Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reimplement Book3S idle code in C, moving POWER7/8/9 implementation
speific HV idle code to the powernv platform code.
Book3S assembly stubs are kept in common code and used only to save
the stack frame and non-volatile GPRs before executing architected
idle instructions, and restoring the stack and reloading GPRs then
returning to C after waking from idle.
The complex logic dealing with threads and subcores, locking, SPRs,
HMIs, timebase resync, etc., is all done in C which makes it more
maintainable.
This is not a strict translation to C code, there are some
significant differences:
- Idle wakeup no longer uses the ->cpu_restore call to reinit SPRs,
but saves and restores them itself.
- The optimisation where EC=ESL=0 idle modes did not have to save GPRs
or change MSR is restored, because it's now simple to do. ESL=1
sleeps that do not lose GPRs can use this optimization too.
- KVM secondary entry and cede is now more of a call/return style
rather than branchy. nap_state_lost is not required because KVM
always returns via NVGPR restoring path.
- KVM secondary wakeup from offline sequence is moved entirely into
the offline wakeup, which avoids a hwsync in the normal idle wakeup
path.
Performance measured with context switch ping-pong on different
threads or cores, is possibly improved a small amount, 1-3% depending
on stop state and core vs thread test for shallow states. Deep states
it's in the noise compared with other latencies.
KVM improvements:
- Idle sleepers now always return to caller rather than branch out
to KVM first.
- This allows optimisations like very fast return to caller when no
state has been lost.
- KVM no longer requires nap_state_lost because it controls NVGPR
save/restore itself on the way in and out.
- The heavy idle wakeup KVM request check can be moved out of the
normal host idle code and into the not-performance-critical offline
code.
- KVM nap code now returns from where it is called, which makes the
flow a bit easier to follow.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Squash the KVM changes in]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch implements Kernel Userspace Access Protection for
book3s/32.
Due to limitations of the processor page protection capabilities,
the protection is only against writing. read protection cannot be
achieved using page protection.
The previous patch modifies the page protection so that RW user
pages are RW for Key 0 and RO for Key 1, and it sets Key 0 for
both user and kernel.
This patch changes userspace segment registers are set to Ku 0
and Ks 1. When kernel needs to write to RW pages, the associated
segment register is then changed to Ks 0 in order to allow write
access to the kernel.
In order to avoid having the read all segment registers when
locking/unlocking the access, some data is kept in the thread_struct
and saved on stack on exceptions. The field identifies both the
first unlocked segment and the first segment following the last
unlocked one. When no segment is unlocked, it contains value 0.
As the hash_page() function is not able to easily determine if a
protfault is due to a bad kernel access to userspace, protfaults
need to be handled by handle_page_fault when KUAP is set.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Drop allow_read/write_to/from_user() as they're now in kup.h,
and adapt allow_user_access() to do nothing when to == NULL]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch implements a framework for Kernel Userspace Access
Protection.
Then subarches will have the possibility to provide their own
implementation by providing setup_kuap() and
allow/prevent_user_access().
Some platforms will need to know the area accessed and whether it is
accessed from read, write or both. Therefore source, destination and
size and handed over to the two functions.
mpe: Rename to allow/prevent rather than unlock/lock, and add
read/write wrappers. Drop the 32-bit code for now until we have an
implementation for it. Add kuap to pt_regs for 64-bit as well as
32-bit. Don't split strings, use pr_crit_ratelimited().
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that current_thread_info is located at the beginning of 'current'
task struct, CURRENT_THREAD_INFO macro is not really needed any more.
This patch replaces it by loads of the value at PACA_THREAD_INFO(r13).
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Add PACA_THREAD_INFO rather than using PACACURRENT]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that thread_info is similar to task_struct, its address is in r2
so CURRENT_THREAD_INFO() macro is useless. This patch removes it.
This patch also moves the 'tovirt(r2, r2)' down just before the
reactivation of MMU translation, so that we keep the physical address
of 'current' in r2 until then. It avoids a few calls to tophys().
At the same time, as the 'cpu' field is not anymore in thread_info,
TI_CPU is renamed TASK_CPU by this patch.
It also allows to get rid of a couple of
'#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE' as ACCOUNT_CPU_USER_ENTRY()
and ACCOUNT_CPU_USER_EXIT() are empty when
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not defined.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Fix a missed conversion of TI_CPU idle_6xx.S]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
thread_info is not anymore in the stack, so the entire stack
can now be used.
There is also no risk anymore of corrupting task_cpu(p) with a
stack overflow so the patch removes the test.
When doing this, an explicit test for NULL stack pointer is
needed in validate_sp() as it is not anymore implicitely covered
by the sizeof(thread_info) gap.
In the meantime, with the previous patch all pointers to the stacks
are not anymore pointers to thread_info so this patch changes them
to void*
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch activates CONFIG_THREAD_INFO_IN_TASK which
moves the thread_info into task_struct.
Moving thread_info into task_struct has the following advantages:
- It protects thread_info from corruption in the case of stack
overflows.
- Its address is harder to determine if stack addresses are leaked,
making a number of attacks more difficult.
This has the following consequences:
- thread_info is now located at the beginning of task_struct.
- The 'cpu' field is now in task_struct, and only exists when
CONFIG_SMP is active.
- thread_info doesn't have anymore the 'task' field.
This patch:
- Removes all recopy of thread_info struct when the stack changes.
- Changes the CURRENT_THREAD_INFO() macro to point to current.
- Selects CONFIG_THREAD_INFO_IN_TASK.
- Modifies raw_smp_processor_id() to get ->cpu from current without
including linux/sched.h to avoid circular inclusion and without
including asm/asm-offsets.h to avoid symbol names duplication
between ASM constants and C constants.
- Modifies klp_init_thread_info() to take a task_struct pointer
argument.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Add task_stack.h to livepatch.h to fix build fails]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch renames THREAD_INFO to TASK_STACK, because it is in fact
the offset of the pointer to the stack in task_struct so this pointer
will not be impacted by the move of THREAD_INFO.
Also make it available on 64-bit, as we'll need it there when we
activate THREAD_INFO_IN_TASK.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Make available on 64-bit]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When calling RTAS, the stack pointer is stored in SPRN_SPRG2
in order to be able to restore it in case of machine check in RTAS.
As machine check is not a perfomance critical path, this patch
frees SPRN_SPRG2 by using a field in thread struct instead.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of fairly
complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for each
process and preload them on context switch. Leading to a 27% speedup for our
context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print more debug
information when they occur, and try to continue running by flushing the SLB
and reloading, rather than treating them as fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on 64-bit
Book3S. We only support up to 512TB as regular system memory, otherwise the
percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are presented
to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE flags.
- Add a driver for the PAPR SCM (storage class memory) interface, allowing
guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we need to use
a trampoline to get to ftrace_caller().
Many other smaller enhancements and cleanups.
Thanks to:
Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton Blanchard, Aravinda
Prasad, Bartlomiej Zolnierkiewicz, Benjamin Herrenschmidt, Breno Leitao,
Cédric Le Goater, Christophe Leroy, Christophe Lombard, Dan Carpenter, Daniel
Axtens, Finn Thain, Gautham R. Shenoy, Gustavo Romero, Haren Myneni, Hari
Bathini, Jia Hongtao, Joel Stanley, John Allen, Laurent Dufour, Madhavan
Srinivasan, Mahesh Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael
Bringmann, Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran,
Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab, Rob Herring, Sam
Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan Johnson, Stephen Rothwell,
Stewart Smith, Suraj Jitindar Singh, Tyrel Datwyler, Vaibhav Jain, Vasant
Hegde, YueHaibing, zhong jiang,
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJb01vTAAoJEFHr6jzI4aWADsEP/jqL3+2qxs098ra80tpXCpXJ
tgXCosEs4b35sGtyHeUWZZZfWXeisaPAIlP8zTx1n50HACZduDYRAl0Ew9XB7Xdw
enDHRVccD21FsmHBOx/Ii1rVJlovWlj6EQCWHKeZmNjeRoFuClVZ7CYmf+mBifKR
sw2Db2fKA/59wMTq2zIMy5pqYgqlAs4jTWS6uN5hKPoBmO/82ARnNG+qgLuloD3Z
O8zSDM9QQ7PpuyDgTjO9SAo2YjmEfXlEG6cOCCejsU3DMctaEAK5PUZ+blsHYHBH
BYZYKs/x4pcw0SO41GtTh0M2YqDYBVuBIpRw8lLZap97Xo9ucSkAm5WD3rGxk4CY
YeZKEPUql6MHN3+DKl8mx2F0V+Et/tio2HNqc9KReR1tfoolZAbe+SFZHfgmc/Rq
RD9nnG8KRd4K2K1BTqpkTmI1EtE7jPtPJPSV8gMGhgL/N5vPmH3mql/qyOtYx48E
6/hPzWESgs16VRZ/opLh8VvjlY1HBDODQhehhhl+o23/Vb8qEgRf8Uqhq50rQW1H
EeOqyyYQ90txSU31Sgy1kQkvOgIFAsBObWT1ZCJ3RbfGbB4/tdEAvZqTZRlXo2OY
7P0Sqcw/9Le5eJkHIlLtBv0TF7y1OYemCbLgRQzFlcRP+UKtYyg8eFnFjqbPEEmP
ulwhn/BfFVSgaYKQ503u
=I0pj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of
fairly complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for
each process and preload them on context switch. Leading to a 27%
speedup for our context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print
more debug information when they occur, and try to continue running
by flushing the SLB and reloading, rather than treating them as
fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on
64-bit Book3S. We only support up to 512TB as regular system
memory, otherwise the percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task
canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are
presented to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE
flags.
- Add a driver for the PAPR SCM (storage class memory) interface,
allowing guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we
need to use a trampoline to get to ftrace_caller().
And many other smaller enhancements and cleanups.
Thanks to: Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton
Blanchard, Aravinda Prasad, Bartlomiej Zolnierkiewicz, Benjamin
Herrenschmidt, Breno Leitao, Cédric Le Goater, Christophe Leroy,
Christophe Lombard, Dan Carpenter, Daniel Axtens, Finn Thain, Gautham
R. Shenoy, Gustavo Romero, Haren Myneni, Hari Bathini, Jia Hongtao,
Joel Stanley, John Allen, Laurent Dufour, Madhavan Srinivasan, Mahesh
Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael Bringmann,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver
O'Halloran, Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab,
Rob Herring, Sam Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan
Johnson, Stephen Rothwell, Stewart Smith, Suraj Jitindar Singh, Tyrel
Datwyler, Vaibhav Jain, Vasant Hegde, YueHaibing, zhong jiang"
* tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (221 commits)
Revert "selftests/powerpc: Fix out-of-tree build errors"
powerpc/msi: Fix compile error on mpc83xx
powerpc: Fix stack protector crashes on CPU hotplug
powerpc/traps: restore recoverability of machine_check interrupts
powerpc/64/module: REL32 relocation range check
powerpc/64s/radix: Fix radix__flush_tlb_collapsed_pmd double flushing pmd
selftests/powerpc: Add a test of wild bctr
powerpc/mm: Fix page table dump to work on Radix
powerpc/mm/radix: Display if mappings are exec or not
powerpc/mm/radix: Simplify split mapping logic
powerpc/mm/radix: Remove the retry in the split mapping logic
powerpc/mm/radix: Fix small page at boundary when splitting
powerpc/mm/radix: Fix overuse of small pages in splitting logic
powerpc/mm/radix: Fix off-by-one in split mapping logic
powerpc/ftrace: Handle large kernel configs
powerpc/mm: Fix WARN_ON with THP NUMA migration
selftests/powerpc: Fix out-of-tree build errors
powerpc/time: no steal_time when CONFIG_PPC_SPLPAR is not selected
powerpc/time: Only set CONFIG_ARCH_HAS_SCALED_CPUTIME on PPC64
powerpc/time: isolate scaled cputime accounting in dedicated functions.
...
ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance is
much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular hardware
bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
=yEPW
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance
is much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular
hardware bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups"
* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
Revert "kvm: x86: optimize dr6 restore"
KVM: PPC: Optimize clearing TCEs for sparse tables
x86/kvm/nVMX: tweak shadow fields
selftests/kvm: add missing executables to .gitignore
KVM: arm64: Safety check PSTATE when entering guest and handle IL
KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
arm/arm64: KVM: Enable 32 bits kvm vcpu events support
arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
KVM: arm64: Fix caching of host MDCR_EL2 value
KVM: VMX: enable nested virtualization by default
KVM/x86: Use 32bit xor to clear registers in svm.c
kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
kvm: vmx: Defer setting of DR6 until #DB delivery
kvm: x86: Defer setting of CR2 until #PF delivery
kvm: x86: Add payload operands to kvm_multiple_exception
kvm: x86: Add exception payload fields to kvm_vcpu_events
kvm: x86: Add has_payload and payload to kvm_queued_exception
KVM: Documentation: Fix omission in struct kvm_vcpu_events
KVM: selftests: add Enlightened VMCS test
...
Add 32-entry bitmaps to track the allocation status of the first 32
SLB entries, and whether they are user or kernel entries. These are
used to allocate free SLB entries first, before resorting to the round
robin allocator.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PPR is the odd register out when it comes to interrupt handling, it is
saved in current->thread.ppr while all others are saved on the stack.
The difficulty with this is that accessing thread.ppr can cause a SLB
fault, but the SLB fault handler implementation in C change had
assumed the normal exception entry handlers would not cause an SLB
fault.
Fix this by allocating room in the interrupt stack to save PPR.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 6c1719942e ("powerpc/of: Remove useless register save/restore
when calling OF back") removed the saving of srr0 and srr1 when calling
into OpenFirmware. Commit e31aa453bb ("powerpc: Use LOAD_REG_IMMEDIATE
only for constants on 64-bit") did the same for rtas.
This means we don't need to save the extra stack space and can use
the common SWITCH_FRAME_SIZE.
There were already no users of _SRR0 and _SRR1 so we can remove them
too.
Link: https://github.com/linuxppc/linux/issues/83
Signed-off-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a new hypercall, H_ENTER_NESTED, which is used by a nested
hypervisor to enter one of its nested guests. The hypercall supplies
register values in two structs. Those values are copied by the level 0
(L0) hypervisor (the one which is running in hypervisor mode) into the
vcpu struct of the L1 guest, and then the guest is run until an
interrupt or error occurs which needs to be reported to L1 via the
hypercall return value.
Currently this assumes that the L0 and L1 hypervisors are the same
endianness, and the structs passed as arguments are in native
endianness. If they are of different endianness, the version number
check will fail and the hcall will be rejected.
Nested hypervisors do not support indep_threads_mode=N, so this adds
code to print a warning message if the administrator has set
indep_threads_mode=N, and treat it as Y.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When the 'regs' field was added to struct kvm_vcpu_arch, the code
was changed to use several of the fields inside regs (e.g., gpr, lr,
etc.) but not the ccr field, because the ccr field in struct pt_regs
is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is
only 32 bits. This changes the code to use the regs.ccr field
instead of cr, and changes the assembly code on 64-bit platforms to
use 64-bit loads and stores instead of 32-bit ones.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On PPC64, as register r13 points to the paca_struct at all time,
this patch adds a copy of the canary there, which is copied at
task_switch.
That new canary is then used by using the following GCC options:
-mstack-protector-guard=tls
-mstack-protector-guard-reg=r13
-mstack-protector-guard-offset=offsetof(struct paca_struct, canary))
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This functionality was tentatively added in the past
(commit 6533b7c16e ("powerpc: Initial stack protector
(-fstack-protector) support")) but had to be reverted
(commit f2574030b0 ("powerpc: Revert the initial stack
protector support") because of GCC implementing it differently
whether it had been built with libc support or not.
Now, GCC offers the possibility to manually set the
stack-protector mode (global or tls) regardless of libc support.
This time, the patch selects HAVE_STACKPROTECTOR only if
-mstack-protector-guard=tls is supported by GCC.
On PPC32, as register r2 points to current task_struct at
all time, the stack_canary located inside task_struct can be
used directly by using the following GCC options:
-mstack-protector-guard=tls
-mstack-protector-guard-reg=r2
-mstack-protector-guard-offset=offsetof(struct task_struct, stack_canary))
The protector is disabled for prom_init and bootx_init as
it is too early to handle it properly.
$ echo CORRUPT_STACK > /sys/kernel/debug/provoke-crash/DIRECT
[ 134.943666] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: lkdtm_CORRUPT_STACK+0x64/0x64
[ 134.943666]
[ 134.955414] CPU: 0 PID: 283 Comm: sh Not tainted 4.18.0-s3k-dev-12143-ga3272be41209 #835
[ 134.963380] Call Trace:
[ 134.965860] [c6615d60] [c001f76c] panic+0x118/0x260 (unreliable)
[ 134.971775] [c6615dc0] [c001f654] panic+0x0/0x260
[ 134.976435] [c6615dd0] [c032c368] lkdtm_CORRUPT_STACK_STRONG+0x0/0x64
[ 134.982769] [c6615e00] [ffffffff] 0xffffffff
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This reverts commits:
5e46e29e6a ("powerpc/64s/hash: convert SLB miss handlers to C")
8fed04d0f6 ("powerpc/64s/hash: remove user SLB data from the paca")
655deecf67 ("powerpc/64s/hash: SLB allocation status bitmaps")
2e1626744e ("powerpc/64s/hash: provide arch_setup_exec hooks for hash slice setup")
89ca4e126a ("powerpc/64s/hash: Add a SLB preload cache")
This series had a few bugs, and the fixes are not all trivial. So
revert most of it for now.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add 32-entry bitmaps to track the allocation status of the first 32
SLB entries, and whether they are user or kernel entries. These are
used to allocate free SLB entries first, before resorting to the round
robin allocator.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
User SLB mappig data is copied into the PACA from the mm->context so
it can be accessed by the SLB miss handlers.
After the C conversion, SLB miss handlers now run with relocation on,
and user SLB misses are able to take recursive kernel SLB misses, so
the user SLB mapping data can be removed from the paca and accessed
directly.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Christoph Hellwig suggested a slightly different path for handling
backwards compatibility with the 32-bit time_t based system calls:
Rather than simply reusing the compat_sys_* entry points on 32-bit
architectures unchanged, we get rid of those entry points and the
compat_time types by renaming them to something that makes more sense
on 32-bit architectures (which don't have a compat mode otherwise),
and then share the entry points under the new name with the 64-bit
architectures that use them for implementing the compatibility.
The following types and interfaces are renamed here, and moved
from linux/compat_time.h to linux/time32.h:
old new
--- ---
compat_time_t old_time32_t
struct compat_timeval struct old_timeval32
struct compat_timespec struct old_timespec32
struct compat_itimerspec struct old_itimerspec32
ns_to_compat_timeval() ns_to_old_timeval32()
get_compat_itimerspec64() get_old_itimerspec32()
put_compat_itimerspec64() put_old_itimerspec32()
compat_get_timespec64() get_old_timespec32()
compat_put_timespec64() put_old_timespec32()
As we already have aliases in place, this patch addresses only the
instances that are relevant to the system call interface in particular,
not those that occur in device drivers and other modules. Those
will get handled separately, while providing the 64-bit version
of the respective interfaces.
I'm not renaming the timex, rusage and itimerval structures, as we are
still debating what the new interface will look like, and whether we
will need a replacement at all.
This also doesn't change the names of the syscall entry points, which can
be done more easily when we actually switch over the 32-bit architectures
to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to
SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
POWER9 DD1 was never a product. It is no longer supported by upstream
firmware, and it is not effectively supported in Linux due to lack of
testing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
[mpe: Remove arch_make_huge_pte() entirely]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live
patching again.
- Add support for patching barrier_nospec in copy_from_user() and syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre.
- Several series optimising various parts of the 32-bit code from Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"),
which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and
a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and
fs/proc/task_mmu.c, which cleans up some details around pkey support. It was
ack'ed/reviewed by Ingo & Dave and has been in next for several weeks.
Thanks to:
Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh,
Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave
Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren
Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf,
Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu
Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi
Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher
Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith,
Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang,
Yisheng Xie, YueHaibing.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJbGQKBExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYBq
TRAAioK7rz5xYMkxaM3Ng3ybobEeNAwQqOolz98xvmnB9SfDWNuc99vf8cGu0/fQ
zc8AKZ5RcnwipOjyGlxW9oa1ZhVq0xtYnQPiYLEKMdLQmh5D+C7+KpvAd1UElweg
ub40/xDySWfMujfuMSF9JDCWPIXyojt4Xg5nJKIVRrAm/3YMe/+i5Am7NWHuMCEb
aQmZtlYW5Mz81XY0968hjpUO6eKFRmsaM7yFAhGTXx6+oLRpGj1PZB4AwdRIKS2L
Ak7q/VgxtE4W+s3a0GK2s+eXIhGKeFuX9AVnx3nti+8/K1OqrqhDcLMUC/9JpCpv
EvOtO7dxPnZujHjdu4Eai/xNoo4h6zRy7bWqve9LoBM40CP5jljKzu1lwqqb5yO0
jC7/aXhgiSIxxcRJLjoI/TYpZPu40MifrkydmczykdPyPCnMIWEJDcj4KsRL/9Y8
9SSbJzRNC/SgQNTbUYPZFFi6G0QaMmlcbCb628k8QT+Gn3Xkdf/ZtxzqEyoF4Irq
46kFBsiSSK4Bu0rVlcUtJQLgdqytWULO6NKEYnD67laxYcgQd8pGFQ8SjZhRZLgU
q5LA3HIWhoAI4M0wZhOnKXO6JfiQ1UbO8gUJLsWsfF0Fk5KAcdm+4kb4jbI1H4Qk
Vol9WNRZwEllyaiqScZN9RuVVuH0GPOZeEH1dtWK+uWi0lM=
=ZlBf
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support
live patching again.
- Add support for patching barrier_nospec in copy_from_user() and
syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu
Malaterre.
- Several series optimising various parts of the 32-bit code from
Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K"
("GEFanuc,C2K"), which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by
Steve, and a fix to our powernv cpuidle driver. Then there's a series
touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details
around pkey support. It was ack'ed/reviewed by Ingo & Dave and has
been in next for several weeks.
Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al
Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd
Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain,
Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo
Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal,
Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre,
Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica
Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel
Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo,
Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe,
Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing"
* tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits)
powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap
cpuidle: powernv: Fix promotion from snooze if next state disabled
powerpc: fix build failure by disabling attribute-alias warning in pci_32
ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait()
powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted"
powerpc: fix spelling mistake: "Usupported" -> "Unsupported"
powerpc/pkeys: Detach execute_only key on !PROT_EXEC
powerpc/powernv: copy/paste - Mask SO bit in CR
powerpc: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove support for Marvell mv64x60 i2c controller
powerpc/boot: Remove support for Marvell MPSC serial controller
powerpc/embedded6xx: Remove C2K board support
powerpc/lib: optimise PPC32 memcmp
powerpc/lib: optimise 32 bits __clear_user()
powerpc/time: inline arch_vtime_task_switch()
powerpc/Makefile: set -mcpu=860 flag for the 8xx
powerpc: Implement csum_ipv6_magic in assembly
powerpc/32: Optimise __csum_partial()
powerpc/lib: Adjust .balign inside string functions for PPC32
...
Pull timers and timekeeping updates from Thomas Gleixner:
- Core infrastucture work for Y2038 to address the COMPAT interfaces:
+ Add a new Y2038 safe __kernel_timespec and use it in the core
code
+ Introduce config switches which allow to control the various
compat mechanisms
+ Use the new config switch in the posix timer code to control the
32bit compat syscall implementation.
- Prevent bogus selection of CPU local clocksources which causes an
endless reselection loop
- Remove the extra kthread in the clocksource code which has no value
and just adds another level of indirection
- The usual bunch of trivial updates, cleanups and fixlets all over the
place
- More SPDX conversions
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
clocksource/drivers/mxs_timer: Switch to SPDX identifier
clocksource/drivers/timer-imx-tpm: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Remove outdated file path
clocksource/drivers/arc_timer: Add comments about locking while read GFRC
clocksource/drivers/mips-gic-timer: Add pr_fmt and reword pr_* messages
clocksource/drivers/sprd: Fix Kconfig dependency
clocksource: Move inline keyword to the beginning of function declarations
timer_list: Remove unused function pointer typedef
timers: Adjust a kernel-doc comment
tick: Prefer a lower rating device only if it's CPU local device
clocksource: Remove kthread
time: Change nanosleep to safe __kernel_* types
time: Change types to new y2038 safe __kernel_* types
time: Fix get_timespec64() for y2038 safe compat interfaces
time: Add new y2038 safe __kernel_timespec
posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_64BIT_TIME in architectures
compat: Enable compat_get/put_timespec64 always
...
This patch moves nip/ctr/lr/xer registers from scattered places in
kvm_vcpu_arch to pt_regs structure.
cr register is "unsigned long" in pt_regs and u32 in vcpu->arch.
It will need more consideration and may move in later patches.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Current regs are scattered at kvm_vcpu_arch structure and it will
be more neat to organize them into pt_regs structure.
Also it will enable reimplementation of MMIO emulation code with
analyse_instr() later.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HV KVM guest entry/exit code adds the timebase offset
from the vcore struct to the timebase on guest entry, and subtracts
it on guest exit. Which is fine, except that it is possible for
userspace to change the offset using the SET_ONE_REG interface while
the vcore is running, as there is only one timebase offset per vcore
but potentially multiple VCPUs in the vcore. If that were to happen,
KVM would subtract a different offset on guest exit from that which
it had added on guest entry, leading to the timebase being out of sync
between cores in the host, which then leads to bad things happening
such as hangs and spurious watchdog timeouts.
To fix this, we add a new field 'tb_offset_applied' to the vcore struct
which stores the offset that is currently applied to the timebase.
This value is set from the vcore tb_offset field on guest entry, and
is what is subtracted from the timebase on guest exit. Since it is
zero when the timebase offset is not applied, we can simplify the
logic in kvmhv_start_timing and kvmhv_accumulate_time.
In addition, we had secondary threads reading the timebase while
running concurrently with code on the primary thread which would
eventually add or subtract the timebase offset from the timebase.
This occurred while saving or restoring the DEC register value on
the secondary threads. Although no specific incorrect behaviour has
been observed, this is a race which should be fixed. To fix it, we
move the DEC saving code to just before we call kvmhv_commence_exit,
and the DEC restoring code to after the point where we have waited
for the primary thread to switch the MMU context and add the timebase
offset. That way we are sure that the timebase contains the guest
timebase value in both cases.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We have some C code that we call into from real mode where we cannot
take any exceptions. Though the C functions themselves are mostly safe,
if these functions are traced, there is a possibility that we may take
an exception. For instance, in certain conditions, the ftrace code uses
WARN(), which uses a 'trap' to do its job.
For such scenarios, introduce a new field in paca 'ftrace_enabled',
which is checked on ftrace entry before continuing. This field can then
be set to zero to disable/pause ftrace, and set to a non-zero value to
resume ftrace.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
The "lppaca" is a structure registered with the hypervisor. This is
unnecessary when running on non-virtualised platforms. One field from
the lppaca (pmcregs_in_use) is also used by the host, so move the host
part out into the paca (lppaca field is still updated in
guest mode).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix non-pseries build with some #ifdefs]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 processors up to and including "Nimbus" v2.2 have hardware
bugs relating to transactional memory and thread reconfiguration.
One of these bugs has a workaround which is to get the core into
SMT4 state temporarily. This workaround is only needed when
running bare-metal.
This patch provides a function which gets the core into SMT4 mode
by preventing threads from going to a stop state, and waking up
those which are already in a stop state. Once at least 3 threads
are not in a stop state, the core will be in SMT4 and we can
continue.
To do this, we add a "dont_stop" flag to the paca to tell the
thread not to go into a stop state. If this flag is set,
power9_idle_stop() just returns immediately with a return value
of 0. The pnv_power9_force_smt4_catch() function does the following:
1. Set the dont_stop flag for each thread in the core, except
ourselves (in fact we use an atomic_inc() in case more than
one thread is calling this function concurrently).
2. See how many threads are awake, indicated by their
requested_psscr field in the paca being 0. If this is at
least 3, skip to step 5.
3. Send a doorbell interrupt to each thread that was seen as
being in a stop state in step 2.
4. Until at least 3 threads are awake, scan the threads to which
we sent a doorbell interrupt and check if they are awake now.
This relies on the following properties:
- Once dont_stop is non-zero, requested_psccr can't go from zero to
non-zero, except transiently (and without the thread doing stop).
- requested_psscr being zero guarantees that the thread isn't in
a state-losing stop state where thread reconfiguration could occur.
- Doing stop with a PSSCR value of 0 won't be a state-losing stop
and thus won't allow thread reconfiguration.
- Once threads_per_core/2 + 1 (i.e. 3) threads are awake, the core
must be in SMT4 mode, since SMT modes are powers of 2.
This does add a sync to power9_idle_stop(), which is necessary to
provide the correct ordering between setting requested_psscr and
checking dont_stop. The overhead of the sync should be unnoticeable
compared to the latency of going into and out of a stop state.
Because some objected to incurring this extra latency on systems where
the XER[SO] bug is not relevant, I have put the test in
power9_idle_stop inside a feature section. This means that
pnv_power9_force_smt4_catch() WILL NOT WORK correctly on systems
without the CPU_FTR_P9_TM_XER_SO_BUG feature bit set, and will
probably hang the system.
In order to cater for uses where the caller has an operation that
has to be done while the core is in SMT4, the core continues to be
kept in SMT4 after pnv_power9_force_smt4_catch() function returns,
until the pnv_power9_force_smt4_release() function is called.
It undoes the effect of step 1 above and allows the other threads
to go into a stop state.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaYXViAAoJEJ2a6ncsY3GfDhgIAIDVBZH/Ftq7eJiUSxDpqyCQ
DF/x7fNKzK/J33pu+3ntOI2gZsldExAy7vH2M27I4qLIkbI5y3vu4v8l3CDlS1LK
9dKi72zg7baozoVF5mGUNm0B1sSvZiIQlC/kaami2aPTF1GcrJ561GthzfZwxENX
TSLqOA4LkeUZh2tUsvbcUrPi6v+E4Em2lgacQcx2ioMblWz56sZu79VsUbSSw/a3
P8+pIv7EbHw+TrOZMehjCbZkOdBeZ3IRLJsdlIAfe7y4vWME/5b9uVnQS/+XQj/B
6f3rQrduGvF2P6GMjsm8gDkgE5oZ1zbKlgO4i5WApnu80MMLFlfEUN+GWuGJ95Q=
=OjGs
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.16
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
The fallback RFI flush is used when firmware does not provide a way
to flush the cache. It's a "displacement flush" that evicts useful
data by displacing it with an uninteresting buffer.
The flush has to take care to work with implementation specific cache
replacment policies, so the recipe has been in flux. The initial
slow but conservative approach is to touch all lines of a congruence
class, with dependencies between each load. It has since been
determined that a linear pattern of loads without dependencies is
sufficient, and is significantly faster.
Measuring the speed of a null syscall with RFI fallback flush enabled
gives the relative improvement:
P8 - 1.83x
P9 - 1.75x
The flush also becomes simpler and more adaptable to different cache
geometries.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Merge our fixes branch from the 4.15 cycle.
Unusually the fixes branch saw some significant features merged,
notably the RFI flush patches, so we want the code in next to be
tested against that, to avoid any surprises when the two are merged.
There's also some other work on the panic handling that was reverted
in fixes and we now want to do properly in next, which would conflict.
And we also fix a few other minor merge conflicts.
Rename the paca->soft_enabled to paca->irq_soft_mask as it is no
longer used as a flag for interrupt state, but a mask.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works on top of the single escalation support. When in single
escalation, with this change, we will keep the escalation interrupt
disabled unless the VCPU is in H_CEDE (idle). In any other case, we
know the VCPU will be rescheduled and thus there is no need to take
escalation interrupts in the host whenever a guest interrupt fires.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The prodded flag is only cleared at the beginning of H_CEDE,
so every time we have an escalation, we will cause the *next*
H_CEDE to return immediately.
Instead use a dedicated "irq_pending" flag to indicate that
a guest interrupt is pending for the VCPU. We don't reuse the
existing exception bitmap so as to avoid expensive atomic ops.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On some CPUs we can prevent the Meltdown vulnerability by flushing the
L1-D cache on exit from kernel to user mode, and from hypervisor to
guest.
This is known to be the case on at least Power7, Power8 and Power9. At
this time we do not know the status of the vulnerability on other CPUs
such as the 970 (Apple G5), pasemi CPUs (AmigaOne X1000) or Freescale
CPUs. As more information comes to light we can enable this, or other
mechanisms on those CPUs.
The vulnerability occurs when the load of an architecturally
inaccessible memory region (eg. userspace load of kernel memory) is
speculatively executed to the point where its result can influence the
address of a subsequent speculatively executed load.
In order for that to happen, the first load must hit in the L1,
because before the load is sent to the L2 the permission check is
performed. Therefore if no kernel addresses hit in the L1 the
vulnerability can not occur. We can ensure that is the case by
flushing the L1 whenever we return to userspace. Similarly for
hypervisor vs guest.
In order to flush the L1-D cache on exit, we add a section of nops at
each (h)rfi location that returns to a lower privileged context, and
patch that with some sequence. Newer firmwares are able to advertise
to us that there is a special nop instruction that flushes the L1-D.
If we do not see that advertised, we fall back to doing a displacement
flush in software.
For guest kernels we support migration between some CPU versions, and
different CPUs may use different flush instructions. So that we are
prepared to migrate to a machine with a different flush instruction
activated, we may have to patch more than one flush instruction at
boot if the hypervisor tells us to.
In the end this patch is mostly the work of Nicholas Piggin and
Michael Ellerman. However a cast of thousands contributed to analysis
of the issue, earlier versions of the patch, back ports testing etc.
Many thanks to all of them.
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Current vDSO64 implementation does not have support for coarse clocks
(CLOCK_MONOTONIC_COARSE, CLOCK_REALTIME_COARSE), for which it falls back
to system call, increasing the response time, vDSO implementation reduces
the cycle time. Below is a benchmark of the difference in execution times.
(Non-coarse clocks are also included just for completion)
clock-gettime-realtime: syscall: 172 nsec/call
clock-gettime-realtime: libc: 28 nsec/call
clock-gettime-realtime: vdso: 22 nsec/call
clock-gettime-monotonic: syscall: 171 nsec/call
clock-gettime-monotonic: libc: 30 nsec/call
clock-gettime-monotonic: vdso: 25 nsec/call
clock-gettime-realtime-coarse: syscall: 153 nsec/call
clock-gettime-realtime-coarse: libc: 16 nsec/call
clock-gettime-realtime-coarse: vdso: 10 nsec/call
clock-gettime-monotonic-coarse: syscall: 167 nsec/call
clock-gettime-monotonic-coarse: libc: 17 nsec/call
clock-gettime-monotonic-coarse: vdso: 11 nsec/call
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Santosh Sivaraj <santosh@fossix.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
Radix keeps no meaningful state in addr_limit, so remove it from radix
code and rename to slb_addr_limit to make it clear it applies to hash
only.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
CONFIG_PPC_STD_MMU_64 indicates support for the "standard" powerpc MMU
on 64-bit CPUs. The "standard" MMU refers to the hash page table MMU
found in "server" processors, from IBM mainly.
Currently CONFIG_PPC_STD_MMU_64 is == CONFIG_PPC_BOOK3S_64. While it's
annoying to have two symbols that always have the same value, it's not
quite annoying enough to bother removing one.
However with the arrival of Power9, we now have the situation where
CONFIG_PPC_STD_MMU_64 is enabled, but the kernel is running using the
Radix MMU - *not* the "standard" MMU. So it is now actively confusing
to use it, because it implies that code is disabled or inactive when
the Radix MMU is in use, however that is not necessarily true.
So s/CONFIG_PPC_STD_MMU_64/CONFIG_PPC_BOOK3S_64/, and do some minor
formatting updates of some of the affected lines.
This will be a pain for backports, but c'est la vie.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch removes the restriction that a radix host can only run
radix guests, allowing us to run HPT (hashed page table) guests as
well. This is useful because it provides a way to run old guest
kernels that know about POWER8 but not POWER9.
Unfortunately, POWER9 currently has a restriction that all threads
in a given code must either all be in HPT mode, or all in radix mode.
This means that when entering a HPT guest, we have to obtain control
of all 4 threads in the core and get them to switch their LPIDR and
LPCR registers, even if they are not going to run a guest. On guest
exit we also have to get all threads to switch LPIDR and LPCR back
to host values.
To make this feasible, we require that KVM not be in the "independent
threads" mode, and that the CPU cores be in single-threaded mode from
the host kernel's perspective (only thread 0 online; threads 1, 2 and
3 offline). That allows us to use the same code as on POWER8 for
obtaining control of the secondary threads.
To manage the LPCR/LPIDR changes required, we extend the kvm_split_info
struct to contain the information needed by the secondary threads.
All threads perform a barrier synchronization (where all threads wait
for every other thread to reach the synchronization point) on guest
entry, both before and after loading LPCR and LPIDR. On guest exit,
they all once again perform a barrier synchronization both before
and after loading host values into LPCR and LPIDR.
Finally, it is also currently necessary to flush the entire TLB every
time we enter a HPT guest on a radix host. We do this on thread 0
with a loop of tlbiel instructions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>