPINLOCK_BUG_ON to vgic.h
KVM: arm: vgic-v3: Add support for ICC_SGI0R and ICC_ASGI1R accesses
KVM: arm64: vgic-v3: Add support for ICC_SGI0R_EL1 and ICC_ASGI1R_EL1 accesses
KVM: arm/arm64: vgic-v3: Add core support for Group0 SGIs
...
An ordinary arm64 defconfig build has ~64 KB worth of __ksymtab entries,
each consisting of two 64-bit fields containing absolute references, to
the symbol itself and to a char array containing its name, respectively.
When we build the same configuration with KASLR enabled, we end up with an
additional ~192 KB of relocations in the .init section, i.e., one 24 byte
entry for each absolute reference, which all need to be processed at boot
time.
Given how the struct kernel_symbol that describes each entry is completely
local to module.c (except for the references emitted by EXPORT_SYMBOL()
itself), we can easily modify it to contain two 32-bit relative references
instead. This reduces the size of the __ksymtab section by 50% for all
64-bit architectures, and gets rid of the runtime relocations entirely for
architectures implementing KASLR, either via standard PIE linking (arm64)
or using custom host tools (x86).
Note that the binary search involving __ksymtab contents relies on each
section being sorted by symbol name. This is implemented based on the
input section names, not the names in the ksymtab entries, so this patch
does not interfere with that.
Given that the use of place-relative relocations requires support both in
the toolchain and in the module loader, we cannot enable this feature for
all architectures. So make it dependent on whether
CONFIG_HAVE_ARCH_PREL32_RELOCATIONS is defined.
Link: http://lkml.kernel.org/r/20180704083651.24360-4-ard.biesheuvel@linaro.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morris <james.morris@microsoft.com>
Cc: James Morris <jmorris@namei.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hardware support for basic SGX virtualization adds a new execution
control (ENCLS_EXITING), VMCS field (ENCLS_EXITING_BITMAP) and exit
reason (ENCLS), that enables a VMM to intercept specific ENCLS leaf
functions, e.g. to inject faults when the VMM isn't exposing SGX to
a VM. When ENCLS_EXITING is enabled, the VMM can set/clear bits in
the bitmap to intercept/allow ENCLS leaf functions in non-root, e.g.
setting bit 2 in the ENCLS_EXITING_BITMAP will cause ENCLS[EINIT]
to VMExit(ENCLS).
Note: EXIT_REASON_ENCLS was previously added by commit 1f51999270
("KVM: VMX: add missing exit reasons").
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20180814163334.25724-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove Xen hypercall functions which are used nowhere in the kernel.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Currently memory_failure() returns zero if the error was handled. On
that result mce_unmap_kpfn() is called to zap the page out of the kernel
linear mapping to prevent speculative fetches of potentially poisoned
memory. However, in the case of dax mapped devmap pages the page may be
in active permanent use by the device driver, so it cannot be unmapped
from the kernel.
Instead of marking the page not present, marking the page UC should
be sufficient for preventing poison from being pre-fetched into the
cache. Convert mce_unmap_pfn() to set_mce_nospec() remapping the page as
UC, to hide it from speculative accesses.
Given that that persistent memory errors can be cleared by the driver,
include a facility to restore the page to cacheable operation,
clear_mce_nospec().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: <linux-edac@vger.kernel.org>
Cc: <x86@kernel.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
On 32bit PAE kernels on 64bit hardware with enough physical bits,
l1tf_pfn_limit() will overflow unsigned long. This in turn affects
max_swapfile_size() and can lead to swapon returning -EINVAL. This has been
observed in a 32bit guest with 42 bits physical address size, where
max_swapfile_size() overflows exactly to 1 << 32, thus zero, and produces
the following warning to dmesg:
[ 6.396845] Truncating oversized swap area, only using 0k out of 2047996k
Fix this by using unsigned long long instead.
Fixes: 17dbca1193 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Fixes: 377eeaa8e1 ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2")
Reported-by: Dominique Leuenberger <dimstar@suse.de>
Reported-by: Adrian Schroeter <adrian@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180820095835.5298-1-vbabka@suse.cz
Without linux/irq.h, there is no declaration of notifier_block, leading to
a build warning:
In file included from arch/x86/kernel/cpu/mcheck/threshold.c:10:
arch/x86/include/asm/mce.h:151:46: error: 'struct notifier_block' declared inside parameter list will not be visible outside of this definition or declaration [-Werror]
It's sufficient to declare the struct tag here, which avoids pulling in
more header files.
Fixes: 447ae31667 ("x86: Don't include linux/irq.h from asm/hardirq.h")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Nicolai Stange <nstange@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20180817100156.3009043-1-arnd@arndb.de
For x86 this brings in PCID emulation and CR3 caching for shadow page
tables, nested VMX live migration, nested VMCS shadowing, an optimized
IPI hypercall, and some optimizations.
ARM will come next week.
There is a semantic conflict because tip also added an .init_platform
callback to kvm.c. Please keep the initializer from this branch,
and add a call to kvmclock_init (added by tip) inside kvm_init_platform
(added here).
Also, there is a backmerge from 4.18-rc6. This is because of a
refactoring that conflicted with a relatively late bugfix and
resulted in a particularly hellish conflict. Because the conflict
was only due to unfortunate timing of the bugfix, I backmerged and
rebased the refactoring rather than force the resolution on you.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
=9Mgw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level
hardware bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of
the crazy out-of-tree drivers that have been floating around
for years, combined with some really hacky userspace
implementations. This is only for GNSS receivers, but you
have to start somewhere, and this is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and existing
drivers.
Full details of everything is in the shortlog.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCW3g7ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykfBgCeOG0RkSI92XVZe0hs/QYFW9kk8JYAnRBf3Qpm
cvW7a+McOoKz/MGmEKsi
=TNfn
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level hardware
bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of the
crazy out-of-tree drivers that have been floating around for years,
combined with some really hacky userspace implementations. This is
only for GNSS receivers, but you have to start somewhere, and this
is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and
existing drivers.
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (255 commits)
android: binder: Rate-limit debug and userspace triggered err msgs
fsi: sbefifo: Bump max command length
fsi: scom: Fix NULL dereference
misc: mic: SCIF Fix scif_get_new_port() error handling
misc: cxl: changed asterisk position
genwqe: card_base: Use true and false for boolean values
misc: eeprom: assignment outside the if statement
uio: potential double frees if __uio_register_device() fails
eeprom: idt_89hpesx: clean up an error pointer vs NULL inconsistency
misc: ti-st: Fix memory leak in the error path of probe()
android: binder: Show extra_buffers_size in trace
firmware: vpd: Fix section enabled flag on vpd_section_destroy
platform: goldfish: Retire pdev_bus
goldfish: Use dedicated macros instead of manual bit shifting
goldfish: Add missing includes to goldfish.h
mux: adgs1408: new driver for Analog Devices ADGS1408/1409 mux
dt-bindings: mux: add adi,adgs1408
Drivers: hv: vmbus: Cleanup synic memory free path
Drivers: hv: vmbus: Remove use of slow_virt_to_phys()
Drivers: hv: vmbus: Reset the channel callback in vmbus_onoffer_rescind()
...
It turns out that we should *not* invert all not-present mappings,
because the all zeroes case is obviously special.
clear_page() does not undergo the XOR logic to invert the address bits,
i.e. PTE, PMD and PUD entries that have not been individually written
will have val=0 and so will trigger __pte_needs_invert(). As a result,
{pte,pmd,pud}_pfn() will return the wrong PFN value, i.e. all ones
(adjusted by the max PFN mask) instead of zero. A zeroed entry is ok
because the page at physical address 0 is reserved early in boot
specifically to mitigate L1TF, so explicitly exempt them from the
inversion when reading the PFN.
Manifested as an unexpected mprotect(..., PROT_NONE) failure when called
on a VMA that has VM_PFNMAP and was mmap'd to as something other than
PROT_NONE but never used. mprotect() sends the PROT_NONE request down
prot_none_walk(), which walks the PTEs to check the PFNs.
prot_none_pte_entry() gets the bogus PFN from pte_pfn() and returns
-EACCES because it thinks mprotect() is trying to adjust a high MMIO
address.
[ This is a very modified version of Sean's original patch, but all
credit goes to Sean for doing this and also pointing out that
sometimes the __pte_needs_invert() function only gets the protection
bits, not the full eventual pte. But zero remains special even in
just protection bits, so that's ok. - Linus ]
Fixes: f22cc87f6c ("x86/speculation/l1tf: Invert all not present mappings")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAlt1f9AUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxbdhAArnhRvkwOk4m4/LCuKF6HpmlxbBNC
TjnBCenNf+lFXzWskfDFGFl/Wif4UzGbRTSCNQrwMzj3Ww3f/6R2QIq9rEJvyNC4
VdxQnaBEZSUgN87q5UGqgdjMTo3zFvlFH6fpb5XDiQ5IX/QZeXeYqoB64w+HvKPU
M+IsoOvnA5gb7pMcpchrGUnSfS1e6AqQbbTt6tZflore6YCEA4cH5OnpGx8qiZIp
ut+CMBvQjQB01fHeBc/wGrVte4NwXdONrXqpUb4sHF7HqRNfEh0QVyPhvebBi+k1
kquqoBQfPFTqgcab31VOcQhg70dEx+1qGm5/YBAwmhCpHR/g2gioFXoROsr+iUOe
BtF6LZr+Y8cySuhJnkCrJBqWvvBaKbJLg0KMbI+7p4o9MZpod2u7LS5LFrlRDyKW
3nz3o+b1+v3tCCKVKIhKo0ljolgkweQtR1f6KIHvq93wBODHVQnAOt9NlPfHVyks
ryGBnOhMjoU5hvfexgIWFk9Ph9MEVQSffkI+TeFPO/tyGBfGfQyGtESiXuEaMQaH
FGdZHX2RLkY3pWHOtWeMzRHzOnr2XjpDFcAqL3HBGPdJ30K3Umv3WOgoFe2SaocG
0gaddPjKSwwM4Sa/VP+O5cjGuzi7QnczSDdpYjxIGZzBav32hqx4/rsnLw7bHH8y
XkEme7cYJc8MGsA=
=2Dmn
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
- Decode AER errors with names similar to "lspci" (Tyler Baicar)
- Expose AER statistics in sysfs (Rajat Jain)
- Clear AER status bits selectively based on the type of recovery (Oza
Pawandeep)
- Honor "pcie_ports=native" even if HEST sets FIRMWARE_FIRST (Alexandru
Gagniuc)
- Don't clear AER status bits if we're using the "Firmware-First"
strategy where firmware owns the registers (Alexandru Gagniuc)
- Use sysfs_match_string() to simplify ASPM sysfs parsing (Andy
Shevchenko)
- Remove unnecessary includes of <linux/pci-aspm.h> (Bjorn Helgaas)
- Defer DPC event handling to work queue (Keith Busch)
- Use threaded IRQ for DPC bottom half (Keith Busch)
- Print AER status while handling DPC events (Keith Busch)
- Work around IDT switch ACS Source Validation erratum (James
Puthukattukaran)
- Emit diagnostics for all cases of PCIe Link downtraining (Links
operating slower than they're capable of) (Alexandru Gagniuc)
- Skip VFs when configuring Max Payload Size (Myron Stowe)
- Reduce Root Port Max Payload Size if necessary when hot-adding a
device below it (Myron Stowe)
- Simplify SHPC existence/permission checks (Bjorn Helgaas)
- Remove hotplug sample skeleton driver (Lukas Wunner)
- Convert pciehp to threaded IRQ handling (Lukas Wunner)
- Improve pciehp tolerance of missed events and initially unstable
links (Lukas Wunner)
- Clear spurious pciehp events on resume (Lukas Wunner)
- Add pciehp runtime PM support, including for Thunderbolt controllers
(Lukas Wunner)
- Support interrupts from pciehp bridges in D3hot (Lukas Wunner)
- Mark fall-through switch cases before enabling -Wimplicit-fallthrough
(Gustavo A. R. Silva)
- Move DMA-debug PCI init from arch code to PCI core (Christoph
Hellwig)
- Fix pci_request_irq() usage of IRQF_ONESHOT when no handler is
supplied (Heiner Kallweit)
- Unify PCI and DMA direction #defines (Shunyong Yang)
- Add PCI_DEVICE_DATA() macro (Andy Shevchenko)
- Check for VPD completion before checking for timeout (Bert Kenward)
- Limit Netronome NFP5000 config space size to work around erratum
(Jakub Kicinski)
- Set IRQCHIP_ONESHOT_SAFE for PCI MSI irqchips (Heiner Kallweit)
- Document ACPI description of PCI host bridges (Bjorn Helgaas)
- Add "pci=disable_acs_redir=" parameter to disable ACS redirection for
peer-to-peer DMA support (we don't have the peer-to-peer support yet;
this is just one piece) (Logan Gunthorpe)
- Clean up devm_of_pci_get_host_bridge_resources() resource allocation
(Jan Kiszka)
- Fixup resizable BARs after suspend/resume (Christian König)
- Make "pci=earlydump" generic (Sinan Kaya)
- Fix ROM BAR access routines to stay in bounds and check for signature
correctly (Rex Zhu)
- Add DMA alias quirk for Microsemi Switchtec NTB (Doug Meyer)
- Expand documentation for pci_add_dma_alias() (Logan Gunthorpe)
- To avoid bus errors, enable PASID only if entire path supports
End-End TLP prefixes (Sinan Kaya)
- Unify slot and bus reset functions and remove hotplug knowledge from
callers (Sinan Kaya)
- Add Function-Level Reset quirks for Intel and Samsung NVMe devices to
fix guest reboot issues (Alex Williamson)
- Add function 1 DMA alias quirk for Marvell 88SS9183 PCIe SSD
Controller (Bjorn Helgaas)
- Remove Xilinx AXI-PCIe host bridge arch dependency (Palmer Dabbelt)
- Remove Aardvark outbound window configuration (Evan Wang)
- Fix Aardvark bridge window sizing issue (Zachary Zhang)
- Convert Aardvark to use pci_host_probe() to reduce code duplication
(Thomas Petazzoni)
- Correct the Cadence cdns_pcie_writel() signature (Alan Douglas)
- Add Cadence support for optional generic PHYs (Alan Douglas)
- Add Cadence power management ops (Alan Douglas)
- Remove redundant variable from Cadence driver (Colin Ian King)
- Add Kirin MSI support (Xiaowei Song)
- Drop unnecessary root_bus_nr setting from exynos, imx6, keystone,
armada8k, artpec6, designware-plat, histb, qcom, spear13xx (Shawn
Guo)
- Move link notification settings from DesignWare core to individual
drivers (Gustavo Pimentel)
- Add endpoint library MSI-X interfaces (Gustavo Pimentel)
- Correct signature of endpoint library IRQ interfaces (Gustavo
Pimentel)
- Add DesignWare endpoint library MSI-X callbacks (Gustavo Pimentel)
- Add endpoint library MSI-X test support (Gustavo Pimentel)
- Remove unnecessary GFP_ATOMIC from Hyper-V "new child" allocation
(Jia-Ju Bai)
- Add more devices to Broadcom PAXC quirk (Ray Jui)
- Work around corrupted Broadcom PAXC config space to enable SMMU and
GICv3 ITS (Ray Jui)
- Disable MSI parsing to work around broken Broadcom PAXC logic in some
devices (Ray Jui)
- Hide unconfigured functions to work around a Broadcom PAXC defect
(Ray Jui)
- Lower iproc log level to reduce console output during boot (Ray Jui)
- Fix mobiveil iomem/phys_addr_t type usage (Lorenzo Pieralisi)
- Fix mobiveil missing include file (Lorenzo Pieralisi)
- Add mobiveil Kconfig/Makefile support (Lorenzo Pieralisi)
- Fix mvebu I/O space remapping issues (Thomas Petazzoni)
- Use generic pci_host_bridge in mvebu instead of ARM-specific API
(Thomas Petazzoni)
- Whitelist VMD devices with fast interrupt handlers to avoid sharing
vectors with slow handlers (Keith Busch)
* tag 'pci-v4.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (153 commits)
PCI/AER: Don't clear AER bits if error handling is Firmware-First
PCI: Limit config space size for Netronome NFP5000
PCI/MSI: Set IRQCHIP_ONESHOT_SAFE for PCI-MSI irqchips
PCI/VPD: Check for VPD access completion before checking for timeout
PCI: Add PCI_DEVICE_DATA() macro to fully describe device ID entry
PCI: Match Root Port's MPS to endpoint's MPSS as necessary
PCI: Skip MPS logic for Virtual Functions (VFs)
PCI: Add function 1 DMA alias quirk for Marvell 88SS9183
PCI: Check for PCIe Link downtraining
PCI: Add ACS Redirect disable quirk for Intel Sunrise Point
PCI: Add device-specific ACS Redirect disable infrastructure
PCI: Convert device-specific ACS quirks from NULL termination to ARRAY_SIZE
PCI: Add "pci=disable_acs_redir=" parameter for peer-to-peer support
PCI: Allow specifying devices using a base bus and path of devfns
PCI: Make specifying PCI devices in kernel parameters reusable
PCI: Hide ACS quirk declarations inside PCI core
PCI: Delay after FLR of Intel DC P3700 NVMe
PCI: Disable Samsung SM961/PM961 NVMe before FLR
PCI: Export pcie_has_flr()
PCI: mvebu: Drop bogus comment above mvebu_pcie_map_registers()
...
i8259.h uses inb/outb and thus needs to include asm/io.h to avoid the
following build error, as seen with x86_64:defconfig and CONFIG_SMP=n.
In file included from drivers/rtc/rtc-cmos.c:45:0:
arch/x86/include/asm/i8259.h: In function 'inb_pic':
arch/x86/include/asm/i8259.h:32:24: error:
implicit declaration of function 'inb'
arch/x86/include/asm/i8259.h: In function 'outb_pic':
arch/x86/include/asm/i8259.h:45:2: error:
implicit declaration of function 'outb'
Reported-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Suggested-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Fixes: 447ae31667 ("x86: Don't include linux/irq.h from asm/hardirq.h")
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW3LkCgAKCRCAXGG7T9hj
vtyfAQDTMUqfBlpz9XqFyTBTFRkP3aVtnEeE7BijYec+RXPOxwEAsiXwZPsmW/AN
up+NEHqPvMOcZC8zJZ9THCiBgOxligY=
=F51X
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- add dma-buf functionality to Xen grant table handling
- fix for booting the kernel as Xen PVH dom0
- fix for booting the kernel as a Xen PV guest with
CONFIG_DEBUG_VIRTUAL enabled
- other minor performance and style fixes
* tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/balloon: fix balloon initialization for PVH Dom0
xen: don't use privcmd_call() from xen_mc_flush()
xen/pv: Call get_cpu_address_sizes to set x86_virt/phys_bits
xen/biomerge: Use true and false for boolean values
xen/gntdev: don't dereference a null gntdev_dmabuf on allocation failure
xen/spinlock: Don't use pvqspinlock if only 1 vCPU
xen/gntdev: Implement dma-buf import functionality
xen/gntdev: Implement dma-buf export functionality
xen/gntdev: Add initial support for dma-buf UAPI
xen/gntdev: Make private routines/structures accessible
xen/gntdev: Allow mappings for DMA buffers
xen/grant-table: Allow allocating buffers suitable for DMA
xen/balloon: Share common memory reservation routines
xen/grant-table: Make set/clear page private code shared
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Pull x86 timer updates from Thomas Gleixner:
"Early TSC based time stamping to allow better boot time analysis.
This comes with a general cleanup of the TSC calibration code which
grew warts and duct taping over the years and removes 250 lines of
code. Initiated and mostly implemented by Pavel with help from various
folks"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/kvmclock: Mark kvm_get_preset_lpj() as __init
x86/tsc: Consolidate init code
sched/clock: Disable interrupts when calling generic_sched_clock_init()
timekeeping: Prevent false warning when persistent clock is not available
sched/clock: Close a hole in sched_clock_init()
x86/tsc: Make use of tsc_calibrate_cpu_early()
x86/tsc: Split native_calibrate_cpu() into early and late parts
sched/clock: Use static key for sched_clock_running
sched/clock: Enable sched clock early
sched/clock: Move sched clock initialization and merge with generic clock
x86/tsc: Use TSC as sched clock early
x86/tsc: Initialize cyc2ns when tsc frequency is determined
x86/tsc: Calibrate tsc only once
ARM/time: Remove read_boot_clock64()
s390/time: Remove read_boot_clock64()
timekeeping: Default boot time offset to local_clock()
timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
s390/time: Add read_persistent_wall_and_boot_offset()
x86/xen/time: Output xen sched_clock time from 0
x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
...
Pull x86 PTI updates from Thomas Gleixner:
"The Speck brigade sadly provides yet another large set of patches
destroying the perfomance which we carefully built and preserved
- PTI support for 32bit PAE. The missing counter part to the 64bit
PTI code implemented by Joerg.
- A set of fixes for the Global Bit mechanics for non PCID CPUs which
were setting the Global Bit too widely and therefore possibly
exposing interesting memory needlessly.
- Protection against userspace-userspace SpectreRSB
- Support for the upcoming Enhanced IBRS mode, which is preferred
over IBRS. Unfortunately we dont know the performance impact of
this, but it's expected to be less horrible than the IBRS
hammering.
- Cleanups and simplifications"
* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/mm/pti: Move user W+X check into pti_finalize()
x86/relocs: Add __end_rodata_aligned to S_REL
x86/mm/pti: Clone kernel-image on PTE level for 32 bit
x86/mm/pti: Don't clear permissions in pti_clone_pmd()
x86/mm/pti: Fix 32 bit PCID check
x86/mm/init: Remove freed kernel image areas from alias mapping
x86/mm/init: Add helper for freeing kernel image pages
x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
mm: Allow non-direct-map arguments to free_reserved_area()
x86/mm/pti: Clear Global bit more aggressively
x86/speculation: Support Enhanced IBRS on future CPUs
x86/speculation: Protect against userspace-userspace spectreRSB
x86/kexec: Allocate 8k PGDs for PTI
Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
x86/mm: Remove in_nmi() warning from vmalloc_fault()
x86/entry/32: Check for VM86 mode in slow-path check
perf/core: Make sure the ring-buffer is mapped in all page-tables
x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
x86/entry/32: Add debug code to check entry/exit CR3
...
Pull misc x86 fixes from Thomas Gleixner:
"Two fixes for x86:
- Provide a declaration for native_save_fl() which unbreaks the
wreckage caused by making it 'extern inline'.
- Fix the failing paravirt patching which is supposed to replace
indirect with direct calls. The wreckage is caused by an incorrect
clobber test"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Fix spectre-v2 mitigations for paravirt guests
x86/irqflags: Provide a declaration for native_save_fl
Pull x86 mm updates from Thomas Gleixner:
- Make lazy TLB mode even lazier to avoid pointless switch_mm()
operations, which reduces CPU load by 1-2% for memcache workloads
- Small cleanups and improvements all over the place
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Remove redundant check for kmem_cache_create()
arm/asm/tlb.h: Fix build error implicit func declaration
x86/mm/tlb: Make clear_asid_other() static
x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off()
x86/mm/tlb: Always use lazy TLB mode
x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Restructure switch_mm_irqs_off()
x86/mm/tlb: Leave lazy TLB mode at page table free time
mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids
x86/mm: Add TLB purge to free pmd/pte page interfaces
ioremap: Update pgtable free interfaces with addr
x86/mm: Disable ioremap free page handling on x86-PAE
Pull x86/hyper-v update from Thomas Gleixner:
"Add fast hypercall support for guest running on the Microsoft HyperV(isor)"
* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyper-v: Fix wrong merge conflict resolution
x86/hyper-v: Check for VP_INVAL in hyperv_flush_tlb_others()
x86/hyper-v: Check cpumask_to_vpset() return value in hyperv_flush_tlb_others_ex()
x86/hyper-v: Trace PV IPI send
x86/hyper-v: Use cheaper HVCALL_SEND_IPI hypercall when possible
x86/hyper-v: Use 'fast' hypercall for HVCALL_SEND_IPI
x86/hyper-v: Implement hv_do_fast_hypercall16
x86/hyper-v: Use cheaper HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} hypercalls when possible
Pull x86 cpu updates from Thomas Gleixner:
"Two small updates for the CPU code:
- Improve NUMA emulation
- Add the EPT_AD CPU feature bit"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpufeatures: Add EPT_AD feature bit
x86/numa_emulation: Introduce uniform split capability
x86/numa_emulation: Fix emulated-to-physical node mapping
Pull x86 asm updates from Thomas Gleixner:
"The lowlevel and ASM code updates for x86:
- Make stack trace unwinding more reliable
- ASM instruction updates for better code generation
- Various cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Add two more instruction suffixes
x86/asm/64: Use 32-bit XOR to zero registers
x86/build/vdso: Simplify 'cmd_vdso2c'
x86/build/vdso: Remove unused vdso-syms.lds
x86/stacktrace: Enable HAVE_RELIABLE_STACKTRACE for the ORC unwinder
x86/unwind/orc: Detect the end of the stack
x86/stacktrace: Do not fail for ORC with regs on stack
x86/stacktrace: Clarify the reliable success paths
x86/stacktrace: Remove STACKTRACE_DUMP_ONCE
x86/stacktrace: Do not unwind after user regs
x86/asm: Use CC_SET/CC_OUT in percpu_cmpxchg8b_double() to micro-optimize code generation
Pull perf update from Thomas Gleixner:
"The perf crowd presents:
Kernel updates:
- Removal of jprobes
- Cleanup and consolidatation the handling of kprobes
- Cleanup and consolidation of hardware breakpoints
- The usual pile of fixes and updates to PMUs and event descriptors
Tooling updates:
- Updates and improvements all over the place. Nothing outstanding,
just the (good) boring incremental grump work"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
perf trace: Do not require --no-syscalls to suppress strace like output
perf bpf: Include uapi/linux/bpf.h from the 'perf trace' script's bpf.h
perf tools: Allow overriding MAX_NR_CPUS at compile time
perf bpf: Show better message when failing to load an object
perf list: Unify metric group description format with PMU event description
perf vendor events arm64: Update ThunderX2 implementation defined pmu core events
perf cs-etm: Generate branch sample for CS_ETM_TRACE_ON packet
perf cs-etm: Generate branch sample when receiving a CS_ETM_TRACE_ON packet
perf cs-etm: Support dummy address value for CS_ETM_TRACE_ON packet
perf cs-etm: Fix start tracing packet handling
perf build: Fix installation directory for eBPF
perf c2c report: Fix crash for empty browser
perf tests: Fix indexing when invoking subtests
perf trace: Beautify the AF_INET & AF_INET6 'socket' syscall 'protocol' args
perf trace beauty: Add beautifiers for 'socket''s 'protocol' arg
perf trace beauty: Do not print NULL strarray entries
perf beauty: Add a generator for IPPROTO_ socket's protocol constants
tools include uapi: Grab a copy of linux/in.h
perf tests: Fix complex event name parsing
perf evlist: Fix error out while applying initial delay and LBR
...
Pull locking/atomics update from Thomas Gleixner:
"The locking, atomics and memory model brains delivered:
- A larger update to the atomics code which reworks the ordering
barriers, consolidates the atomic primitives, provides the new
atomic64_fetch_add_unless() primitive and cleans up the include
hell.
- Simplify cmpxchg() instrumentation and add instrumentation for
xchg() and cmpxchg_double().
- Updates to the memory model and documentation"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
locking/atomics: Rework ordering barriers
locking/atomics: Instrument cmpxchg_double*()
locking/atomics: Instrument xchg()
locking/atomics: Simplify cmpxchg() instrumentation
locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation
tools/memory-model: Rename litmus tests to comply to norm7
tools/memory-model/Documentation: Fix typo, smb->smp
sched/Documentation: Update wake_up() & co. memory-barrier guarantees
locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
sched/core: Use smp_mb() in wake_woken_function()
tools/memory-model: Add informal LKMM documentation to MAINTAINERS
locking/atomics/Documentation: Describe atomic_set() as a write operation
tools/memory-model: Make scripts executable
tools/memory-model: Remove ACCESS_ONCE() from model
tools/memory-model: Remove ACCESS_ONCE() from recipes
locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example
MAINTAINERS: Add Daniel Lustig as an LKMM reviewer
tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name
tools/memory-model: Add litmus test for full multicopy atomicity
locking/refcount: Always allow checked forms
...
The user page-table gets the updated kernel mappings in pti_finalize(),
which runs after the RO+X permissions got applied to the kernel page-table
in mark_readonly().
But with CONFIG_DEBUG_WX enabled, the user page-table is already checked in
mark_readonly() for insecure mappings. This causes false-positive
warnings, because the user page-table did not get the updated mappings yet.
Move the W+X check for the user page-table into pti_finalize() after it
updated all required mappings.
[ tglx: Folded !NX supported fix ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1533727000-9172-1-git-send-email-joro@8bytes.org
Some cases in THP like:
- MADV_FREE
- mprotect
- split
mark the PMD non present for temporarily to prevent races. The window for
an L1TF attack in these contexts is very small, but it wants to be fixed
for correctness sake.
Use the proper low level functions for pmd/pud_mknotpresent() to address
this.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For kernel mappings PAGE_PROTNONE is not necessarily set for a non present
mapping, but the inversion logic explicitely checks for !PRESENT and
PROT_NONE.
Remove the PROT_NONE check and make the inversion unconditional for all not
present mappings.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Using privcmd_call() for a singleton multicall seems to be wrong, as
privcmd_call() is using stac()/clac() to enable hypervisor access to
Linux user space.
Even if currently not a problem (pv domains can't use SMAP while HVM
and PVH domains can't use multicalls) things might change when
PVH dom0 support is added to the kernel.
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
The kernel image is mapped into two places in the virtual address space
(addresses without KASLR, of course):
1. The kernel direct map (0xffff880000000000)
2. The "high kernel map" (0xffffffff81000000)
We actually execute out of #2. If we get the address of a kernel symbol,
it points to #2, but almost all physical-to-virtual translations point to
Parts of the "high kernel map" alias are mapped in the userspace page
tables with the Global bit for performance reasons. The parts that we map
to userspace do not (er, should not) have secrets. When PTI is enabled then
the global bit is usually not set in the high mapping and just used to
compensate for poor performance on systems which lack PCID.
This is fine, except that some areas in the kernel image that are adjacent
to the non-secret-containing areas are unused holes. We free these holes
back into the normal page allocator and reuse them as normal kernel memory.
The memory will, of course, get *used* via the normal map, but the alias
mapping is kept.
This otherwise unused alias mapping of the holes will, by default keep the
Global bit, be mapped out to userspace, and be vulnerable to Meltdown.
Remove the alias mapping of these pages entirely. This is likely to
fracture the 2M page mapping the kernel image near these areas, but this
should affect a minority of the area.
The pageattr code changes *all* aliases mapping the physical pages that it
operates on (by default). We only want to modify a single alias, so we
need to tweak its behavior.
This unmapping behavior is currently dependent on PTI being in place.
Going forward, we should at least consider doing this for all
configurations. Having an extra read-write alias for memory is not exactly
ideal for debugging things like random memory corruption and this does
undercut features like DEBUG_PAGEALLOC or future work like eXclusive Page
Frame Ownership (XPFO).
Before this patch:
current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000 16M pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_kernel-0xffffffff81e11000-0xffffffff82000000 1980K RW NX pte
current_kernel-0xffffffff82000000-0xffffffff82600000 6M ro PSE GLB NX pmd
current_kernel-0xffffffff82600000-0xffffffff82c00000 6M RW PSE NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82e00000 2M RW NX pte
current_kernel-0xffffffff82e00000-0xffffffff83200000 4M RW PSE NX pmd
current_kernel-0xffffffff83200000-0xffffffffa0000000 462M pmd
current_user:---[ High Kernel Mapping ]---
current_user-0xffffffff80000000-0xffffffff81000000 16M pmd
current_user-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_user-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_user-0xffffffff81e11000-0xffffffff82000000 1980K RW NX pte
current_user-0xffffffff82000000-0xffffffff82600000 6M ro PSE GLB NX pmd
current_user-0xffffffff82600000-0xffffffffa0000000 474M pmd
After this patch:
current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000 16M pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_kernel-0xffffffff81e11000-0xffffffff82000000 1980K pte
current_kernel-0xffffffff82000000-0xffffffff82400000 4M ro PSE GLB NX pmd
current_kernel-0xffffffff82400000-0xffffffff82488000 544K ro NX pte
current_kernel-0xffffffff82488000-0xffffffff82600000 1504K pte
current_kernel-0xffffffff82600000-0xffffffff82c00000 6M RW PSE NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82c0d000 52K RW NX pte
current_kernel-0xffffffff82c0d000-0xffffffff82dc0000 1740K pte
current_user:---[ High Kernel Mapping ]---
current_user-0xffffffff80000000-0xffffffff81000000 16M pmd
current_user-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_user-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_user-0xffffffff81e11000-0xffffffff82000000 1980K pte
current_user-0xffffffff82000000-0xffffffff82400000 4M ro PSE GLB NX pmd
current_user-0xffffffff82400000-0xffffffff82488000 544K ro NX pte
current_user-0xffffffff82488000-0xffffffff82600000 1504K pte
current_user-0xffffffff82600000-0xffffffffa0000000 474M pmd
[ tglx: Do not unmap on 32bit as there is only one mapping ]
Fixes: 0f561fce4d ("x86/pti: Enable global pages for shared areas")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20180802225831.5F6A2BFC@viggo.jf.intel.com
Implement paravirtual apic hooks to enable PV IPIs for KVM if the "send IPI"
hypercall is available. The hypercall lets a guest send IPIs, with
at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per
hypercall in 32-bit mode.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is to provide a way for platforms to register hv tlb remote
flush callback and this helps to optimize operation of tlb flush
among vcpus for nested virtualization case.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is to add hyperv_nested_flush_guest_mapping support to trace
hvFlushGuestPhysicalAddressSpace hypercall.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V supports a pv hypercall HvFlushGuestPhysicalAddressSpace to
flush nested VM address space mapping in l1 hypervisor and it's to
reduce overhead of flushing ept tlb among vcpus. This patch is to
implement it.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds support for storing multiple previous CR3/root_hpa pairs maintained
as an LRU cache, so that the lockless CR3 switch path can be used when
switching back to any of them.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This needs a minor bug fix. The updated patch is as follows.
Thanks,
Junaid
------------------------------------------------------------------------------
kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB
entries for the specific guest virtual address, instead of flushing all
TLB entries associated with the VM.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_free_roots() now takes a mask specifying which roots to free, so
that either one of the roots (active/previous) can be individually freed
when needed.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows invlpg() to be called using either the active root_hpa
or the prev_root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3
instruction indicates that the TLB doesn't need to be flushed.
This change enables this optimization for MOV-to-CR3s in the guest
that have been intercepted by KVM for shadow paging and are handled
within the fast CR3 switch path.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement support for INVPCID in shadow paging mode as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the
current root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using shadow paging, a CR3 switch in the guest results in a VM Exit.
In the common case, that VM exit doesn't require much processing by KVM.
However, it does acquire the MMU lock, which can start showing signs of
contention under some workloads even on a 2 VCPU VM when the guest is
using KPTI. Therefore, we add a fast path that avoids acquiring the MMU
lock in the most common cases e.g. when switching back and forth between
the kernel and user mode CR3s used by KPTI with no guest page table
changes in between.
For now, this fast path is implemented only for 64-bit guests and hosts
to avoid the handling of PDPTEs, but it can be extended later to 32-bit
guests and/or hosts as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For nested virtualization L0 KVM is managing a bit of state for L2 guests,
this state can not be captured through the currently available IOCTLs. In
fact the state captured through all of these IOCTLs is usually a mix of L1
and L2 state. It is also dependent on whether the L2 guest was running at
the moment when the process was interrupted to save its state.
With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE
and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM
that is in VMX operation.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
[karahmed@ - rename structs and functions and make them ready for AMD and
address previous comments.
- handle nested.smm state.
- rebase & a bit of refactoring.
- Merge 7/8 and 8/8 into one patch. ]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the vCPU enters system management mode while running a nested guest,
RSM starts processing the vmentry while still in SMM. In that case,
however, the pages pointed to by the vmcs12 might be incorrectly
loaded from SMRAM. To avoid this, delay the handling of the pages
until just before the next vmentry. This is done with a new request
and a new entry in kvm_x86_ops, which we will be able to reuse for
nested VMX state migration.
Extracted from a patch by Jim Mattson and KarimAllah Ahmed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When chunks of the kernel image are freed, free_init_pages() is used
directly. Consolidate the three sites that do this. Also update the
string to give an incrementally better description of that memory versus
what was there before.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@google.com
Cc: aarcange@redhat.com
Cc: jgross@suse.com
Cc: jpoimboe@redhat.com
Cc: gregkh@linuxfoundation.org
Cc: peterz@infradead.org
Cc: hughd@google.com
Cc: torvalds@linux-foundation.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: ak@linux.intel.com
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20180802225829.FE0E32EA@viggo.jf.intel.com
When nested virtualization is in use, VMENTER operations from the nested
hypervisor into the nested guest will always be processed by the bare metal
hypervisor, and KVM's "conditional cache flushes" mode in particular does a
flush on nested vmentry. Therefore, include the "skip L1D flush on
vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting.
Add the relevant Documentation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>