There exists 350MHz K6-2E+ CPU, so add it to the usual frequency table.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently, ondemand calculates the target frequency proportional to load
using the formula:
Target frequency = C * load
where C = policy->cpuinfo.max_freq / 100
Though, in many cases, the minimum available frequency is pretty high and
the above calculation introduces a dead band from load 0 to
100 * policy->cpuinfo.min_freq / policy->cpuinfo.max_freq where the target
frequency is always calculated to less than policy->cpuinfo.min_freq and
the minimum frequency is selected.
For example: on Intel i7-3770 @ 3.4GHz the policy->cpuinfo.min_freq = 1600000
and the policy->cpuinfo.max_freq = 3400000 (without turbo). Thus, the CPU
starts to scale up at a load above 47.
On quad core 1500MHz Krait the policy->cpuinfo.min_freq = 384000
and the policy->cpuinfo.max_freq = 1512000. Thus, the CPU starts to scale
at load above 25.
Change the calculation of target frequency to eliminate the above effect using
the formula:
Target frequency = A + B * load
where A = policy->cpuinfo.min_freq and
B = (policy->cpuinfo.max_freq - policy->cpuinfo->min_freq) / 100
This will map load values 0 to 100 linearly to cpuinfo.min_freq to
cpuinfo.max_freq.
Also, use the CPUFREQ_RELATION_C in __cpufreq_driver_target to select the
closest frequency in frequency_table. This is necessary to avoid selection
of minimum frequency only when load equals to 0. It will also help for selection
of frequencies using a more 'fair' criterion.
Tables below show the difference in selected frequency for specific values
of load without and with this patch. On Intel i7-3770 @ 3.40GHz:
Without With
Load Target Selected Target Selected
0 0 1600000 1600000 1600000
5 170050 1600000 1690050 1700000
10 340100 1600000 1780100 1700000
15 510150 1600000 1870150 1900000
20 680200 1600000 1960200 2000000
25 850250 1600000 2050250 2100000
30 1020300 1600000 2140300 2100000
35 1190350 1600000 2230350 2200000
40 1360400 1600000 2320400 2400000
45 1530450 1600000 2410450 2400000
50 1700500 1900000 2500500 2500000
55 1870550 1900000 2590550 2600000
60 2040600 2100000 2680600 2600000
65 2210650 2400000 2770650 2800000
70 2380700 2400000 2860700 2800000
75 2550750 2600000 2950750 3000000
80 2720800 2800000 3040800 3000000
85 2890850 2900000 3130850 3100000
90 3060900 3100000 3220900 3300000
95 3230950 3300000 3310950 3300000
100 3401000 3401000 3401000 3401000
On ARM quad core 1500MHz Krait:
Without With
Load Target Selected Target Selected
0 0 384000 384000 384000
5 75600 384000 440400 486000
10 151200 384000 496800 486000
15 226800 384000 553200 594000
20 302400 384000 609600 594000
25 378000 384000 666000 702000
30 453600 486000 722400 702000
35 529200 594000 778800 810000
40 604800 702000 835200 810000
45 680400 702000 891600 918000
50 756000 810000 948000 918000
55 831600 918000 1004400 1026000
60 907200 918000 1060800 1026000
65 982800 1026000 1117200 1134000
70 1058400 1134000 1173600 1134000
75 1134000 1134000 1230000 1242000
80 1209600 1242000 1286400 1242000
85 1285200 1350000 1342800 1350000
90 1360800 1458000 1399200 1350000
95 1436400 1458000 1455600 1458000
100 1512000 1512000 1512000 1512000
Tested on Intel i7-3770 CPU @ 3.40GHz and on ARM quad core 1500MHz Krait
(Android smartphone).
Benchmarks on Intel i7 shows a performance improvement on low and medium
work loads with lower power consumption. Specifics:
Phoronix Linux Kernel Compilation 3.1:
Time: -0.40%, energy: -0.07%
Phoronix Apache:
Time: -4.98%, energy: -2.35%
Phoronix FFMPEG:
Time: -6.29%, energy: -4.02%
Also, running mp3 decoding (very low load) shows no differences with and
without this patch.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Introduce CPUFREQ_RELATION_C for frequency selection.
It selects the frequency with the minimum euclidean distance to target.
In case of equal distance between 2 frequencies, it will select the
greater frequency.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
PU regulator is not a necessary regulator for cpufreq, not all
i.MX6 SoCs have PU regulator, only if SOC has PU regulator, then its
voltage must be equal to SOC regulator, so remove the dependency
to support i.MX6SX which has no PU regulator.
Signed-off-by: Anson Huang <b20788@freescale.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Shawn Guo <shawn.guo@freescale.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The specific rounding adds conditionally only 1/256 to fractional
part of core_pct.
We can safely remove it without any noticeable impact in
calculations.
Use div64_u64 instead of div_u64 to avoid possible overflow of
sample->mperf as divisor
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Simplify the code by removing the inline functions pstate_increase and
pstate_decrease and use directly the intel_pstate_set_pstate.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently we shift right aperf and mperf variables by FRAC_BITS
to prevent overflow when we convert them to fix point numbers
(shift left by FRAC_BITS).
But this is not necessary, because we actually use delta aperf and mperf
which are much less than APERF and MPERF values.
So, use the unmodified APERF and MPERF values in calculation.
This also adds 8 bits in precision, although the gain is insignificant.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
According to Intel 64 and IA-32 Architectures SDM, Volume 3,
Chapter 14.2, "Software needs to exercise care to avoid delays
between the two RDMSRs (for example interrupts)".
So, disable interrupts during reading MSRs IA32_APERF and IA32_MPERF.
This should increase the accuracy of the calculations.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Suppress checkpatch.pl --strict warnings:
CHECK: Alignment should match open parenthesis
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove the unnecessary intermediate assignment and use directly the
pid_params.sample_rate_ms variable.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove unnecessary parentheses.
Also, add parentheses in one case for better readability.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We can fit these lines in a single one, under the 80 characters
limit.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
div_s64() accepts the divisor parameter as s32. Helper div_fp()
also accepts divisor as int32_t.
So, remove the unnecessary int64_t type casting.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since we never remove sysfs entry and debugfs files, we can make
the intel_pstate_kobject and debugfs_parent locals.
Also, annotate with __init intel_pstate_sysfs_expose_params()
and intel_pstate_debug_expose_params() in order to be freed
after bootstrap.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is no use for the .resume_clocks() callback now and in fact all
the provided functions are empty, so this patch just removes it in
preparation for further patches.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Tomasz Figa <t.figa@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
This is only relevant to implementations with multiple clusters, where clusters
have separate clock lines but all CPUs within a cluster share it.
Consider a dual cluster platform with 2 cores per cluster. During suspend we
start hot unplugging CPUs in order 1 to 3. When CPU2 is removed, policy->kobj
would be moved to CPU3 and when CPU3 goes down we wouldn't free policy or its
kobj as we want to retain permissions/values/etc.
Now on resume, we will get CPU2 before CPU3 and will call __cpufreq_add_dev().
We will recover the old policy and update policy->cpu from 3 to 2 from
update_policy_cpu().
But the kobj is still tied to CPU3 and isn't moved to CPU2. We wouldn't create a
link for CPU2, but would try that for CPU3 while bringing it online. Which will
report errors as CPU3 already has kobj assigned to it.
This bug got introduced with commit 42f921a, which overlooked this scenario.
To fix this, lets move kobj to the new policy->cpu while bringing first CPU of a
cluster back. Also do a WARN_ON() if kobject_move failed, as we would reach here
only for the first CPU of a non-boot cluster. And we can't recover from this
situation, if kobject_move() fails.
Fixes: 42f921a6f1 (cpufreq: remove sysfs files for CPUs which failed to come back after resume)
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Reported-and-tested-by: Bu Yitian <ybu@qti.qualcomm.com>
Reported-by: Saravana Kannan <skannan@codeaurora.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa@mit.edu>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
OPPs can be populated statically, via DT, or added at run time with
dev_pm_opp_add().
While this driver handles the first case correctly, it would fail to populate
OPPs added at runtime. Because call to of_init_opp_table() would fail as there
are no OPPs in DT and probe will return early.
To fix this, remove error checking and call dev_pm_opp_init_cpufreq_table()
unconditionally.
Update bindings as well.
Suggested-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit ff1f0018cf ("drivers: Enable
building of Kirkwood drivers for mach-mvebu") added Kirkwood into
mach-mvebu, adding MACH_KIRKWOOD to ARCH_KIRKWOOD in the KConfig files.
The change for ARM_KIRKWOOD_CPUFREQ replaced ARCH_KIRKWOOD with
MACH_KIRKWOOD, whereas all the other changes were ARCH_KIRKWOOD ||
MACH_KIRKWOOD.
As a consequence of this change, the cpufreq driver is no longer enabled
for ARCH_KIRKWOOD. This patch reinstates ARM_KIRKWOOD_CPUFREQ for
ARCH_KIRKWOOD.
Signed-off-by: Quentin Armitage <quentin@armitage.org.uk>
Acked-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
PM_OPP is a library used by several of the existing cpufreq drivers.
ARM IMX6Q cpufreq driver uses this library for its functionality.
Thus, it should be selected in Kconfig.
Reported-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Signed-off-by: Nicolas Del Piano <ndel314@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The Compaq iPAQ h3600 also has the K4S281632b-1H memory type.
Verified by prying apart a broken board.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since commtit 8a7b1227e3 (cpufreq: davinci: move cpufreq driver to
drivers/cpufreq) this added dependancy only for CONFIG_ARCH_DAVINCI_DA850
where as davinci_cpufreq_init() call is used by all davinci platform.
This patch fixes following build error:
arch/arm/mach-davinci/built-in.o: In function `davinci_init_late':
:(.init.text+0x928): undefined reference to `davinci_cpufreq_init'
make: *** [vmlinux] Error 1
Fixes: 8a7b1227e3 (cpufreq: davinci: move cpufreq driver to drivers/cpufreq)
Signed-off-by: Lad, Prabhakar <prabhakar.csengg@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 3.10+ <stable@vger.kernel.org> # 3.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Ensure that cpu->cpu is set before writing MSR_IA32_PERF_CTL during CPU
initialization. Otherwise only cpu0 has its P-state set and all other
cores are left with their values unchanged.
In most cases, this is not too serious because the P-states will be set
correctly when the timer function is run. But when the default governor
is set to performance, the per-CPU current_pstate stays the same forever
and no attempts are made to write the MSRs again.
Signed-off-by: Vincent Minet <vincent@vincent-minet.net>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If turbo is disabled in the BIOS bit 38 should be set in
MSR_IA32_MISC_ENABLE register per section 14.3.2.1 of the SDM Vol 3
document 325384-050US Feb 2014. If this bit is set do *not* attempt
to disable trubo via the MSR_IA32_PERF_CTL register. On some systems
trying to disable turbo via MSR_IA32_PERF_CTL will cause subsequent
writes to MSR_IA32_PERF_CTL not take affect, in fact reading
MSR_IA32_PERF_CTL will not show the IDA/Turbo DISENGAGE bit(32) as
set. A write of bit 32 to zero returns to normal operation.
Also deal with the case where the processor does not support
turbo and the BIOS does not report the fact in MSR_IA32_MISC_ENABLE
but does report the max and turbo P states as the same value.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=64251
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 21855ff5 (intel_pstate: Set turbo VID for BayTrail) introduced
setting the turbo VID which is required to prevent a machine check on
some Baytrail SKUs under heavy graphics based workloads. The
docmumentation update that brought the requirement to light also
changed the bit mask used for enumerating P state and VID values from
0x7f to 0x3f.
This change returns the mask value to 0x7f.
Tested with the Intel NUC DN2820FYK,
BIOS version FYBYT10H.86A.0034.2014.0513.1413 with v3.16-rc1 and
v3.14.8 kernel versions.
Fixes: 21855ff5 (intel_pstate: Set turbo VID for BayTrail)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=77951
Reported-and-tested-by: Rune Reterson <rune@megahurts.dk>
Reported-and-tested-by: Eric Eickmeyer <erich@ericheickmeyer.com>
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are a bunch of users open coding the for_each_node_by_name() by
calling of_find_node_by_name() directly instead of using the macro. This
is getting in the way of some cleanups, and the possibility of removing
of_find_node_by_name() entirely. Clean it up so that all the users are
consistent.
Signed-off-by: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Takashi Iwai <tiwai@suse.de>
Commit bd0fa9bb45 introduced a failure path to cpufreq_update_policy() if
cpufreq_driver->get(cpu) returns NULL. However, it jumps to the 'no_policy'
label, which exits without unlocking any of the locks the function acquired
earlier. This causes later calls into cpufreq to hang.
Fix this by creating a new 'unlock' label and jumping to that instead.
Fixes: bd0fa9bb45 ("cpufreq: Return error if ->get() failed in cpufreq_update_policy()")
Link: https://devtalk.nvidia.com/default/topic/751903/kernel-3-15-and-nv-drivers-337-340-failed-to-initialize-the-nvidia-kernel-module-gtx-550-ti-/
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Cc: 3.15+ <stable@vger.kernel.org> # 3.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There was a mistake in the actual rounding portion this previous patch:
f0fe3cd7e1 (intel_pstate: Correct rounding in busy calculation) such that
the rounding was asymetric and incorrect.
Severity: Not very serious, but can increase target pstate by one extra value.
For real world work flows the issue should self correct (but I have no proof).
It is the equivalent of different PID gains for positive and negative numbers.
Examples:
-3.000000 used to round to -4, rounds to -3 with this patch.
-3.503906 used to round to -5, rounds to -4 with this patch.
Fixes: f0fe3cd7e1 (intel_pstate: Correct rounding in busy calculation)
Signed-off-by: Doug Smythies <dsmythies@telus.net>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
5fbfbcd3e8 ("cpufreq: cpufreq-cpu0: remove dependency on THERMAL and
REGULATOR") was a little too quick in completely removing the dependency
on the THERMAL driver.
The problem is that while there are inline wrappers to turn the thermal
API calls into empty functions, those do not help if the cpu-thermal
driver is a loadable module and cpufreq-cpu0 is builtin.
Since CONFIG_CPU_THERMAL is a bool option that decides whether the cpu
code is built into the thermal module or not, we have to use a dependency
on the thermal driver itself. However, if CPU_THERMAL is disabled, we
don't need the dependency, hence the strange '!CPU_THERMAL || THERMAL'
construct.
Fixes: 5fbfbcd3e8 ("cpufreq: cpufreq-cpu0: remove dependency on THERMAL and REGULATOR")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* pm-cpufreq:
cpufreq: cpufreq-cpu0: remove dependency on THERMAL and REGULATOR
cpufreq: tegra: update comment for clarity
cpufreq: intel_pstate: Remove duplicate CPU ID check
cpufreq: Mark CPU0 driver with CPUFREQ_NEED_INITIAL_FREQ_CHECK flag
cpufreq: governor: remove copy_prev_load from 'struct cpu_dbs_common_info'
cpufreq: governor: Be friendly towards latency-sensitive bursty workloads
cpufreq: ppc-corenet-cpu-freq: do_div use quotient
Revert "cpufreq: Enable big.LITTLE cpufreq driver on arm64"
cpufreq: Tegra: implement intermediate frequency callbacks
cpufreq: add support for intermediate (stable) frequencies
cpufreq-cpu0 uses thermal framework to register a cooling device, but doesn't
depend on it as there are dummy calls provided by thermal layer when
CONFIG_THERMAL=n. And when these calls fail, the driver is still usable.
Similar explanation is valid for regulators as well. We do have dummy calls
available for regulator APIs and the driver can work even when those calls
fail.
So, we don't really need to mention thermal and regulators as a dependency for
cpufreq-cpu0 in Kconfig as platforms without support for thermal/regulator can
also use this driver. Remove this dependency.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tegra's driver got updated a bit (00917dd cpufreq: Tegra: implement intermediate
frequency callbacks) and implements new 'intermediate freq' infrastructure of
core. Above commit updated comments about when to call
clk_prepare_enable(pll_x_clk) and Doug wasn't satisfied with those comments and
said this:
> The "Though when target-freq is intermediate freq, we don't need to
> take this reference." makes me think that this function is actually
> called when target-freq is intermediate freq. I don't think it is,
> right?
For better clarity just make that comment more explicit about when we call
tegra_target_intermediate().
Reviewed-by: Stephen Warren <swarren@nvidia.com>
Reported-and-reviewed-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We check the CPU ID during driver init. There is no need
to do it again per logical CPU initialization.
So, remove the duplicate check.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Sometimes boot loaders set CPU frequency to a value outside of frequency table
present with cpufreq core. In such cases CPU might be unstable if it has to run
on that frequency for long duration of time and so its better to set it to a
frequency which is specified in frequency table.
Sachin recently found this problem with cpufreq-cpu0 driver when he was testing
it for Exynos.
Set this flag for cpufreq-cpu0 driver.
Reported-and-tested-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
'copy_prev_load' was recently added by commit: 18b46ab (cpufreq: governor: Be
friendly towards latency-sensitive bursty workloads).
It actually is a bit redundant as we also have 'prev_load' which can store any
integer value and can be used instead of 'copy_prev_load' by setting it zero.
True load can also turn out to be zero during long idle intervals (and hence the
actual value of 'prev_load' and the overloaded value can clash). However this is
not a problem because, if the true load was really zero in the previous
interval, it makes sense to evaluate the load afresh for the current interval
rather than copying the previous load.
So, drop 'copy_prev_load' and use 'prev_load' instead.
Update comments as well to make it more clear.
There is another change here which was probably missed by Srivatsa during the
last version of updates he made. The unlikely in the 'if' statement was covering
only half of the condition and the whole line should actually come under it.
Also checkpatch is made more silent as it was reporting this (--strict option):
CHECK: Alignment should match open parenthesis
+ if (unlikely(wall_time > (2 * sampling_rate) &&
+ j_cdbs->prev_load)) {
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cpufreq governors like the ondemand governor calculate the load on the CPU
periodically by employing deferrable timers. A deferrable timer won't fire
if the CPU is completely idle (and there are no other timers to be run), in
order to avoid unnecessary wakeups and thus save CPU power.
However, the load calculation logic is agnostic to all this, and this can
lead to the problem described below.
Time (ms) CPU 1
100 Task-A running
110 Governor's timer fires, finds load as 100% in the last
10ms interval and increases the CPU frequency.
110.5 Task-A running
120 Governor's timer fires, finds load as 100% in the last
10ms interval and increases the CPU frequency.
125 Task-A went to sleep. With nothing else to do, CPU 1
went completely idle.
200 Task-A woke up and started running again.
200.5 Governor's deferred timer (which was originally programmed
to fire at time 130) fires now. It calculates load for the
time period 120 to 200.5, and finds the load is almost zero.
Hence it decreases the CPU frequency to the minimum.
210 Governor's timer fires, finds load as 100% in the last
10ms interval and increases the CPU frequency.
So, after the workload woke up and started running, the frequency was suddenly
dropped to absolute minimum, and after that, there was an unnecessary delay of
10ms (sampling period) to increase the CPU frequency back to a reasonable value.
And this pattern repeats for every wake-up-from-cpu-idle for that workload.
This can be quite undesirable for latency- or response-time sensitive bursty
workloads. So we need to fix the governor's logic to detect such wake-up-from-
cpu-idle scenarios and start the workload at a reasonably high CPU frequency.
One extreme solution would be to fake a load of 100% in such scenarios. But
that might lead to undesirable side-effects such as frequency spikes (which
might also need voltage changes) especially if the previous frequency happened
to be very low.
We just want to avoid the stupidity of dropping down the frequency to a minimum
and then enduring a needless (and long) delay before ramping it up back again.
So, let us simply carry forward the previous load - that is, let us just pretend
that the 'load' for the current time-window is the same as the load for the
previous window. That way, the frequency and voltage will continue to be set
to whatever values they were set at previously. This means that bursty workloads
will get a chance to influence the CPU frequency at which they wake up from
cpu-idle, based on their past execution history. Thus, they might be able to
avoid suffering from slow wakeups and long response-times.
However, we should take care not to over-do this. For example, such a "copy
previous load" logic will benefit cases like this: (where # represents busy
and . represents idle)
##########.........#########.........###########...........##########........
but it will be detrimental in cases like the one shown below, because it will
retain the high frequency (copied from the previous interval) even in a mostly
idle system:
##########.........#.................#.....................#...............
(i.e., the workload finished and the remaining tasks are such that their busy
periods are smaller than the sampling interval, which causes the timer to
always get deferred. So, this will make the copy-previous-load logic copy
the initial high load to subsequent idle periods over and over again, thus
keeping the frequency high unnecessarily).
So, we modify this copy-previous-load logic such that it is used only once
upon every wakeup-from-idle. Thus if we have 2 consecutive idle periods, the
previous load won't get blindly copied over; cpufreq will freshly evaluate the
load in the second idle interval, thus ensuring that the system comes back to
its normal state.
[ The right way to solve this whole problem is to teach the CPU frequency
governors to also track load on a per-task basis, not just a per-CPU basis,
and then use both the data sources intelligently to set the appropriate
frequency on the CPUs. But that involves redesigning the cpufreq subsystem,
so this patch should make the situation bearable until then. ]
Experimental results:
+-------------------+
I ran a modified version of ebizzy (called 'sleeping-ebizzy') that sleeps in
between its execution such that its total utilization can be a user-defined
value, say 10% or 20% (higher the utilization specified, lesser the amount of
sleeps injected). This ebizzy was run with a single-thread, tied to CPU 8.
Behavior observed with tracing (sample taken from 40% utilization runs):
------------------------------------------------------------------------
Without patch:
~~~~~~~~~~~~~~
kworker/8:2-12137 416.335742: cpu_frequency: state=2061000 cpu_id=8
kworker/8:2-12137 416.335744: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40753 416.345741: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-12137 416.345744: cpu_frequency: state=4123000 cpu_id=8
kworker/8:2-12137 416.345746: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40753 416.355738: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
<snip> --------------------------------------------------------------------- <snip>
<...>-40753 416.402202: sched_switch: prev_comm=ebizzy ==> next_comm=swapper/8
<idle>-0 416.502130: sched_switch: prev_comm=swapper/8 ==> next_comm=ebizzy
<...>-40753 416.505738: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-12137 416.505739: cpu_frequency: state=2061000 cpu_id=8
kworker/8:2-12137 416.505741: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40753 416.515739: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-12137 416.515742: cpu_frequency: state=4123000 cpu_id=8
kworker/8:2-12137 416.515744: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
Observation: Ebizzy went idle at 416.402202, and started running again at
416.502130. But cpufreq noticed the long idle period, and dropped the frequency
at 416.505739, only to increase it back again at 416.515742, realizing that the
workload is in-fact CPU bound. Thus ebizzy needlessly ran at the lowest frequency
for almost 13 milliseconds (almost 1 full sample period), and this pattern
repeats on every sleep-wakeup. This could hurt latency-sensitive workloads quite
a lot.
With patch:
~~~~~~~~~~~
kworker/8:2-29802 464.832535: cpu_frequency: state=2061000 cpu_id=8
<snip> --------------------------------------------------------------------- <snip>
kworker/8:2-29802 464.962538: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40738 464.972533: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-29802 464.972536: cpu_frequency: state=4123000 cpu_id=8
kworker/8:2-29802 464.972538: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40738 464.982531: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
<snip> --------------------------------------------------------------------- <snip>
kworker/8:2-29802 465.022533: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40738 465.032531: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-29802 465.032532: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40738 465.035797: sched_switch: prev_comm=ebizzy ==> next_comm=swapper/8
<idle>-0 465.240178: sched_switch: prev_comm=swapper/8 ==> next_comm=ebizzy
<...>-40738 465.242533: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
kworker/8:2-29802 465.242535: sched_switch: prev_comm=kworker/8:2 ==> next_comm=ebizzy
<...>-40738 465.252531: sched_switch: prev_comm=ebizzy ==> next_comm=kworker/8:2
Observation: Ebizzy went idle at 465.035797, and started running again at
465.240178. Since ebizzy was the only real workload running on this CPU,
cpufreq retained the frequency at 4.1Ghz throughout the run of ebizzy, no
matter how many times ebizzy slept and woke-up in-between. Thus, ebizzy
got the 10ms worth of 4.1 Ghz benefit during every sleep-wakeup (as compared
to the run without the patch) and this boost gave a modest improvement in total
throughput, as shown below.
Sleeping-ebizzy records-per-second:
-----------------------------------
Utilization Without patch With patch Difference (Absolute and % values)
10% 274767 277046 + 2279 (+0.829%)
20% 543429 553484 + 10055 (+1.850%)
40% 1090744 1107959 + 17215 (+1.578%)
60% 1634908 1662018 + 27110 (+1.658%)
A rudimentary and somewhat approximately latency-sensitive workload such as
sleeping-ebizzy itself showed a consistent, noticeable performance improvement
with this patch. Hence, workloads that are truly latency-sensitive will benefit
quite a bit from this change. Moreover, this is an overall win-win since this
patch does not hurt power-savings at all (because, this patch does not reduce
the idle time or idle residency; and the high frequency of the CPU when it goes
to cpu-idle does not affect/hurt the power-savings of deep idle states).
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 6712d29319 (cpufreq: ppc-corenet-cpufreq: Fix __udivdi3 modpost
error) used the remainder from do_div instead of the quotient. Fix that
and add one to ensure minimum is met.
Fixes: 6712d29319 (cpufreq: ppc-corenet-cpufreq: Fix __udivdi3 modpost error)
Signed-off-by: Ed Swarthout <Ed.Swarthout@freescale.com>
Cc: 3.15+ <stable@vger.kernel.org> # 3.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This reverts commit 4920ab8497 (cpufreq: Enable big.LITTLE cpufreq
driver on arm64) that breaks build on arm64.
Fixes: 4920ab8497 (cpufreq: Enable big.LITTLE cpufreq driver on arm64)
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tegra has been switching to intermediate frequency (pll_p_clk) forever.
CPUFreq core has better support for handling notifications for these
frequencies and so we can adapt Tegra's driver to it.
Also do a WARN() if clk_set_parent() fails while moving back to pll_x
as we should have atleast restored to earlier frequency on error.
Tested-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Douglas Anderson, recently pointed out an interesting problem due to which
udelay() was expiring earlier than it should.
While transitioning between frequencies few platforms may temporarily switch to
a stable frequency, waiting for the main PLL to stabilize.
For example: When we transition between very low frequencies on exynos, like
between 200MHz and 300MHz, we may temporarily switch to a PLL running at 800MHz.
No CPUFREQ notification is sent for that. That means there's a period of time
when we're running at 800MHz but loops_per_jiffy is calibrated at between 200MHz
and 300MHz. And so udelay behaves badly.
To get this fixed in a generic way, introduce another set of callbacks
get_intermediate() and target_intermediate(), only for drivers with
target_index() and CPUFREQ_ASYNC_NOTIFICATION unset.
get_intermediate() should return a stable intermediate frequency platform wants
to switch to, and target_intermediate() should set CPU to that frequency,
before jumping to the frequency corresponding to 'index'. Core will take care of
sending notifications and driver doesn't have to handle them in
target_intermediate() or target_index().
NOTE: ->target_index() should restore to policy->restore_freq in case of
failures as core would send notifications for that.
Tested-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- ACPICA update to upstream version 20140424. That includes a
number of fixes and improvements related to things like GPE
handling, table loading, headers, memory mapping and unmapping,
DSDT/SSDT overriding, and the Unload() operator. The acpidump
utility from upstream ACPICA is included too. From Bob Moore,
Lv Zheng, David Box, David Binderman, and Colin Ian King.
- Fixes and cleanups related to ACPI video and backlight interfaces
from Hans de Goede. That includes blacklist entries for some new
machines and using native backlight by default.
- ACPI device enumeration changes to create platform devices
rather than PNP devices for ACPI device objects with _HID by
default. PNP devices will still be created for the ACPI device
object with device IDs corresponding to real PNP devices, so
that change should not break things left and right, and we're
expecting to see more and more ACPI-enumerated platform devices
in the future. From Zhang Rui and Rafael J Wysocki.
- Updates for the ACPI LPSS (Low-Power Subsystem) driver allowing
it to handle system suspend/resume on Asus T100 correctly.
From Heikki Krogerus and Rafael J Wysocki.
- PM core update introducing a mechanism to allow runtime-suspended
devices to stay suspended over system suspend/resume transitions
if certain additional conditions related to coordination within
device hierarchy are met. Related PM documentation update and
ACPI PM domain support for the new feature. From Rafael J Wysocki.
- Fixes and improvements related to the "freeze" sleep state. They
affect several places including cpuidle, PM core, ACPI core, and
the ACPI battery driver. From Rafael J Wysocki and Zhang Rui.
- Miscellaneous fixes and updates of the ACPI core from Aaron Lu,
Bjørn Mork, Hanjun Guo, Lan Tianyu, and Rafael J Wysocki.
- Fixes and cleanups for the ACPI processor and ACPI PAD (Processor
Aggregator Device) drivers from Baoquan He, Manuel Schölling,
Tony Camuso, and Toshi Kani.
- System suspend/resume optimization in the ACPI battery driver from
Lan Tianyu.
- OPP (Operating Performance Points) subsystem updates from
Chander Kashyap, Mark Brown, and Nishanth Menon.
- cpufreq core fixes, updates and cleanups from Srivatsa S Bhat,
Stratos Karafotis, and Viresh Kumar.
- Updates, fixes and cleanups for the Tegra, powernow-k8, imx6q,
s5pv210, nforce2, and powernv cpufreq drivers from Brian Norris,
Jingoo Han, Paul Bolle, Philipp Zabel, Stratos Karafotis, and
Viresh Kumar.
- intel_pstate driver fixes and cleanups from Dirk Brandewie,
Doug Smythies, and Stratos Karafotis.
- Enabling the big.LITTLE cpufreq driver on arm64 from Mark Brown.
- Fix for the cpuidle menu governor from Chander Kashyap.
- New ARM clps711x cpuidle driver from Alexander Shiyan.
- Hibernate core fixes and cleanups from Chen Gang, Dan Carpenter,
Fabian Frederick, Pali Rohár, and Sebastian Capella.
- Intel RAPL (Running Average Power Limit) driver updates from
Jacob Pan.
- PNP subsystem updates from Bjorn Helgaas and Fabian Frederick.
- devfreq core updates from Chanwoo Choi and Paul Bolle.
- devfreq updates for exynos4 and exynos5 from Chanwoo Choi and
Bartlomiej Zolnierkiewicz.
- turbostat tool fix from Jean Delvare.
- cpupower tool updates from Prarit Bhargava, Ramkumar Ramachandra
and Thomas Renninger.
- New ACPI ec_access.c tool for poking at the EC in a safe way
from Thomas Renninger.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTjl16AAoJEILEb/54YlRxeKgP/RRQSV7lFtf582Dw/5M/iWOg
qYeNtuYFLArEmJ7SpxHdKsU1ZRm3CahAS1j7grvQMQasUxTzoavMcSBNZefeaoNK
d01LVNqcyKCZs3+izRezk5N1IY+AjdrOcqCdIk8rfgFnc6kOttYUrVcIzKuIKAvJ
MsJ5s/uqP8G69FsAA3Ttdtr0HKiQhN4skSt424wntQRDeJNZPBs74mPKBGh8bxlO
Zr/VCDibKQ2Z8jS7x+TzwZrOxgE1/9x0Cub6GAdTvAfS8A+utPwSkneUyopNqpQ+
tJ5rz5R+HpmPMerizBuU+5s+tvjDPtH4/OZvOPSpYraQSFLOwx3hAm+a5k7fOGmc
XWjXnXWT0i0V3iQkwrspTNjX1RgywbsHbmXrcWn192HResvMQ9zk2gH2ch6m8JhN
yTV5V51dOZicpPuaTCvIkJpsV33p6vRz+EdPBiXoEdua5KKtOg8EnQ470dNaMR92
3ZtWmIvSgGlyPyHlSHLfGXbPUwTYvDNV3aheIoXp9E6WY3WJN9J3WXm4EHKBNVaI
H83kwuk1s92cgqh22H5Pcb0CmDcrbkUdP6hhsPS/aL80/EJMljRP2AYW1Y+l1LAf
pzMLmekHFqQEDjFQltwGvFV/EjFeMHnqOgQONx9ygMaayCGGTYSDx3FbRDesf8t9
qhoFcTPSxoo0XjrGrR6b
=tpdF
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm into next
Pull ACPI and power management updates from Rafael Wysocki:
"ACPICA is the leader this time (63 commits), followed by cpufreq (28
commits), devfreq (15 commits), system suspend/hibernation (12
commits), ACPI video and ACPI device enumeration (10 commits each).
We have no major new features this time, but there are a few
significant changes of how things work. The most visible one will
probably be that we are now going to create platform devices rather
than PNP devices by default for ACPI device objects with _HID. That
was long overdue and will be really necessary to be able to use the
same drivers for the same hardware blocks on ACPI and DT-based systems
going forward. We're not expecting fallout from this one (as usual),
but it's something to watch nevertheless.
The second change having a chance to be visible is that ACPI video
will now default to using native backlight rather than the ACPI
backlight interface which should generally help systems with broken
Win8 BIOSes. We're hoping that all problems with the native backlight
handling that we had previously have been addressed and we are in a
good enough shape to flip the default, but this change should be easy
enough to revert if need be.
In addition to that, the system suspend core has a new mechanism to
allow runtime-suspended devices to stay suspended throughout system
suspend/resume transitions if some extra conditions are met
(generally, they are related to coordination within device hierarchy).
However, enabling this feature requires cooperation from the bus type
layer and for now it has only been implemented for the ACPI PM domain
(used by ACPI-enumerated platform devices mostly today).
Also, the acpidump utility that was previously shipped as a separate
tool will now be provided by the upstream ACPICA along with the rest
of ACPICA code, which will allow it to be more up to date and better
supported, and we have one new cpuidle driver (ARM clps711x).
The rest is improvements related to certain specific use cases,
cleanups and fixes all over the place.
Specifics:
- ACPICA update to upstream version 20140424. That includes a number
of fixes and improvements related to things like GPE handling,
table loading, headers, memory mapping and unmapping, DSDT/SSDT
overriding, and the Unload() operator. The acpidump utility from
upstream ACPICA is included too. From Bob Moore, Lv Zheng, David
Box, David Binderman, and Colin Ian King.
- Fixes and cleanups related to ACPI video and backlight interfaces
from Hans de Goede. That includes blacklist entries for some new
machines and using native backlight by default.
- ACPI device enumeration changes to create platform devices rather
than PNP devices for ACPI device objects with _HID by default. PNP
devices will still be created for the ACPI device object with
device IDs corresponding to real PNP devices, so that change should
not break things left and right, and we're expecting to see more
and more ACPI-enumerated platform devices in the future. From
Zhang Rui and Rafael J Wysocki.
- Updates for the ACPI LPSS (Low-Power Subsystem) driver allowing it
to handle system suspend/resume on Asus T100 correctly. From
Heikki Krogerus and Rafael J Wysocki.
- PM core update introducing a mechanism to allow runtime-suspended
devices to stay suspended over system suspend/resume transitions if
certain additional conditions related to coordination within device
hierarchy are met. Related PM documentation update and ACPI PM
domain support for the new feature. From Rafael J Wysocki.
- Fixes and improvements related to the "freeze" sleep state. They
affect several places including cpuidle, PM core, ACPI core, and
the ACPI battery driver. From Rafael J Wysocki and Zhang Rui.
- Miscellaneous fixes and updates of the ACPI core from Aaron Lu,
Bjørn Mork, Hanjun Guo, Lan Tianyu, and Rafael J Wysocki.
- Fixes and cleanups for the ACPI processor and ACPI PAD (Processor
Aggregator Device) drivers from Baoquan He, Manuel Schölling, Tony
Camuso, and Toshi Kani.
- System suspend/resume optimization in the ACPI battery driver from
Lan Tianyu.
- OPP (Operating Performance Points) subsystem updates from Chander
Kashyap, Mark Brown, and Nishanth Menon.
- cpufreq core fixes, updates and cleanups from Srivatsa S Bhat,
Stratos Karafotis, and Viresh Kumar.
- Updates, fixes and cleanups for the Tegra, powernow-k8, imx6q,
s5pv210, nforce2, and powernv cpufreq drivers from Brian Norris,
Jingoo Han, Paul Bolle, Philipp Zabel, Stratos Karafotis, and
Viresh Kumar.
- intel_pstate driver fixes and cleanups from Dirk Brandewie, Doug
Smythies, and Stratos Karafotis.
- Enabling the big.LITTLE cpufreq driver on arm64 from Mark Brown.
- Fix for the cpuidle menu governor from Chander Kashyap.
- New ARM clps711x cpuidle driver from Alexander Shiyan.
- Hibernate core fixes and cleanups from Chen Gang, Dan Carpenter,
Fabian Frederick, Pali Rohár, and Sebastian Capella.
- Intel RAPL (Running Average Power Limit) driver updates from Jacob
Pan.
- PNP subsystem updates from Bjorn Helgaas and Fabian Frederick.
- devfreq core updates from Chanwoo Choi and Paul Bolle.
- devfreq updates for exynos4 and exynos5 from Chanwoo Choi and
Bartlomiej Zolnierkiewicz.
- turbostat tool fix from Jean Delvare.
- cpupower tool updates from Prarit Bhargava, Ramkumar Ramachandra
and Thomas Renninger.
- New ACPI ec_access.c tool for poking at the EC in a safe way from
Thomas Renninger"
* tag 'pm+acpi-3.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (187 commits)
ACPICA: Namespace: Remove _PRP method support.
intel_pstate: Improve initial busy calculation
intel_pstate: add sample time scaling
intel_pstate: Correct rounding in busy calculation
intel_pstate: Remove C0 tracking
PM / hibernate: fixed typo in comment
ACPI: Fix x86 regression related to early mapping size limitation
ACPICA: Tables: Add mechanism to control early table checksum verification.
ACPI / scan: use platform bus type by default for _HID enumeration
ACPI / scan: always register ACPI LPSS scan handler
ACPI / scan: always register memory hotplug scan handler
ACPI / scan: always register container scan handler
ACPI / scan: Change the meaning of missing .attach() in scan handlers
ACPI / scan: introduce platform_id device PNP type flag
ACPI / scan: drop unsupported serial IDs from PNP ACPI scan handler ID list
ACPI / scan: drop IDs that do not comply with the ACPI PNP ID rule
ACPI / PNP: use device ID list for PNPACPI device enumeration
ACPI / scan: .match() callback for ACPI scan handlers
ACPI / battery: wakeup the system only when necessary
power_supply: allow power supply devices registered w/o wakeup source
...
SoC-near driver changes that we're merging through our tree. Mostly
because they depend on other changes we have staged, but in some cases
because the driver maintainers preferred that we did it this way.
This contains a largeish cleanup series of the omap_l3_noc bus driver,
cpuidle rework for Exynos, some reset driver conversions and a long
branch of TI EDMA fixes and cleanups, with more to come next release.
The TI EDMA cleanups is a shared branch with the dmaengine tree, with
a handful of Davinci-specific fixes on top.
After discussion at last year's KS (and some more on the mailing lists),
we are here adding a drivers/soc directory. The purpose of this is
to keep per-vendor shared code that's needed by different drivers but
that doesn't fit into the MFD (nor drivers/platform) model. We expect
to keep merging contents for this hierarchy through arm-soc so we can
keep an eye on what the vendors keep adding here and not making it a
free-for-all to shove in crazy stuff.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABAgAGBQJTjOFiAAoJEIwa5zzehBx30RYP/0UE+R8ccdsodunmIDrmQ7QP
qFWe1YTWlyXtGBDaPCNfdcU09UYatPKuCv5dJ2ToQCyyFI26PIIhFtnCNXmMuYz+
XPCuqAlJ9hZWx7+j2hXRlyhoZMAaJ5EVVxaK5tnVYXDIfy1Y3xG7i069HD/qGrQp
xrV+XofFmpU2VAds6S+SpecFFfYD7n/pJ1bTSgzPfaUsEUyV882dJ3skgs1VpTzQ
PnL/0Z2t4ePoP3+6p+F7EnJxemLF5IXrlL0c7hODxQKuMqlzoUluywh6SwOHfCQL
u2cc5SFUbbKhExwlGOVibdQMiC0HUOXyRvyYFOIdbv+xNH+Zc/tcoQQ22PWm4Yy1
08qOm3Fr6yw5nH5IT+1wCIFCzJEC/ZHM5B2t+RISFybAMk6Bg1TDYJLmd570zkEL
aTLtS5hdmy4h8Ad5FBtwKNyL//6FJJxhbHUu/m0qaE0phq94+78B2M6vbx6757xC
kCFlpJsHoN0Tn5c9Q1hpTqI/BHxb4UR7Nf+b8Ox8Veuc9JrS35lzi/rWnGxB5WB0
+1KCA8eih9KXTtksxAte1TmSbMciqW559RUR7dNAPXAMPksY2mJV1I+rg0cRsY3i
F90Lnc6LWUM5PYpc4VwiC0sUCLKzTFnpZUELqMOiws3PUblbb0StXuoNo6owbtsK
mp1Juxi1n7VhoN9AFVpL
=SC+e
-----END PGP SIGNATURE-----
Merge tag 'drivers-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc into next
Pull ARM SoC driver changes from Olof Johansson:
"SoC-near driver changes that we're merging through our tree. Mostly
because they depend on other changes we have staged, but in some cases
because the driver maintainers preferred that we did it this way.
This contains a largeish cleanup series of the omap_l3_noc bus driver,
cpuidle rework for Exynos, some reset driver conversions and a long
branch of TI EDMA fixes and cleanups, with more to come next release.
The TI EDMA cleanups is a shared branch with the dmaengine tree, with
a handful of Davinci-specific fixes on top.
After discussion at last year's KS (and some more on the mailing
lists), we are here adding a drivers/soc directory. The purpose of
this is to keep per-vendor shared code that's needed by different
drivers but that doesn't fit into the MFD (nor drivers/platform)
model. We expect to keep merging contents for this hierarchy through
arm-soc so we can keep an eye on what the vendors keep adding here and
not making it a free-for-all to shove in crazy stuff"
* tag 'drivers-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (101 commits)
cpufreq: exynos: Fix driver compilation with ARCH_MULTIPLATFORM
tty: serial: msm: Remove direct access to GSBI
power: reset: keystone-reset: introduce keystone reset driver
Documentation: dt: add bindings for keystone pll control controller
Documentation: dt: add bindings for keystone reset driver
soc: qcom: fix of_device_id table
ARM: EXYNOS: Fix kernel panic when unplugging CPU1 on exynos
ARM: EXYNOS: Move the driver to drivers/cpuidle directory
ARM: EXYNOS: Cleanup all unneeded headers from cpuidle.c
ARM: EXYNOS: Pass the AFTR callback to the platform_data
ARM: EXYNOS: Move S5P_CHECK_SLEEP into pm.c
ARM: EXYNOS: Move the power sequence call in the cpu_pm notifier
ARM: EXYNOS: Move the AFTR state function into pm.c
ARM: EXYNOS: Encapsulate the AFTR code into a function
ARM: EXYNOS: Disable cpuidle for exynos5440
ARM: EXYNOS: Encapsulate boot vector code into a function for cpuidle
ARM: EXYNOS: Pass wakeup mask parameter to function for cpuidle
ARM: EXYNOS: Remove ifdef for scu_enable in pm
ARM: EXYNOS: Move scu_enable in the cpu_pm notifier
ARM: EXYNOS: Use the cpu_pm notifier for pm
...
Cleanups for 3.16. Among these are:
- A bunch of misc cleanups for Broadcom platforms, mostly housekeeping
- Enabling Common Clock Framework on the older s3c24xx Samsung chipsets
- Cleanup of the Versatile Express system controller code, moving it to syscon
- Power management cleanups for OMAP platforms
+ a handful of other cleanups across the place
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQIcBAABAgAGBQJTjMwHAAoJEIwa5zzehBx3MjMP/iELgDsqbNE2wxF9Fb5EEnoe
S11q1QIvVrMVdMcKFN5HfW7f+xNso6+4SwXW0cRrJokGvaqRE758WZWuZq0QBUeS
RYMhfpqmI6pTTJUyy6i6OyXhuRqu8rQ1NPEAatYrKzmtwFX1H4t25f1YtZWhBcK8
ONi45FHeH1OKGGpjpT63uhWEzLk+LZI2MtgxmWoFcemf7guX6vEPJVuVRi8eqLoS
9vl1cAkweYgGhjvQFcSXENaguV50dZlLc9C41dJk9KVvJfRt7o+/cRbG5YpGvnp5
Liu+OWM72w0BkgNk6wDN4kaPX5UGLF8QX11JlvDRCJ2FcPtM4NBG/C9TqLMfkKDR
Ze+ITiXh6NjefdTZWJaM4vzsd6vFws8EYAP24IWFlZ451bNLVN1lzlgqluPNoKmj
CAsFPZhY/x5X9a8VLZ72ohx3N17T/iMsOlbiWtnlfqDcL6N0IoLG1YkFFeQIKEAH
mpobWus8Myq1miWqSaeXh5wOqUVQmYR0I8jNoTfte1nBYSaIGhtMixoQhM6Zw50C
dgSh4p7qhrZUOnYmkPqFXr7NCJ9n3RD10Xu8d/3IIp0u9RJ5Kx6NCEg9adq22jZQ
XGrr/vH0sM8MzpKmfTMi5t2Cx5kP2G+O3enq0hQi4x3Cb4o8vwWQlMgydTd+xBjj
aLo3WTTw0h6nTuKkZL2p
=wuX4
-----END PGP SIGNATURE-----
Merge tag 'cleanup-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc into next
Pull ARM SoC cleanups from Olof Johansson:
"Cleanups for 3.16. Among these are:
- a bunch of misc cleanups for Broadcom platforms, mostly
housekeeping
- enabling Common Clock Framework on the older s3c24xx Samsung
chipsets
- cleanup of the Versatile Express system controller code, moving it
to syscon
- power management cleanups for OMAP platforms
plus a handful of other cleanups across the place"
* tag 'cleanup-for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (87 commits)
ARM: kconfig: allow PCI support to be selected with ARCH_MULTIPLATFORM
clk: samsung: fix build error
ARM: vexpress: refine dependencies for new code
clk: samsung: clk-s3c2410-dlck: do not use PNAME macro as it declares __initdata
cpufreq: exynos: Fix the compile error
ARM: S3C24XX: move debug-macro.S into the common space
ARM: S3C24XX: use generic DEBUG_UART_PHY/_VIRT in debug macro
ARM: S3C24XX: trim down debug uart handling
ARM: compressed/head.S: remove s3c24xx special case
ARM: EXYNOS: Remove unnecessary inclusion of cpu.h
ARM: EXYNOS: Migrate Exynos specific macros from plat to mach
ARM: EXYNOS: Remove exynos_subsys registration
ARM: EXYNOS: Remove duplicate lines in Makefile
ARM: EXYNOS: use v7_exit_coherency_flush macro for cache disabling
ARM: OMAP4: PRCM: remove references to cm-regbits-44xx.h from PRCM core files
ARM: OMAP3/4: PRM: add support of late_init call to prm_ll_ops
ARM: OMAP3/OMAP4: PRM: add prm_features flags and add IO wakeup under it
ARM: OMAP3/4: PRM: provide io chain reconfig function through irq setup
ARM: OMAP2+: PRM: remove unnecessary cpu_is_XXX calls from prm_init / exit
ARM: OMAP2+: PRCM: cleanup some header includes
...
This change makes the busy calculation using 64 bit math which prevents
overflow for large values of aperf/mperf.
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The PID assumes that samples are of equal time, which for a deferable
timers this is not true when the system goes idle. This causes the
PID to take a long time to converge to the min P state and depending
on the pattern of the idle load can make the P state appear stuck.
The hold-off value of three sample times before using the scaling is
to give a grace period for applications that have high performance
requirements and spend a lot of time idle, The poster child for this
behavior is the ffmpeg benchmark in the Phoronix test suite.
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Changing to fixed point math throughout the busy calculation in
commit e66c1768 (Change busy calculation to use fixed point
math.) Introduced some inaccuracies by rounding the busy value at two
points in the calculation. This change removes roundings and moves
the rounding to the output of the PID where the calculations are
complete and the value returned as an integer.
Fixes: e66c176837 (intel_pstate: Change busy calculation to use fixed point math.)
Reported-by: Doug Smythies <dsmythies@telus.net>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit fcb6a15c (intel_pstate: Take core C0 time into account for core
busy calculation) introduced a regression referenced below. The issue
with "lockup" after suspend that this commit was addressing is now dealt
with in the suspend path.
Fixes: fcb6a15c2e (intel_pstate: Take core C0 time into account for core busy calculation)
Link: https://bugzilla.kernel.org/show_bug.cgi?id=66581
Link: https://bugzilla.kernel.org/show_bug.cgi?id=75121
Reported-by: Doug Smythies <dsmythies@telus.net>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently Exynos cpufreq drivers rely on globally mapped
clock controller registers to configure frequency of CPU
cores. This is obviously wrong and will be removed in near
future, but to enable support for multi-platform builds
without introducing a regression it needs to be worked
around.
This patch hacks the code to look for clock controller node
in device tree and map its registers using of_iomap(),
instead of relying on global mapping, so dependencies on
platform headers are removed and the driver can compile
again with multiplatform support.
Signed-off-by: Tomasz Figa <t.figa@samsung.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Handling calls to ->target_index() has got complex over time and might become
more complex. So, its better to take target_index() bits out in another routine
__target_index() for better code readability. Shouldn't have any functional
impact.
Tested-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
A pr_err() was added in v3.1. It was guarded by a check for
CONFIG_PM_VERBOSE. The Kconfig symbol PM_VERBOSE was removed in v3.0. So
this pr_err() has never been used. Drop that check and clean up the
message a bit.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Although, a value is assigned to member name of struct cpudata,
it is never used.
We can safely remove it.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 7da83a80 ("ARM: EXYNOS: Migrate Exynos specific macros from
plat to mach") which lands in samsung tree causes build breakage
for cpufreq-exynos like following:
drivers/cpufreq/exynos-cpufreq.c: In function 'exynos_cpufreq_probe':
drivers/cpufreq/exynos-cpufreq.c:166:2: error: implicit declaration of function 'soc_is_exynos4210'
[-Werror=implicit-function-declaration]
drivers/cpufreq/exynos-cpufreq.c:168:2: error: implicit declaration of function 'soc_is_exynos4212'
[-Werror=implicit-function-declaration]
drivers/cpufreq/exynos-cpufreq.c:168:2: error: implicit declaration of function 'soc_is_exynos4412'
[-Werror=implicit-function-declaration]
drivers/cpufreq/exynos-cpufreq.c:170:2: error: implicit declaration of function 'soc_is_exynos5250'
[-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
make[2]: *** [drivers/cpufreq/exynos-cpufreq.o] Error 1
make[2]: *** Waiting for unfinished jobs....
drivers/cpufreq/exynos4x12-cpufreq.c: In function 'exynos4x12_set_clkdiv':
drivers/cpufreq/exynos4x12-cpufreq.c:118:2: error: implicit declaration of function 'soc_is_exynos4212'
[-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
make[2]: *** [drivers/cpufreq/exynos4x12-cpufreq.o] Error 1
make[1]: *** [drivers/cpufreq] Error 2
This fixes above error with getting SoC information via
of_machine_is_compatible() instead of soc_is_exynosXXXX().
Suggested-by: Tomasz Figa <t.figa@samsung.com>
Signed-off-by: Jonghwan Choi <jhbird.choi@samsung.com>
[kgene.kim@samsung.com: fixed typo and modified as per Viresh's suggestion]
[kgene.kim@samsung.com: Rafael agreed]
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
- ACPICA fix for a stale pointer access introduced by a recent
commit in the XSDT validation code from Lv Zheng.
- ACPICA fix for the default value of the command line switch
to favor 32-bit FADT addresses (in case there's a conflict
between a 64-bit and a 32-bit address). The previous default
was that the 32-bit version would take precedence and we tried
to change it to the other way around and it didn't work.
From Lv Zheng.
- A TPM commit related to ACPI _DSM in 3.14 caused the driver to
refuse to load if a specific _DSM was missing and that broke
resume from system suspend on Chromebooks that require the TPM
hardware to be restored to a working state during resume by the
OS. Restore the old behavior to load the driver if the _DSM
in question is not present, but prevent it from using the
feature the _DSM is for.
- ACPI AC driver conversion in 3.13 broke thermal management on
at least one machine and has to be reverted. From Guenter Roeck.
- Two reverts of 3.13 commits that attempted to remove the old ACPI
battery interface in /proc, but turned out to break some utilities
still using that interface. From Lan Tianyu.
- ACPI processor driver fix to prevent acpi_processor_add() from
modifying the CPU device's .offline field which leads to breakage
if the initial online of the CPU fails. From Igor Mammedov.
- Two intel_pstate fixes, one to take a BayTrail documentation update
into account and one to avoid forcing the maximum P-state on init
which causes CPU PM trouble on systems with P-states coordination
when one of the CPU cores is initialized after an offline/online
cycle triggered by user space. Both stable candidates, from
Dirk Brandewie.
- Fix for the ACPI video DMI blacklist entry for Dell Inspiron 7520
from Aaron Lu.
- Two new ACPI video blacklist entries for machines shipping with
Win8 that need to use native backlight so that it can be controlled
in a usual way (which doesn't work otherwise due bugs in the ACPI
tables) from Hans de Goede.
- Two ACPI _OSI quirks for systems that need them to work correctly
with Linux from Edward Lin and Hans de Goede.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTdow6AAoJEILEb/54YlRxUWcP/0nczFCxZ7C1c7l7Ya8r9iRZ
HXT+AAbakanPs6Ms4VRxao65v1AcdlruWHPhJ6JiEoiO60yKxIIzy7f3mO5gVesr
tcaxaFaCTNdUDFdRDhyN6y+RzO/ohYSKdOJng2tcz2IvcsRD93hXk+095BlVzfJV
EFycqXPb3nmP6oZo1KjPebk4cmlC8Sw9aWcBxK0O1aRoIrAdObf3+rCXfc2/FvC0
vAquOI2OaJ0bwNl7QhGHMLMnvoDvq+/y2mDQ+BvxPERbtDBDS66tkhjsxEx89kpi
ow6WKX1vgfsWYGa5tCxFDZvYIYP5x4+YWPwvYfOFmCO520PUIojT81qT+P6hLHMy
jf2G7QWvL/3qn89qKsR26YNE/fadNDZq0IHh3KD8kOaKtXBV30fIh2rLG3XZfB8q
lhWAcx5ot2ZoQy5ppAuKNG+zA6MniWbN/a5acUIS6zsvVRFkGeZE5ORyEUgkWMjk
QiiL3kcx/Fe528A1cMVXR2fb4kzKBpnVXxWQlzptKCX/3JAOxe6ElZqHMDff983b
LHJjMfVUX9m1yGUZHqbH6CiK9kuQv2fQXSESLrkUDItVs9VFskYQb6AZE5Ow+k+A
QKnDg7n81YlYiau997g0+yA7EqwQmQZx+EwfVtOIfppOlp4LFbCKC6Ytu9pcgbZB
GuYsd/bPvEVswylJMu6U
=v+oA
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management fixes from Rafael Wysocki:
"Still fixing regressions (partly by reverting commits that broke
things for people), fixing other stable-candidate bugs and adding some
blacklist entries for ACPI video and _OSI.
Two ACPICA regression fixes (one recent and one for a 3.14 commit), a
fix for an ACPI-related regression in TPM (introduced in 3.14), a
revert of the ACPI AC driver conversion in 3.13 that went wrong for an
unknown reason, two reverts of commits that attempted to remove an old
user space interface in /proc and broke some utilities, in 3.13 too, a
fix for a CPU hotplug bug in the ACPI processor driver (stable
material), two (stable candidate) fixes for intel_pstate and a few new
blacklist entries, mostly for systems that shipped with Windows 8.
Specifics:
- ACPICA fix for a stale pointer access introduced by a recent commit
in the XSDT validation code from Lv Zheng.
- ACPICA fix for the default value of the command line switch to
favor 32-bit FADT addresses (in case there's a conflict between a
64-bit and a 32-bit address). The previous default was that the
32-bit version would take precedence and we tried to change it to
the other way around and it didn't work. From Lv Zheng.
- A TPM commit related to ACPI _DSM in 3.14 caused the driver to
refuse to load if a specific _DSM was missing and that broke resume
from system suspend on Chromebooks that require the TPM hardware to
be restored to a working state during resume by the OS. Restore
the old behavior to load the driver if the _DSM in question is not
present, but prevent it from using the feature the _DSM is for.
- ACPI AC driver conversion in 3.13 broke thermal management on at
least one machine and has to be reverted. From Guenter Roeck.
- Two reverts of 3.13 commits that attempted to remove the old ACPI
battery interface in /proc, but turned out to break some utilities
still using that interface. From Lan Tianyu.
- ACPI processor driver fix to prevent acpi_processor_add() from
modifying the CPU device's .offline field which leads to breakage
if the initial online of the CPU fails. From Igor Mammedov.
- Two intel_pstate fixes, one to take a BayTrail documentation update
into account and one to avoid forcing the maximum P-state on init
which causes CPU PM trouble on systems with P-states coordination
when one of the CPU cores is initialized after an offline/online
cycle triggered by user space. Both stable candidates, from Dirk
Brandewie.
- Fix for the ACPI video DMI blacklist entry for Dell Inspiron 7520
from Aaron Lu.
- Two new ACPI video blacklist entries for machines shipping with
Win8 that need to use native backlight so that it can be controlled
in a usual way (which doesn't work otherwise due bugs in the ACPI
tables) from Hans de Goede.
- Two ACPI _OSI quirks for systems that need them to work correctly
with Linux from Edward Lin and Hans de Goede"
* tag 'pm+acpi-3.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI / video: Revert native brightness quirk for ThinkPad T530
intel_pstate: remove setting P state to MAX on init
ACPICA: Tables: Restore old behavor to favor 32-bit FADT addresses.
ACPI / video: correct DMI tag for Dell Inspiron 7520
intel_pstate: Set turbo VID for BayTrail
ACPI / TPM: Fix resume regression on Chromebooks
ACPI / proc: Do not say when /proc interfaces will be deleted in Kconfig
ACPI / processor: do not mark present at boot but not onlined CPU as onlined
ACPI: Revert "ACPI / AC: convert ACPI ac driver to platform bus"
ACPI / blacklist: Add dmi_enable_osi_linux quirk for Asus EEE PC 1015PX
ACPI: blacklist win8 OSI for Dell Inspiron 7737
ACPI / video: Add use_native_backlight quirks for more systems
ACPI: Revert "ACPI / Battery: Remove battery's proc directory"
ACPI: Revert "ACPI: Remove CONFIG_ACPI_PROCFS_POWER and cm_sbsc.c"
ACPICA: Tables: Fix invalid pointer accesses in acpi_tb_parse_root_table().
Many drivers keep frequencies in frequency table in ascending
or descending order. When governor tries to change to policy->min
or policy->max respectively then the cpufreq_frequency_table_target
could return on first iteration. This will save some iteration cycles.
So, break out early when a frequency in cpufreq_frequency_table
equals to target one.
Testing this during kernel compilation using ondemand governor
with a frequency table in ascending order, the
cpufreq_frequency_table_target returned early on the first
iteration at about 30% of times called.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This driver is using devres managed calls incorrectly, giving the cpu0
device as first parameter instead of the cpufreq platform device.
This results in resources not being freed if the cpufreq platform device
is unbound, for example if probing has to be deferred for a missing
regulator.
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 3.9+ <stable@vger.kernel.org> # 3.9+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tegra has implemented an unnecessary wrapper over tegra_update_cpu_speed(), i.e.
tegra_target(), which wasn't doing anything apart of calling
tegra_update_cpu_speed(). Get rid of that and use tegra_target() directly.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is no need to include delay.h.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Shawn Guo <shawn.guo@freescale.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This driver is using devres managed calls incorrectly, giving the cpu0
device as first parameter instead of the cpufreq platform device.
This results in resources not being freed if the cpufreq platform device
is unbound, for example if probing has to be deferred for a missing
regulator.
Supporting probe deferral properly is a prerequisite to enabling the
internal LDO bypass on i.MX6 and regulating the CPU voltage with an
external regulator.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Shawn Guo <shawn.guo@freescale.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Suppress the following checkpatch.pl warnings:
- WARNING: Prefer pr_err(... to printk(KERN_ERR ...
- WARNING: Prefer pr_info(... to printk(KERN_INFO ...
- WARNING: Prefer pr_warn(... to printk(KERN_WARNING ...
- WARNING: quoted string split across lines
- WARNING: please, no spaces at the start of a line
Also, define the pr_fmt macro instead of PFX for the module name.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
powernv_cpufreq_get() is only referenced in this file.
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org> on V2.
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There are arm64 big.LITTLE systems so enable the big.LITTLE cpufreq driver.
While IKS is not available for these systems the driver is still useful
since it manages clusters with shared frequencies which is the common case
for these systems.
Long term combining the cpufreq-cpu0 and big.LITTLE drivers may be a
more sensible option but that is substantially more complex especially
in the case of IKS.
Signed-off-by: Mark Brown <broonie@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Don't use DEFINE_PCI_DEVICE_TABLE macro, because this macro
is deprecated.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Setting the P state of the core to max at init time is a hold over
from early implementation of intel_pstate where intel_pstate disabled
cpufreq and loaded VERY early in the boot sequence. This was to
ensure that intel_pstate did not affect boot time. This in not needed
now that intel_pstate is a cpufreq driver.
Removing this covers the case where a CPU has gone through a manual
CPU offline/online cycle and the P state is set to MAX on init and the
CPU immediately goes idle. Due to HW coordination the P state request
on the idle CPU will drag all cores to MAX P state until the load is
reevaluated when to core goes non-idle.
Reported-by: Patrick Marlier <patrick.marlier@gmail.com>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add support for Broadwell processors.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Loongson2 has been using (incorrectly) kHz for cpu_clk rate. This has
been unnoticed, as loongson2_cpufreq was the only place where the rate
was set/get. After commit 652ed95d5f
(cpufreq: introduce cpufreq_generic_get() routine) things however broke,
and now loops_per_jiffy adjustments are incorrect (1000 times too long).
The patch fixes this by changing cpu_clk rate to Hz.
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Cc: stable@vger.kernel.org
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Cc: cpufreq@vger.kernel.org
Cc: Aaro Koskinen <aaro.koskinen@iki.fi>
Patchwork: https://patchwork.linux-mips.org/patch/6678/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
A documentation update exposed that there is a separate set of VID
values that must be used in the turbo/boost P state range. Add
enumerating and setting the correct VID for P states in the turbo
range.
Cc: v3.13+ <stable@vger.kernel.org> # v3.13+
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The s3c24xx cpufreq driver needs to change the mpll speed and was doing
this by writing raw values from a translation table into the MPLLCON
register.
Change this to use a regular clk_set_rate call when using the common
clock framework and only write the raw value in the samsung_clock case.
The s3c cpufreq driver does already aquire the mpll, so simply add a reference
to struct s3c_cpufreq_config to let set_fvco access it.
While struct clk is opaque the differenciation between samsung clock and
common clock is kept, as the samsung-clock mpll clk does not implement a
real set_rate.
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Acked-by: Tomasz Figa <t.figa@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
On platforms that use cpufreq_for_each_* macros, build fails if
CONFIG_CPU_FREQ=n, e.g. ARM/shmobile/koelsch/non-multiplatform:
drivers/built-in.o: In function `clk_round_parent':
clkdev.c:(.text+0xcf168): undefined reference to `cpufreq_next_valid'
drivers/built-in.o: In function `clk_rate_table_find':
clkdev.c:(.text+0xcf820): undefined reference to `cpufreq_next_valid'
make[3]: *** [vmlinux] Error 1
Fix this making cpufreq_next_valid function inline and move it to
cpufreq.h.
Fixes: 27e289dce2 (cpufreq: Introduce macros for cpufreq_frequency_table iteration)
Reported-and-tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
CPUFreq specific helper functions for OPP (Operating Performance Points)
now use generic OPP functions that allow CPUFreq to be be moved back
into CPUFreq framework. This allows for independent modifications
or future enhancements as needed isolated to just CPUFreq framework
alone.
Here, we just move relevant code and documentation to make this part of
CPUFreq infrastructure.
Cc: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some cpufreq drivers were redundantly invoking the _begin() and _end()
APIs around frequency transitions, and this double invocation (one from
the cpufreq core and the other from the cpufreq driver) used to result
in a self-deadlock, leading to system hangs during boot. (The _begin()
API makes contending callers wait until the previous invocation is
complete. Hence, the cpufreq driver would end up waiting on itself!).
Now all such drivers have been fixed, but debugging this issue was not
very straight-forward (even lockdep didn't catch this). So let us add a
debug infrastructure to the cpufreq core to catch such issues more easily
in the future.
We add a new field called 'transition_task' to the policy structure, to keep
track of the task which is performing the frequency transition. Using this
field, we make note of this task during _begin() and print a warning if we
find a case where the same task is calling _begin() again, before completing
the previous frequency transition using the corresponding _end().
We have left out ASYNC_NOTIFICATION drivers from this debug infrastructure
for 2 reasons:
1. At the moment, we have no way to avoid a particular scenario where this
debug infrastructure can emit false-positive warnings for such drivers.
The scenario is depicted below:
Task A Task B
/* 1st freq transition */
Invoke _begin() {
...
...
}
Change the frequency
/* 2nd freq transition */
Invoke _begin() {
... //waiting for B to
... //finish _end() for
... //the 1st transition
... | Got interrupt for successful
... | change of frequency (1st one).
... |
... | /* 1st freq transition */
... | Invoke _end() {
... | ...
... V }
...
...
}
This scenario is actually deadlock-free because, once Task A changes the
frequency, it is Task B's responsibility to invoke the corresponding
_end() for the 1st frequency transition. Hence it is perfectly legal for
Task A to go ahead and attempt another frequency transition in the meantime.
(Of course it won't be able to proceed until Task B finishes the 1st _end(),
but this doesn't cause a deadlock or a hang).
The debug infrastructure cannot handle this scenario and will treat it as
a deadlock and print a warning. To avoid this, we exclude such drivers
from the purview of this code.
2. Luckily, we don't _need_ this infrastructure for ASYNC_NOTIFICATION drivers
at all! The cpufreq core does not automatically invoke the _begin() and
_end() APIs during frequency transitions in such drivers. Thus, the driver
alone is responsible for invoking _begin()/_end() and hence there shouldn't
be any conflicts which lead to double invocations. So, we can skip these
drivers, since the probability that such drivers will hit this problem is
extremely low, as outlined above.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since commit d37e2b7644 ("intel_pstate: remove unneeded sample buffers")
we use only one sample. So, there is no need to pass the sample
pointer to intel_pstate_calc_busy. Instead, get the pointer from
cpudata. Also, remove the unused SAMPLE_COUNT macro.
While at it, reformat the first line in this function.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fix 4 spelling errors in help sections.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There has been confusion all the time about which mailing list to follow
for cpufreq activities, linux-pm@vger.kernel.org or cpufreq@vger.kernel.org.
Since patches sent to cpufreq@vger.kernel.org don't go to Patchwork
which is a maintenance workflow problem, make linux-pm@vger.kernel.org
the official mailing list for cpufreq stuff and remove all references
of cpufreq@vger.kernel.org from kernel source.
Later, we can request that the list be dropped entirely.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch uses dev_err/info function to show accurate log message
with device name instead of pr_err/info function.
Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core now supports the cpufreq_for_each_entry and
cpufreq_for_each_valid_entry macros helpers for iteration over the
cpufreq_frequency_table, so use them.
It should have no functional changes.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Lad, Prabhakar <prabhakar.csengg@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Many cpufreq drivers need to iterate over the cpufreq_frequency_table
for various tasks.
This patch introduces two macros which can be used for iteration over
cpufreq_frequency_table keeping a common coding style across drivers:
- cpufreq_for_each_entry: iterate over each entry of the table
- cpufreq_for_each_valid_entry: iterate over each entry that contains
a valid frequency.
It should have no functional changes.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Lad, Prabhakar <prabhakar.csengg@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During frequency transitions, the cpufreq core takes the responsibility of
invoking cpufreq_freq_transition_begin() and cpufreq_freq_transition_end()
for those cpufreq drivers that define the ->target_index callback but don't
set the ASYNC_NOTIFICATION flag.
The powernow-k7 cpufreq driver falls under this category, but this driver was
invoking the _begin() and _end() APIs itself around frequency transitions,
which led to double invocation of the _begin() API. The _begin API makes
contending callers wait until the previous invocation is complete. Hence,
the powernow-k7 driver ended up waiting on itself, leading to system hangs
during boot.
Fix this by removing the calls to the _begin() and _end() APIs from the
powernow-k7 driver, since they rightly belong to the cpufreq core.
Fixes: 12478cf0c5 (cpufreq: Make sure frequency transitions are serialized)
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During frequency transitions, the cpufreq core takes the responsibility of
invoking cpufreq_freq_transition_begin() and cpufreq_freq_transition_end()
for those cpufreq drivers that define the ->target_index callback but don't
set the ASYNC_NOTIFICATION flag.
The powernow-k6 cpufreq driver falls under this category, but this driver was
invoking the _begin() and _end() APIs itself around frequency transitions,
which led to double invocation of the _begin() API. The _begin API makes
contending callers wait until the previous invocation is complete. Hence,
the powernow-k6 driver ended up waiting on itself, leading to system hangs
during boot.
Fix this by removing the calls to the _begin() and _end() APIs from the
powernow-k6 driver, since they rightly belong to the cpufreq core.
(Note that during ->exit(), the powernow-k6 driver sets the frequency
without any help from the cpufreq core. So add explicit calls to the
_begin() and _end() APIs around that frequency transition alone, to take
care of that special case. Also, add a missing 'break' statement there.)
Fixes: 12478cf0c5 (cpufreq: Make sure frequency transitions are serialized)
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The value of 'max_multiplier' is meant to be used for comparison with
clock_ratio[index].driver_data, not the index itself! Fix the code in
powernow_k6_cpu_exit() that has this bug.
Also, while at it, make the for-loop condition look for CPUFREQ_TABLE_END,
instead of hard-coding the loop count to 8.
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During frequency transitions, the cpufreq core takes the responsibility of
invoking cpufreq_freq_transition_begin() and cpufreq_freq_transition_end()
for those cpufreq drivers that define the ->target_index callback but don't
set the ASYNC_NOTIFICATION flag.
The longhaul cpufreq driver falls under this category, but this driver was
invoking the _begin() and _end() APIs itself around frequency transitions,
which led to double invocation of the _begin() API. The _begin API makes
contending callers wait until the previous invocation is complete. Hence,
the longhaul driver ended up waiting on itself, leading to system hangs
during boot.
Fix this by removing the calls to the _begin() and _end() APIs from the
longhaul driver, since they rightly belong to the cpufreq core.
(Note that during module_exit(), the longhaul driver sets the frequency
without any help from the cpufreq core. So add explicit calls to the
_begin() and _end() APIs around that frequency transition alone, to take
care of that special case.)
Fixes: 12478cf0c5 (cpufreq: Make sure frequency transitions are serialized)
Reported-and-tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When make ARCH=arm multi_v7_defconfig, we get the following warnings:
warning: (ARM_HIGHBANK_CPUFREQ) selects GENERIC_CPUFREQ_CPU0 which has
unmet direct dependencies (ARCH_HAS_CPUFREQ && CPU_FREQ && HAVE_CLK
&& REGULATOR && OF && THERMAL && CPU_THERMAL)
To fix this, make ARM_HIGHBANK_CPUFREQ depend on ARCH_HAS_CPUFREQ and
REGULATOR instead of selecting them, PM_OPP will be selected by ARCH_HAS_CPUFREQ.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On 32-bit, "12 * NSEC_PER_SEC" doesn't fit in "unsigned long"
(NSEC_PER_SEC is a "long" constant), causing an integer overflow:
drivers/cpufreq/ppc-corenet-cpufreq.c: In function 'corenet_cpufreq_cpu_init':
drivers/cpufreq/ppc-corenet-cpufreq.c:211:9: warning: integer overflow in expression [-Woverflow]
Force the intermediate to be 64-bit by adding an "ULL" suffix to the
constant multiplier to fix this.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Paul Gortmaker reported the following build failure of the powernv cpufreq
driver on UP configs:
drivers/cpufreq/powernv-cpufreq.c:241:2: error: implicit declaration of
function 'cpu_sibling_mask' [-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
make[3]: *** [drivers/cpufreq/powernv-cpufreq.o] Error 1
make[2]: *** [drivers/cpufreq] Error 2
make[1]: *** [drivers] Error 2
make: *** [sub-make] Error 2
The trouble here is that cpu_sibling_mask is defined only in <asm/smp.h>,
and <linux/smp.h> includes <asm/smp.h> only in SMP builds.
So fix this build failure by explicitly including <asm/smp.h> in the driver,
so that we get the definition of cpu_sibling_mask even in UP configurations.
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch fixes coccinelle error regarding usage of IS_ERR and
PTR_ERR instead of PTR_ERR_OR_ZERO.
Signed-off-by: Duan Jiong <duanj.fnst@cn.fujitsu.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* pm-cpufreq:
cpufreq: ppc: Remove duplicate inclusion of fsl_soc.h
cpufreq: create another field .flags in cpufreq_frequency_table
cpufreq: use kzalloc() to allocate memory for cpufreq_frequency_table
cpufreq: don't print value of .driver_data from core
cpufreq: ia64: don't set .driver_data to index
cpufreq: powernv: Select CPUFreq related Kconfig options for powernv
cpufreq: powernv: Use cpufreq_frequency_table.driver_data to store pstate ids
cpufreq: powernv: cpufreq driver for powernv platform
cpufreq: at32ap: don't declare local variable as static
cpufreq: loongson2_cpufreq: don't declare local variable as static
cpufreq: unicore32: fix typo issue for 'clk'
cpufreq: exynos: Disable on multiplatform build
fsl_soc.h was included twice.
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The purpose of this single series of commits from Srivatsa S Bhat (with
a small piece from Gautham R Shenoy) touching multiple subsystems that use
CPU hotplug notifiers is to provide a way to register them that will not
lead to deadlocks with CPU online/offline operations as described in the
changelog of commit 93ae4f978c (CPU hotplug: Provide lockless versions
of callback registration functions).
The first three commits in the series introduce the API and document it
and the rest simply goes through the users of CPU hotplug notifiers and
converts them to using the new method.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTQow2AAoJEILEb/54YlRxW4QQAJlYRDUzwFJzJzYhltQYuVR+
4D74XMtvXgoJfg3cwdSWvMKKpJZnA9BVN0f7Hcx9wYmgdexYUuHeZJmMNyc3S2+g
KjKBIsugvgmZhHbbLd6TJ6GBbhGT5JLt9VmSfL9zIkveInU1YHFUUqL/mxdHm4J0
BSGKjk2rN3waRJgmY+xfliFLtQjDKFwJpMuvrgtoUyfas3f4sIV43UNbqdvA/weJ
rzedxXOlKH/id4b56lj/4iIzcoL3mwvJJ7r6n0CEMsKv87z09kqR0O+69Tsq/cgs
j17CsvoJOmZGk3QTeKVMQWBsvk6aPoDu3zK83gLbQMt+qjOpSTbJLz/3HZw4/TrW
ss4nuZne1DLMGS+6hoxYbTP+6Ni//Kn+l/LrHc5jb7m1X3lMO4W2aV3IROtIE1rv
lEP1IG01NU4u9YwkVj1dyhrkSp8tLPul4SrUK8W+oNweOC5crjJV7vJbIPJgmYiM
IZN55wln0yVRtR4TX+rmvN0PixsInE8MeaVCmReApyF9pdzul/StxlBze5BKLSJD
cqo1kNPpsmdxoDucqUpQ/gSvy+IOl2qnlisB5PpV93sk7De6TFDYrGHxjYIW7jMf
StXwdCDDQhzd2Q8Kfpp895A1dbIl8rKtwA6bTU2eX+BfMVFzuMdT44cvosx1+UdQ
sWl//rg76nb13dFjvF+q
=SW7Q
-----END PGP SIGNATURE-----
Merge tag 'cpu-hotplug-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull CPU hotplug notifiers registration fixes from Rafael Wysocki:
"The purpose of this single series of commits from Srivatsa S Bhat
(with a small piece from Gautham R Shenoy) touching multiple
subsystems that use CPU hotplug notifiers is to provide a way to
register them that will not lead to deadlocks with CPU online/offline
operations as described in the changelog of commit 93ae4f978c ("CPU
hotplug: Provide lockless versions of callback registration
functions").
The first three commits in the series introduce the API and document
it and the rest simply goes through the users of CPU hotplug notifiers
and converts them to using the new method"
* tag 'cpu-hotplug-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
net/iucv/iucv.c: Fix CPU hotplug callback registration
net/core/flow.c: Fix CPU hotplug callback registration
mm, zswap: Fix CPU hotplug callback registration
mm, vmstat: Fix CPU hotplug callback registration
profile: Fix CPU hotplug callback registration
trace, ring-buffer: Fix CPU hotplug callback registration
xen, balloon: Fix CPU hotplug callback registration
hwmon, via-cputemp: Fix CPU hotplug callback registration
hwmon, coretemp: Fix CPU hotplug callback registration
thermal, x86-pkg-temp: Fix CPU hotplug callback registration
octeon, watchdog: Fix CPU hotplug callback registration
oprofile, nmi-timer: Fix CPU hotplug callback registration
intel-idle: Fix CPU hotplug callback registration
clocksource, dummy-timer: Fix CPU hotplug callback registration
drivers/base/topology.c: Fix CPU hotplug callback registration
acpi-cpufreq: Fix CPU hotplug callback registration
zsmalloc: Fix CPU hotplug callback registration
scsi, fcoe: Fix CPU hotplug callback registration
scsi, bnx2fc: Fix CPU hotplug callback registration
scsi, bnx2i: Fix CPU hotplug callback registration
...
Currently cpufreq frequency table has two fields: frequency and driver_data.
driver_data is only for drivers' internal use and cpufreq core shouldn't use
it at all. But with the introduction of BOOST frequencies, this assumption
was broken and we started using it as a flag instead.
There are two problems due to this:
- It is against the description of this field, as driver's data is used by
the core now.
- if drivers fill it with -3 for any frequency, then those frequencies are
never considered by cpufreq core as it is exactly same as value of
CPUFREQ_BOOST_FREQ, i.e. ~2.
The best way to get this fixed is by creating another field flags which
will be used for such flags. This patch does that. Along with that various
drivers need modifications due to the change of struct cpufreq_frequency_table.
Reviewed-by: Gautham R Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Few drivers are using kmalloc() to allocate memory for frequency
tables and since we will have an additional field '.flags' in
'struct cpufreq_frequency_table', these might become unstable.
Better get these fixed by replacing kmalloc() by kzalloc() instead.
Along with that we also remove use of .driver_data from SPEAr driver
as it doesn't use it at all. Also, writing zero to .driver_data is not
required for powernow-k8 as it is already zero.
Reported-and-reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
CPUFreq core doesn't control value of .driver_data and this field is
completely driver specific. This can contain any value and not only
indexes. For most of the drivers, which aren't using this field, its
value is zero. So, printing this from core doesn't make any sense.
Don't print it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
.driver_data field is only required to be filled if drivers want to
preserve some data in there which they can use according to the value
of .frequency. But this driver isn't using this field at all, but just
setting it equal to the index value. Which isn't required. Fix it.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The .driver_data field in the cpufreq_frequency_table was supposed to
be private to the drivers. However at some later point, it was being
used to indicate if the particular frequency in the table is the
BOOST_FREQUENCY. After patches [1] and [2], the .driver_data is once
again private to the driver. Thus we can safely use
cpufreq_frequency_table.driver_data to store pstate_ids instead of
having to maintain a separate array powernv_pstate_ids[] for this
purpose.
[1]:
Subject: cpufreq: don't print value of .driver_data from core
From : Viresh Kumar <viresh.kumar@ linaro.org>
url : http://marc.info/?l=linux-pm&m=139601421504709&w=2
[2]:
Subject: cpufreq: create another field .flags in cpufreq_frequency_table
From : Viresh Kumar <viresh.kumar@linaro.org>
url : http://marc.info/?l=linux-pm&m=139601416804702&w=2
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Backend driver to dynamically set voltage and frequency on
IBM POWER non-virtualized platforms. Power management SPRs
are used to set the required PState.
This driver works in conjunction with cpufreq governors
like 'ondemand' to provide a demand based frequency and
voltage setting on IBM POWER non-virtualized platforms.
PState table is obtained from OPAL v3 firmware through device
tree.
powernv_cpufreq back-end driver would parse the relevant device-tree
nodes and initialise the cpufreq subsystem on powernv platform.
The code was originally written by svaidy@linux.vnet.ibm.com. Over
time it was modified to accomodate bug-fixes as well as updates to the
the cpu-freq core. Relevant portions of the change logs corresponding
to those modifications are noted below:
* The policy->cpus needs to be populated in a hotplug-invariant
manner instead of using cpu_sibling_mask() which varies with
cpu-hotplug. This is because the cpufreq core code copies this
content into policy->related_cpus mask which should not vary on
cpu-hotplug. [Authored by srivatsa.bhat@linux.vnet.ibm.com]
* Create a helper routine that can return the cpu-frequency for the
corresponding pstate_id. Also, cache the values of the pstate_max,
pstate_min and pstate_nominal and nr_pstates in a static structure
so that they can be reused in the future to perform any
validations. [Authored by ego@linux.vnet.ibm.com]
* Create a driver attribute named cpuinfo_nominal_freq which creates
a sysfs read-only file named cpuinfo_nominal_freq. Export the
frequency corresponding to the nominal_pstate through this
interface.
Nominal frequency is the highest non-turbo frequency for the
platform. This is generally used for setting governor policies
from user space for optimal energy efficiency. [Authored by
ego@linux.vnet.ibm.com]
* Implement a powernv_cpufreq_get(unsigned int cpu) method which will
return the current operating frequency. Export this via the sysfs
interface cpuinfo_cur_freq by setting powernv_cpufreq_driver.get to
powernv_cpufreq_get(). [Authored by ego@linux.vnet.ibm.com]
[Change log updated by ego@linux.vnet.ibm.com]
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Earlier commit:
commit 652ed95d5f
Author: Viresh Kumar <viresh.kumar@linaro.org>
Date: Thu Jan 9 20:38:43 2014 +0530
cpufreq: introduce cpufreq_generic_get() routine
did some changes to driver and by mistake made cpuclk as a 'static' local
variable, which wasn't actually required. Fix it.
Fixes: 652ed95d5f (cpufreq: introduce cpufreq_generic_get() routine)
Reported-by: Alexandre Oliva <lxoliva@fsfla.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Earlier commit:
commit 652ed95d5f
Author: Viresh Kumar <viresh.kumar@linaro.org>
Date: Thu Jan 9 20:38:43 2014 +0530
cpufreq: introduce cpufreq_generic_get() routine
did some changes to driver and by mistake made cpuclk as a 'static' local
variable, which wasn't actually required. Fix it.
Fixes: 652ed95d5f (cpufreq: introduce cpufreq_generic_get() routine)
Reported-by: Alexandre Oliva <lxoliva@fsfla.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Need use 'clk' instead of 'mclk', which is the original removed local
variable.
The related original commit:
"652ed95 cpufreq: introduce cpufreq_generic_get() routine"
The related error with allmodconfig for unicore32:
CC drivers/cpufreq/unicore2-cpufreq.o
drivers/cpufreq/unicore2-cpufreq.c: In function ‘ucv2_target’:
drivers/cpufreq/unicore2-cpufreq.c:48: error: ‘struct cpufreq_policy’ has no member named ‘mclk’
make[2]: *** [drivers/cpufreq/unicore2-cpufreq.o] Error 1
make[1]: *** [drivers/cpufreq] Error 2
make: *** [drivers] Error 2
Fixes: 652ed95d5f (cpufreq: introduce cpufreq_generic_get() routine)
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 3.14+ <stable@vger.kernel.org> # 3.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The current exynos cpufreq drivers are not multiplatform compliant
and give build errors as they refer to header files from machine
directory. Work to migrate them to generic cpufreq framework is
under way. Till such time disable the build on multiplatform so
that other multiplatform ready features get tested.
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
These changes are mostly for ARM specific device drivers that either
don't have an upstream maintainer, or that had the maintainer ask
us to pick up the changes to avoid conflicts. A large chunk of this
are clock drivers (bcm281xx, exynos, versatile, shmobile), aside from
that, reset controllers for STi as well as a large rework of the
Marvell Orion/EBU watchdog driver are notable.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAUz/1+GCrR//JCVInAQJmfg/9GyqHatDjjUPUBjUQRIEtKgGdmQwdbDqF
x+OrS/q5B5zYbpIWkbkt1IUYJfU+89Z5ev9jxI4rV824Nu9Y92mHPDnv+N/ptkIh
q2OVP3bQDpWs3aEVV2B1HBNcWrNUuwco9BJu05eegEePii/cto0/wKwWIgUmrmjy
xOLthsnp2YmeplGs7ctC6Dz8XbmELebpawejTGylARXei/SwmzB/YYDgJbYjRL2I
WSCVa8Vo+MZaGC/yxdKVTtvsKVQenxGoMO3ojikJeRdvuVRJds48Cw+UBdzWYNeJ
3Ssvbdx6Xltf9jy/7H0btOUgxPetZuUV+2XpbWfGu0Zr9FcGDv3q9hrxA+UYKnkY
GIGU0otSsmpHnX5Ms3E2xnHiV/fihxA3qohqts5kYRBDr5uc+IpW6SbDymQliCGG
OO4XmIVM3pmsqAqP3Zuseemt9CeSW2yC0XlfXkzjO74yY39c+WLBbtGI40Z5W6i0
mM1C8RD3QSNijYCEC8eqz06BQfRImsPs+jllsnJTZaHfbOsib718uvandjfG26lN
616YMcqq0Sp51HIQ4qW7f2dQr7vOyNqbukdkrwF5JgkY/nVki5kdciRg/yeipRy6
Ey80a+OTq0GQljM0F2dcH/A1eHH9KsuI1L6NdSMJsl0h6guIBORPTwTw3qJ13OkR
wpJyM+Gm+Fk=
=u/FI
-----END PGP SIGNATURE-----
Merge tag 'drivers-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver changes from Arnd Bergmann:
"These changes are mostly for ARM specific device drivers that either
don't have an upstream maintainer, or that had the maintainer ask us
to pick up the changes to avoid conflicts.
A large chunk of this are clock drivers (bcm281xx, exynos, versatile,
shmobile), aside from that, reset controllers for STi as well as a
large rework of the Marvell Orion/EBU watchdog driver are notable"
* tag 'drivers-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (99 commits)
Revert "dts: socfpga: Add DTS entry for adding the stmmac glue layer for stmmac."
Revert "net: stmmac: Add SOCFPGA glue driver"
ARM: shmobile: r8a7791: Fix SCIFA3-5 clocks
ARM: STi: Add reset controller support to mach-sti Kconfig
drivers: reset: stih416: add softreset controller
drivers: reset: stih415: add softreset controller
drivers: reset: Reset controller driver for STiH416
drivers: reset: Reset controller driver for STiH415
drivers: reset: STi SoC system configuration reset controller support
dts: socfpga: Add sysmgr node so the gmac can use to reference
dts: socfpga: Add support for SD/MMC on the SOCFPGA platform
reset: Add optional resets and stubs
ARM: shmobile: r7s72100: fix bus clock calculation
Power: Reset: Generalize qnap-poweroff to work on Synology devices.
dts: socfpga: Update clock entry to support multiple parents
ARM: socfpga: Update socfpga_defconfig
dts: socfpga: Add DTS entry for adding the stmmac glue layer for stmmac.
net: stmmac: Add SOCFPGA glue driver
watchdog: orion_wdt: Use %pa to print 'phys_addr_t'
drivers: cci: Export CCI PMU revision
...
- Remaining changes from upstream ACPICA release 20140214 that introduce
code to automatically serialize the execution of methods creating any
named objects which really cannot be executed in parallel with each
other anyway (previously ACPICA attempted to address that by aborting
methods upon conflict detection, but that wasn't reliable enough and
led to other issues). From Bob Moore and Lv Zheng.
- intel_pstate fix to use del_timer_sync() instead of del_timer() in
the exit path before freeing the timer structure from Dirk Brandewie
(original patch from Thomas Gleixner).
- cpufreq fix related to system resume from Viresh Kumar.
- Serialization of frequency transitions in cpufreq that involve
PRECHANGE and POSTCHANGE notifications to avoid ordering issues
resulting from race conditions. From Srivatsa S Bhat and Viresh Kumar.
- Revert of an ACPI processor driver change that was based on a specific
interpretation of the ACPI spec which may not be correct (the relevant
part of the spec appears to be incomplete). From Hanjun Guo.
- Runtime PM core cleanups and documentation updates from Geert Uytterhoeven.
- PNP core cleanup from Michael Opdenacker.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTO1+vAAoJEILEb/54YlRxHYgP/RB18RLcwSIPMTWoZPo5t+pd
IGtHkG5xzCBZXiqL9OJLm+dH1V5w+wZVXh2865ZDiqq4CZYZWD6RUQnx5q0rSVR5
54PYzx2I0i8ApPxRYTTmnb2NHUPedp3l0YSRC0gt73Q/6o9TcmOMtcn5pfTyCvbB
m3am3mpKKxRD+vYCADjjUtuj4NQ62z9DjM5iJIql7Pj4kAJVgSxP8nsfHY6EwNaT
m9mnNCA6Zemh89luM1W2vw69ZoZwLAbXIXJYCNy3khT13SYO2SCNhX/tlY7ncCvv
P+9gawJb6Wio7pVHqRR0Lesc8J29uzivEeS8WqZ3R0P0HoTP6z5a5R+b06ecGQjF
OWvj7wURjZE4t7qEtIOHmwIyCRE4Nxly90r5upj9kKVBaczz/LbDeCVfKU/Y2Vu6
PPxmjRwjO4S8FqLihwiXCSYVf3pxBrDKgjjofM7f2CiO8D41C4KhgowbUqyUSCgw
VKXU6UQbzVigfrGXsdqIJiTnEMmbOvrPy6PaVh27NlwXX3sg1SwYcoegsW+ee7m1
jJdl1TRI27pl7NPgTkLpf5K7n6mkDsou8Y+PcQhFa6FNTn/k8gp/RfOHpLHaNTjL
15Aswkm70Ojeae+Ahx8ZgrWXF7iu+uBX7KakeUVQJg/PFjXIspx+c/SrGzh7ZLa1
aOqoKfFY7zDke4AV3eH/
=EfZ8
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more ACPI and power management updates from Rafael Wysocki:
"These are commits that were not quite ready when I sent the original
pull request for 3.15-rc1 several days ago, but they have spent some
time in linux-next since then and appear to be good to go. All of
them are fixes and cleanups.
Specifics:
- Remaining changes from upstream ACPICA release 20140214 that
introduce code to automatically serialize the execution of methods
creating any named objects which really cannot be executed in
parallel with each other anyway (previously ACPICA attempted to
address that by aborting methods upon conflict detection, but that
wasn't reliable enough and led to other issues). From Bob Moore
and Lv Zheng.
- intel_pstate fix to use del_timer_sync() instead of del_timer() in
the exit path before freeing the timer structure from Dirk
Brandewie (original patch from Thomas Gleixner).
- cpufreq fix related to system resume from Viresh Kumar.
- Serialization of frequency transitions in cpufreq that involve
PRECHANGE and POSTCHANGE notifications to avoid ordering issues
resulting from race conditions. From Srivatsa S Bhat and Viresh
Kumar.
- Revert of an ACPI processor driver change that was based on a
specific interpretation of the ACPI spec which may not be correct
(the relevant part of the spec appears to be incomplete). From
Hanjun Guo.
- Runtime PM core cleanups and documentation updates from Geert
Uytterhoeven.
- PNP core cleanup from Michael Opdenacker"
* tag 'pm+acpi-3.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
cpufreq: Make cpufreq_notify_transition & cpufreq_notify_post_transition static
cpufreq: Convert existing drivers to use cpufreq_freq_transition_{begin|end}
cpufreq: Make sure frequency transitions are serialized
intel_pstate: Use del_timer_sync in intel_pstate_cpu_stop
cpufreq: resume drivers before enabling governors
PM / Runtime: Spelling s/competing/completing/
PM / Runtime: s/foo_process_requests/foo_process_next_request/
PM / Runtime: GENERIC_SUBSYS_PM_OPS is gone
PM / Runtime: Correct documented return values for generic PM callbacks
PM / Runtime: Split line longer than 80 characters
PM / Runtime: dev_pm_info.runtime_error is signed
Revert "ACPI / processor: Make it possible to get APIC ID via GIC"
ACPICA: Enable auto-serialization as a default kernel behavior.
ACPICA: Ignore sync_level for methods that have been auto-serialized.
ACPICA: Add additional named objects for the auto-serialize method scan.
ACPICA: Add auto-serialization support for ill-behaved control methods.
ACPICA: Remove global option to serialize all control methods.
PNP: remove deprecated IRQF_DISABLED
- Device PM QoS support for latency tolerance constraints on systems with
hardware interfaces allowing such constraints to be specified. That is
necessary to prevent hardware-driven power management from becoming
overly aggressive on some systems and to prevent power management
features leading to excessive latencies from being used in some cases.
- Consolidation of the handling of ACPI hotplug notifications for device
objects. This causes all device hotplug notifications to go through
the root notify handler (that was executed for all of them anyway
before) that propagates them to individual subsystems, if necessary,
by executing callbacks provided by those subsystems (those callbacks
are associated with struct acpi_device objects during device
enumeration). As a result, the code in question becomes both smaller
in size and more straightforward and all of those changes should not
affect users.
- ACPICA update, including fixes related to the handling of _PRT in cases
when it is broken and the addition of "Windows 2013" to the list of
supported "features" for _OSI (which is necessary to support systems
that work incorrectly or don't even boot without it). Changes from
Bob Moore and Lv Zheng.
- Consolidation of ACPI _OST handling from Jiang Liu.
- ACPI battery and AC fixes allowing unusual system configurations to
be handled by that code from Alexander Mezin.
- New device IDs for the ACPI LPSS driver from Chiau Ee Chew.
- ACPI fan and thermal optimizations related to system suspend and resume
from Aaron Lu.
- Cleanups related to ACPI video from Jean Delvare.
- Assorted ACPI fixes and cleanups from Al Stone, Hanjun Guo, Lan Tianyu,
Paul Bolle, Tomasz Nowicki.
- Intel RAPL (Running Average Power Limits) driver cleanups from Jacob Pan.
- intel_pstate fixes and cleanups from Dirk Brandewie.
- cpufreq fixes related to system suspend/resume handling from Viresh Kumar.
- cpufreq core fixes and cleanups from Viresh Kumar, Stratos Karafotis,
Saravana Kannan, Rashika Kheria, Joe Perches.
- cpufreq drivers updates from Viresh Kumar, Zhuoyu Zhang, Rob Herring.
- cpuidle fixes related to the menu governor from Tuukka Tikkanen.
- cpuidle fix related to coupled CPUs handling from Paul Burton.
- Asynchronous execution of all device suspend and resume callbacks,
except for ->prepare and ->complete, during system suspend and resume
from Chuansheng Liu.
- Delayed resuming of runtime-suspended devices during system suspend for
the PCI bus type and ACPI PM domain.
- New set of PM helper routines to allow device runtime PM callbacks to
be used during system suspend and resume more easily from Ulf Hansson.
- Assorted fixes and cleanups in the PM core from Geert Uytterhoeven,
Prabhakar Lad, Philipp Zabel, Rashika Kheria, Sebastian Capella.
- devfreq fix from Saravana Kannan.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJTLgB1AAoJEILEb/54YlRxfs4P/35fIu9h8ClNWUPXqi3nlGIt
yMyumKvF1VdsOKLbjTtFq6B3UOlhqDijYTCQd7Xt7X8ONTk/ND9ec2t/5xGkSdUI
q46fa0qZXeqUn0Kt2t+kl6tgVQOkDj94aNlEh+7Ya3Uu6WYDDfmZtOBOFAMk6D8l
ND4rHJpX+eUsRLBrcxaUxxdD8AW5guGcPKyeyzsXv1bY1BZnpLFrZ3PhuI5dn2CL
L/zmk3A+wG6+ZlQxnwDdrKa3E6uhRSIDeF0vI4Byspa1wi5zXknJG2J7MoQ9JEE9
VQpBXlqach5wgXqJ8PAqAeaB6Ie26/F7PYG8r446zKw/5UUtdNUx+0dkjQ7Mz8Tu
ajuVxfwrrPhZeQqmVBxlH5Gg7Ez2KBKEfDxTdRnzI7FoA7PE5XDcg3kO64bhj8LJ
yugnV/ToU9wMztZnPC7CoGPwUgxMJvr9LwmxS4aeKcVUBES05eg0vS3lwdZMgqkV
iO0QkWTmhZ952qZCqZxbh0JqaaX8Wgx2kpX2tf1G2GJqLMZco289bLh6njNT+8CH
EzdQKYYyn6G6+Qg2M0f/6So3qU17x9XtE4ZBWQdGDpqYOGZhjZAOs/VnB1Ysw/K3
cDBzswlJd0CyyUps9B+qbf49OpbWVwl5kKeuHUuPxugEVryhpSp9AuG+tNil74Sj
JuGTGR4fyFjDBX5cvAPm
=ywR6
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
"The majority of this material spent some time in linux-next, some of
it even several weeks. There are a few relatively fresh commits in
it, but they are mostly fixes and simple cleanups.
ACPI took the lead this time, both in terms of the number of commits
and the number of modified lines of code, cpufreq follows and there
are a few changes in the PM core and in cpuidle too.
A new feature that already got some LWN.net's attention is the device
PM QoS extension allowing latency tolerance requirements to be
propagated from leaf devices to their ancestors with hardware
interfaces for specifying latency tolerance. That should help systems
with hardware-driven power management to avoid going too far with it
in cases when there are latency tolerance constraints.
There also are some significant changes in the ACPI core related to
the way in which hotplug notifications are handled. They affect PCI
hotplug (ACPIPHP) and the ACPI dock station code too. The bottom line
is that all those notification now go through the root notify handler
and are propagated to the interested subsystems by means of callbacks
instead of having to install a notify handler for each device object
that we can potentially get hotplug notifications for.
In addition to that ACPICA will now advertise "Windows 2013"
compatibility for _OSI, because some systems out there don't work
correctly if that is not done (some of them don't even boot).
On the system suspend side of things, all of the device suspend and
resume callbacks, except for ->prepare() and ->complete(), are now
going to be executed asynchronously as that turns out to speed up
system suspend and resume on some platforms quite significantly and we
have a few more optimizations in that area.
Apart from that, there are some new device IDs and fixes and cleanups
all over. In particular, the system suspend and resume handling by
cpufreq should be improved and the cpuidle menu governor should be a
bit more robust now.
Specifics:
- Device PM QoS support for latency tolerance constraints on systems
with hardware interfaces allowing such constraints to be specified.
That is necessary to prevent hardware-driven power management from
becoming overly aggressive on some systems and to prevent power
management features leading to excessive latencies from being used
in some cases.
- Consolidation of the handling of ACPI hotplug notifications for
device objects. This causes all device hotplug notifications to go
through the root notify handler (that was executed for all of them
anyway before) that propagates them to individual subsystems, if
necessary, by executing callbacks provided by those subsystems
(those callbacks are associated with struct acpi_device objects
during device enumeration). As a result, the code in question
becomes both smaller in size and more straightforward and all of
those changes should not affect users.
- ACPICA update, including fixes related to the handling of _PRT in
cases when it is broken and the addition of "Windows 2013" to the
list of supported "features" for _OSI (which is necessary to
support systems that work incorrectly or don't even boot without
it). Changes from Bob Moore and Lv Zheng.
- Consolidation of ACPI _OST handling from Jiang Liu.
- ACPI battery and AC fixes allowing unusual system configurations to
be handled by that code from Alexander Mezin.
- New device IDs for the ACPI LPSS driver from Chiau Ee Chew.
- ACPI fan and thermal optimizations related to system suspend and
resume from Aaron Lu.
- Cleanups related to ACPI video from Jean Delvare.
- Assorted ACPI fixes and cleanups from Al Stone, Hanjun Guo, Lan
Tianyu, Paul Bolle, Tomasz Nowicki.
- Intel RAPL (Running Average Power Limits) driver cleanups from
Jacob Pan.
- intel_pstate fixes and cleanups from Dirk Brandewie.
- cpufreq fixes related to system suspend/resume handling from Viresh
Kumar.
- cpufreq core fixes and cleanups from Viresh Kumar, Stratos
Karafotis, Saravana Kannan, Rashika Kheria, Joe Perches.
- cpufreq drivers updates from Viresh Kumar, Zhuoyu Zhang, Rob
Herring.
- cpuidle fixes related to the menu governor from Tuukka Tikkanen.
- cpuidle fix related to coupled CPUs handling from Paul Burton.
- Asynchronous execution of all device suspend and resume callbacks,
except for ->prepare and ->complete, during system suspend and
resume from Chuansheng Liu.
- Delayed resuming of runtime-suspended devices during system suspend
for the PCI bus type and ACPI PM domain.
- New set of PM helper routines to allow device runtime PM callbacks
to be used during system suspend and resume more easily from Ulf
Hansson.
- Assorted fixes and cleanups in the PM core from Geert Uytterhoeven,
Prabhakar Lad, Philipp Zabel, Rashika Kheria, Sebastian Capella.
- devfreq fix from Saravana Kannan"
* tag 'pm+acpi-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (162 commits)
PM / devfreq: Rewrite devfreq_update_status() to fix multiple bugs
PM / sleep: Correct whitespace errors in <linux/pm.h>
intel_pstate: Set core to min P state during core offline
cpufreq: Add stop CPU callback to cpufreq_driver interface
cpufreq: Remove unnecessary braces
cpufreq: Fix checkpatch errors and warnings
cpufreq: powerpc: add cpufreq transition latency for FSL e500mc SoCs
MAINTAINERS: Reorder maintainer addresses for PM and ACPI
PM / Runtime: Update runtime_idle() documentation for return value meaning
video / output: Drop display output class support
fujitsu-laptop: Drop unneeded include
acer-wmi: Stop selecting VIDEO_OUTPUT_CONTROL
ACPI / gpu / drm: Stop selecting VIDEO_OUTPUT_CONTROL
ACPI / video: fix ACPI_VIDEO dependencies
cpufreq: remove unused notifier: CPUFREQ_{SUSPENDCHANGE|RESUMECHANGE}
cpufreq: Do not allow ->setpolicy drivers to provide ->target
cpufreq: arm_big_little: set 'physical_cluster' for each CPU
cpufreq: arm_big_little: make vexpress driver depend on bL core driver
ACPI / button: Add ACPI Button event via netlink routine
ACPI: Remove duplicate definitions of PREFIX
...
Pull timer updates from Ingo Molnar:
"The main purpose is to fix a full dynticks bug related to
virtualization, where steal time accounting appears to be zero in
/proc/stat even after a few seconds of competing guests running busy
loops in a same host CPU. It's not a regression though as it was
there since the beginning.
The other commits are preparatory work to fix the bug and various
cleanups"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch: Remove stub cputime.h headers
sched: Remove needless round trip nsecs <-> tick conversion of steal time
cputime: Fix jiffies based cputime assumption on steal accounting
cputime: Bring cputime -> nsecs conversion
cputime: Default implementation of nsecs -> cputime conversion
cputime: Fix nsecs_to_cputime() return type cast
- PCI I/O space extended to 16M (in preparation of PCIe support patches)
- Dropping ZONE_DMA32 in favour of ZONE_DMA (we only need one for the
time being), together with swiotlb late initialisation to correctly
setup the bounce buffer
- DMA API cache maintenance support (not all ARMv8 platforms have
hardware cache coherency)
- Crypto extensions advertising via ELF_HWCAP2 for compat user space
- Perf support for dwarf unwinding in compat mode
- asm/tlb.h converted to the generic mmu_gather code
- asm-generic rwsem implementation
- Code clean-up
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.9 (GNU/Linux)
iQIcBAABAgAGBQJTOaqsAAoJEGvWsS0AyF7xYNUP/3/IPySIB+/6pyUG6q7kvIpF
Di93M+VdmnLEOKhhx/tjkiEmEQMp0hFPeOlQRWf/Ugg4ksulP6gRejdDEjIfkmsk
LrRXLjvH79NDJbN0pTUXqGDvLLZ9Qnib+HEOuKABIYUrwhNKySBk+5omGfXFtwLR
Mb5JxPX0kbBXOqbOX4RgANQoRlE8GxJR3V245zlGxA4klcN4IiaDy/99kj+kaeaa
Cl8X9K2I550IZ2YUAWPOut2aee2qRFQtAhIDgVthTYlGRx7Y/rDLM16B8fFY/T0H
7azIpSO5hk5lp8J3giJHYajlJlXNla5FeHQb8XAVnlyqFBmCUn0vvd2VbPvWREJp
UD8t1vZZt/s2he6CVAQIfQghwLyzrpPa19KbnyI+3HtsZ+NS/puBJmcVKZ2PBY/L
28BsRzB7BKAPEVhNmyPwFHNdZTvjaqYUCLhQ0uTp1sSHMcLeSs7+vyMR99f/0u9E
doSYAeF41ZkxHXL5xEevdj4sFkCEY1XFxER1Y8VM1rqHTeGEoeYbdS/u9tEeBgit
jBelvHAlNTBgbur2nW4E9fQpAF2CsvWnRq6lSmDRTkyjzcLUQqA8bsQJ3aUyJtZt
j17kUIzSH1q7x3zAaWQcvMVeawdkv2+HanjuTOdeO2ehvyG71vvxA3RkCv8o5Jhh
da+jAMhkpYQxk8mSKkWm
=8+cB
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull ARM64 updates from Catalin Marinas:
- KGDB support for arm64
- PCI I/O space extended to 16M (in preparation of PCIe support
patches)
- Dropping ZONE_DMA32 in favour of ZONE_DMA (we only need one for the
time being), together with swiotlb late initialisation to correctly
setup the bounce buffer
- DMA API cache maintenance support (not all ARMv8 platforms have
hardware cache coherency)
- Crypto extensions advertising via ELF_HWCAP2 for compat user space
- Perf support for dwarf unwinding in compat mode
- asm/tlb.h converted to the generic mmu_gather code
- asm-generic rwsem implementation
- Code clean-up
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (42 commits)
arm64: Remove pgprot_dmacoherent()
arm64: Support DMA_ATTR_WRITE_COMBINE
arm64: Implement custom mmap functions for dma mapping
arm64: Fix __range_ok macro
arm64: Fix duplicated Kconfig entries
arm64: mm: Route pmd thp functions through pte equivalents
arm64: rwsem: use asm-generic rwsem implementation
asm-generic: rwsem: de-PPCify rwsem.h
arm64: enable generic CPU feature modalias matching for this architecture
arm64: smp: make local symbol static
arm64: debug: make local symbols static
ARM64: perf: support dwarf unwinding in compat mode
ARM64: perf: add support for frame pointer unwinding in compat mode
ARM64: perf: add support for perf registers API
arm64: Add boot time configuration of Intermediate Physical Address size
arm64: Do not synchronise I and D caches for special ptes
arm64: Make DMA coherent and strongly ordered mappings not executable
arm64: barriers: add dmb barrier
arm64: topology: Implement basic CPU topology support
arm64: advertise ARMv8 extensions to 32-bit compat ELF binaries
...
cpufreq_notify_transition() and cpufreq_notify_post_transition() shouldn't be
called directly by cpufreq drivers anymore and so these should be marked static.
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
CPUFreq core has new infrastructure that would guarantee serialized calls to
target() or target_index() callbacks. These are called
cpufreq_freq_transition_begin() and cpufreq_freq_transition_end().
This patch converts existing drivers to use these new set of routines.
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Whenever we change the frequency of a CPU, we call the PRECHANGE and POSTCHANGE
notifiers. They must be serialized, i.e. PRECHANGE and POSTCHANGE notifiers
should strictly alternate, thereby preventing two different sets of PRECHANGE or
POSTCHANGE notifiers from interleaving arbitrarily.
The following examples illustrate why this is important:
Scenario 1:
-----------
A thread reading the value of cpuinfo_cur_freq, will call
__cpufreq_cpu_get()->cpufreq_out_of_sync()->cpufreq_notify_transition()
The ondemand governor can decide to change the frequency of the CPU at the same
time and hence it can end up sending the notifications via ->target().
If the notifiers are not serialized, the following sequence can occur:
- PRECHANGE Notification for freq A (from cpuinfo_cur_freq)
- PRECHANGE Notification for freq B (from target())
- Freq changed by target() to B
- POSTCHANGE Notification for freq B
- POSTCHANGE Notification for freq A
We can see from the above that the last POSTCHANGE Notification happens for freq
A but the hardware is set to run at freq B.
Where would we break then?: adjust_jiffies() in cpufreq.c & cpufreq_callback()
in arch/arm/kernel/smp.c (which also adjusts the jiffies). All the
loops_per_jiffy calculations will get messed up.
Scenario 2:
-----------
The governor calls __cpufreq_driver_target() to change the frequency. At the
same time, if we change scaling_{min|max}_freq from sysfs, it will end up
calling the governor's CPUFREQ_GOV_LIMITS notification, which will also call
__cpufreq_driver_target(). And hence we end up issuing concurrent calls to
->target().
Typically, platforms have the following logic in their ->target() routines:
(Eg: cpufreq-cpu0, omap, exynos, etc)
A. If new freq is more than old: Increase voltage
B. Change freq
C. If new freq is less than old: decrease voltage
Now, if the two concurrent calls to ->target() are X and Y, where X is trying to
increase the freq and Y is trying to decrease it, we get the following race
condition:
X.A: voltage gets increased for larger freq
Y.A: nothing happens
Y.B: freq gets decreased
Y.C: voltage gets decreased
X.B: freq gets increased
X.C: nothing happens
Thus we can end up setting a freq which is not supported by the voltage we have
set. That will probably make the clock to the CPU unstable and the system might
not work properly anymore.
This patch introduces a set of synchronization primitives to serialize frequency
transitions, which are to be used as shown below:
cpufreq_freq_transition_begin();
//Perform the frequency change
cpufreq_freq_transition_end();
The _begin() call sends the PRECHANGE notification whereas the _end() call sends
the POSTCHANGE notification. Also, all the necessary synchronization is handled
within these calls. In particular, even drivers which set the ASYNC_NOTIFICATION
flag can also use these APIs for performing frequency transitions (ie., you can
call _begin() from one task, and call the corresponding _end() from a different
task).
The actual synchronization underneath is not that complicated:
The key challenge is to allow drivers to begin the transition from one thread
and end it in a completely different thread (this is to enable drivers that do
asynchronous POSTCHANGE notification from bottom-halves, to also use the same
interface).
To achieve this, a 'transition_ongoing' flag, a 'transition_lock' spinlock and a
wait-queue are added per-policy. The flag and the wait-queue are used in
conjunction to create an "uninterrupted flow" from _begin() to _end(). The
spinlock is used to ensure that only one such "flow" is in flight at any given
time. Put together, this provides us all the necessary synchronization.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Ensure that no timer callback is running since we are about to free
the timer structure. We cannot guarantee that the call back is called
on the CPU where the timer is running.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
During suspend, we first stop governors and then suspend cpufreq drivers and
resume must be exactly opposite of that. i.e. resume drivers first and then
start governors.
But the current code in resume enables governors first and then resume drivers.
Fix it be changing code sequence there.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Subsystems that want to register CPU hotplug callbacks, as well as perform
initialization for the CPUs that are already online, often do it as shown
below:
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
This is wrong, since it is prone to ABBA deadlocks involving the
cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
with CPU hotplug operations).
Instead, the correct and race-free way of performing the callback
registration is:
cpu_notifier_register_begin();
for_each_online_cpu(cpu)
init_cpu(cpu);
/* Note the use of the double underscored version of the API */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_notifier_register_done();
Fix the acpi-cpufreq code by using this latter form of callback registration.
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Change to use the new ->stop_cpu() callback to do clean up during CPU
hotplug. The requested P state for an offline core will be used by the
hardware coordination function to select the package P state. If the
core is under load when it is offlined it will fix the package P state
floor to the requested P state of offline core.
Reported-by: Patrick Marlier <patrick.marlier@gmail.com>
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This callback allows the driver to do clean up before the CPU is
completely down and its state cannot be modified. This is used
by the intel_pstate driver to reduce the requested P state prior to
the core going away. This is required because the requested P state
of the offline core is used to select the package P state. This
effectively sets the floor package P state to the requested P state on
the offline core.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
[rjw: Minor modifications]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove unnecessary braces from a single statement.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fix 2 checkpatch errors about using assignment in if condition,
1 checkpatch error about a required space after comma
and 3 warnings about line over 80 characters.
Signed-off-by: Stratos Karafotis <stratosk@semaphore.gr>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
According to the data provided by HW Team, at least 12 internal platform
clock cycles are required to stabilize a DFS clock switch on FSL e500mc Socs.
This patch replaces the CPUFREQ_ETERNAL with appropriate HW clock transition
latency to make DFS governors work normally on Freescale e500mc boards.
Signed-off-by: Zhuoyu Zhang <Zhuoyu.Zhang@freescale.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Two cpufreq notifiers CPUFREQ_RESUMECHANGE and CPUFREQ_SUSPENDCHANGE have
not been used for some time, so remove them to clean up code a bit.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
cpufreq drivers that provide the ->setpolicy() callback are supposed
to have integrated governors, so they don't need to set ->target()
or ->target_index() and may confuse the core if any of these callbacks
is present.
For this reason, add a check preventing ->setpolicy cpufreq drivers
from registering if they have non-NULL ->target or ->target_index.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
We have a per-CPU variable for managing which cluster a CPU belongs to.
Currently, physical_cluster is set for policy->cpu only which leads to
the following on some SoC's:
- There are two clusters:
- Cluster 0 has four ARM Cortex A7 CPUs (slower ones): 0,1,2,3
- Cluster 1 has four ARM Cortex A15 CPUs (faster ones): 4,5,6,7
- CPUs are booted in order 0,1..7 and so initially policy->cpu for A7 cluster
would be 0 and for A15 cluster would be 4.
- Now CPU4 (i.e. A15_0) is hotplugged out and so policy->cpu for A15 cluster
becomes 5 (i.e. A15_1).
- But physical cluster is only set for CPU0 and CPU4 in ARM big LITTLE driver
and isn't updated.
- Now freq change request comes for A15 cluster and we would try to update freq
of physical_cluster of CPU5, i.e. A15_1. And it is currently set to zero
(default value of uninitialized global variables).
- And so we actually try to change freq of A7 cluster instead of A15.
- This also results in kernel crash as sometimes we might request freq above
A7's limit and CPU may behave badly..
Fix this by initializing physical_cluster for all CPUs of a policy.
Based on previous work by Xin Wang.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently vexpress big LITTLE driver selects ARM_BIG_LITTLE_CPUFREQ, so
if CONFIG_BIG_LITTLE isn't enabled and CONFIG_ARM_VEXPRESS_SPC_CPUFREQ
is enabled, we get the following build warnings:
warning: (ARM_VEXPRESS_SPC_CPUFREQ) selects ARM_BIG_LITTLE_CPUFREQ which has
unmet direct dependencies (ARCH_HAS_CPUFREQ && CPU_FREQ && (ARM || ARM64) && ARM
&& BIG_LITTLE && ARM_CPU_TOPOLOGY && HAVE_CLK)
To fix this, make ARM_VEXPRESS_SPC_CPUFREQ depend on ARM_BIG_LITTLE_CPUFREQ
instead of selecting it.
This also moves the entry for ARM_VEXPRESS_SPC_CPUFREQ along with other
big LITTLE config entries.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- reset
- re-use qnap-poweroff driver for Synology NASs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJTGe0/AAoJEP45WPkGe8Znj34QALuuN/yvOykT1/qNg7fdk+C4
Qrqcyi164KtIR1GnjaxYsDDBovreFRMLDBLhrUJnGwsS3u5TnrnGvan955GZxQ8e
86YWlyxzJodbwrD+yK6bPNra1qArwpIQ4q5xUF/fksxMU/dLMiG2wPYQasQb9pMW
yqm3MySNsTinave6QdiTxRzoYBwCcf1ey+mCFSkR9aLXWCFxMuK36/jHQpq7trlP
21jB4cz8qF4eYsVNuyjadR0o4g2p2zM7RxGgZrHFHXESD2jiTrHmMv8cwlEjVMre
0Pqv+BKI5obcMrWzCpVA2v/OUzvhMFrk0LShQVio7NQ5WUNEKPspQ3dogjnlkZKj
6Xcc9OEYRjnAZ8i2q5g0xWoxsTLlAbDzTfmzQ03YRYtRTOxBXr20CTT2omGdJJ17
RzCYvfc7JhGPyOjglsTibJt2plNKhQd5AzkzJFwOmF/tQkAM3LpVgjnqe/Q2Ts5L
5BU7xQlpB2qHJgK48rRuVcpw9aIZJXtcA89oa2ebuWT6D7dJjp9W3J4WhaFzwWGy
dxLU3WrYyiXaLoJURSHW1FaukRecubYZL9GW3Va9iN6rUn46FCVyn7RrCfHVMIXA
Eiw4DAH2sOP7Z6Iw8NfVaU3b8ntT4vCCD3FjV3ZmWtUTsqgxBy5GdjKG9WtglAr6
YhQ8SPTt8vSzVlzfZ4Ug
=j/ZI
-----END PGP SIGNATURE-----
Merge tag 'mvebu-drivers-3.15-2' of git://git.infradead.org/linux-mvebu into next/drivers
Merge "mvebu drivers for v3.15" from Jason Cooper:
pull request #1:
- mvebu mbus
- use of_find_matching_node_and_match
- rtc
- use PTR_ERR_OR_ZERO in isl12057
- work around issue in mv where date returned is 2038
- kirkwood -> mach-mvebu
- various Kconfig oneliners to allow building kirkwood in -mvebu/
pull request #2:
- reset
- re-use qnap-poweroff driver for Synology NASs
* tag 'mvebu-drivers-3.15-2' of git://git.infradead.org/linux-mvebu:
Power: Reset: Generalize qnap-poweroff to work on Synology devices.
drivers: Enable building of Kirkwood drivers for mach-mvebu
rtc: mv: reset date if after year 2038
rtc: isl12057: use PTR_ERR_OR_ZERO to fix coccinelle warnings
bus: mvebu-mbus: make use of of_find_matching_node_and_match
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The architectures that override cputime_t (s390, ppc) don't provide
any version of nsecs_to_cputime(). Indeed this cputime_t implementation
by backend only happens when CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y under
which the core code doesn't make any use of nsecs_to_cputime().
At least for now.
We are going to make a broader use of it so lets provide a default
version with a per usecs granularity. It should be good enough for most
usecases.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
After commit da60ce9f2f (cpufreq: call cpufreq_driver->get() after
calling ->init()) __cpufreq_add_dev() sometimes fails for CPUs handled
by intel_pstate, because that driver may return 0 from its ->get()
callback if it has not run long enough to collect enough samples on the
given CPU. That didn't happen before commit da60ce9f2f which added
policy->cur initialization to __cpufreq_add_dev() to help reduce code
duplication in other cpufreq drivers.
However, the code added by commit da60ce9f2f need not be executed
for cpufreq drivers having the ->setpolicy callback defined, because
the subsequent invocation of cpufreq_set_policy() will use that
callback to initialize the policy anyway and it doesn't need
policy->cur to be initialized upfront. The analogous code in
cpufreq_update_policy() is also unnecessary for cpufreq drivers
having ->setpolicy set and may be skipped for them as well.
Since intel_pstate provides ->setpolicy, skipping the upfront
policy->cur initialization for cpufreq drivers with that callback
set will cover intel_pstate and the problem it's been having after
commit da60ce9f2f will be addressed.
Fixes: da60ce9f2f (cpufreq: call cpufreq_driver->get() after calling ->init())
References: https://bugzilla.kernel.org/show_bug.cgi?id=71931
Reported-and-tested-by: Patrik Lundquist <patrik.lundquist@gmail.com>
Acked-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
As multiplatform build is being adopted by more and more
ARM platforms, initcall function should be used very carefully.
For example, when SPEAr cpufreq driver is enabled on a kernel
booted on a non-SPEAr board, we will get following boot time error:
spear_cpufreq: Invalid cpufreq_tbl
To eliminate this undesired the effect, the patch changes SPEAr
driver to have it instantiated as a platform_driver. Then it will
only run on platforms that create the platform_device "spear-cpufreq".
This patch also creates platform node for SPEAr13xx boards.
Reported-by: Josh Cartwright <joshc@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We have used 'frozen' variable/function parameter at many places to
distinguish between CPU offline/online on suspend/resume vs sysfs
removals. We now have another variable cpufreq_suspended which can
be used in these cases, so we can get rid of all those variables or
function parameters.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
cpufreq_generic_exit() is empty now and can be deleted.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
freq table is not per CPU but per policy, so it makes more sense to
keep it within struct cpufreq_policy instead of a per-cpu variable.
This patch does it. Over that, there is no need to set policy->freq_table
to NULL in ->exit(), as policy structure is going to be freed soon.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core now supports suspending and resuming of cpufreq
drivers and governors during systems suspend and resume, so use
the common infrastructure instead of defining special PM notifiers
for the same thing.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core now supports suspending and resuming of cpufreq
drivers and governors during systems suspend and resume, so use
the common infrastructure instead of defining special PM notifiers
for the same thing.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cpufreq core now supports suspending and resuming of cpufreq
drivers and governors during systems suspend and resume, so use
the common infrastructure instead of defining special PM notifiers
for the same thing.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Multiple platforms need to set CPUs to a particular frequency before
suspending the system, so provide a common infrastructure for them.
Those platforms only need to point their ->suspend callback pointers
to the generic routine.
Tested-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This patch adds cpufreq suspend/resume calls to dpm_{suspend|resume}()
for handling suspend/resume of cpufreq governors.
Lan Tianyu (Intel) & Jinhyuk Choi (Broadcom) found an issue where the
tunables configuration for clusters/sockets with non-boot CPUs was
lost after system suspend/resume, as we were notifying governors with
CPUFREQ_GOV_POLICY_EXIT on removal of the last CPU for that policy
which caused the tunables memory to be freed.
This is fixed by preventing any governor operations from being
carried out between the device suspend and device resume stages of
system suspend and resume, respectively.
We could have added these callbacks at dpm_{suspend|resume}_noirq()
level, but there is an additional problem that the majority of I/O
devices is already suspended at that point and if cpufreq drivers
want to change the frequency before suspending, then that not be
possible on some platforms (which depend on peripherals like i2c,
regulators, etc).
Reported-and-tested-by: Lan Tianyu <tianyu.lan@intel.com>
Reported-by: Jinhyuk Choi <jinchoi@broadcom.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We call __find_governor() during the addition of the first CPU of
each policy from __cpufreq_add_dev() to find the last governor used
for this CPU before it was hot-removed.
After that we call cpufreq_parse_governor() in cpufreq_init_policy(),
either with this governor, or with the default governor. Right after
that policy->governor is set to NULL.
While that code is not functionally problematic, the structure of it
is suboptimal, because some of the code required in cpufreq_init_policy()
is being executed by its caller, __cpufreq_add_dev(). So, it would make
more sense to get all of it together in a single place to make code more
readable.
Accordingly, move the code needed for policy initialization to
cpufreq_init_policy() and initialize policy->governor to NULL at the
beginning.
In order to clean up the code a bit more, some of the #ifdefs for
CONFIG_HOTPLUG_CPU are dropped too.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
policy->rwsem is used to lock access to all parts of code modifying
struct cpufreq_policy, but it's not used on a new policy created by
__cpufreq_add_dev().
Because of that, if cpufreq_update_policy() is called in a tight loop
on one CPU in parallel with offline/online of another CPU, then the
following crash can be triggered:
Unable to handle kernel NULL pointer dereference at virtual address 00000020
pgd = c0003000
[00000020] *pgd=80000000004003, *pmd=00000000
Internal error: Oops: 206 [#1] PREEMPT SMP ARM
PC is at __cpufreq_governor+0x10/0x1ac
LR is at cpufreq_update_policy+0x114/0x150
---[ end trace f23a8defea6cd706 ]---
Kernel panic - not syncing: Fatal exception
CPU0: stopping
CPU: 0 PID: 7136 Comm: mpdecision Tainted: G D W 3.10.0-gd727407-00074-g979ede8 #396
[<c0afe180>] (notifier_call_chain+0x40/0x68) from [<c02a23ac>] (__blocking_notifier_call_chain+0x40/0x58)
[<c02a23ac>] (__blocking_notifier_call_chain+0x40/0x58) from [<c02a23d8>] (blocking_notifier_call_chain+0x14/0x1c)
[<c02a23d8>] (blocking_notifier_call_chain+0x14/0x1c) from [<c0803c68>] (cpufreq_set_policy+0xd4/0x2b8)
[<c0803c68>] (cpufreq_set_policy+0xd4/0x2b8) from [<c0803e7c>] (cpufreq_init_policy+0x30/0x98)
[<c0803e7c>] (cpufreq_init_policy+0x30/0x98) from [<c0805a18>] (__cpufreq_add_dev.isra.17+0x4dc/0x7a4)
[<c0805a18>] (__cpufreq_add_dev.isra.17+0x4dc/0x7a4) from [<c0805d38>] (cpufreq_cpu_callback+0x58/0x84)
[<c0805d38>] (cpufreq_cpu_callback+0x58/0x84) from [<c0afe180>] (notifier_call_chain+0x40/0x68)
[<c0afe180>] (notifier_call_chain+0x40/0x68) from [<c02812dc>] (__cpu_notify+0x28/0x44)
[<c02812dc>] (__cpu_notify+0x28/0x44) from [<c0aeed90>] (_cpu_up+0xf4/0x1dc)
[<c0aeed90>] (_cpu_up+0xf4/0x1dc) from [<c0aeeed4>] (cpu_up+0x5c/0x78)
[<c0aeeed4>] (cpu_up+0x5c/0x78) from [<c0aec808>] (store_online+0x44/0x74)
[<c0aec808>] (store_online+0x44/0x74) from [<c03a40f4>] (sysfs_write_file+0x108/0x14c)
[<c03a40f4>] (sysfs_write_file+0x108/0x14c) from [<c03517d4>] (vfs_write+0xd0/0x180)
[<c03517d4>] (vfs_write+0xd0/0x180) from [<c0351ca8>] (SyS_write+0x38/0x68)
[<c0351ca8>] (SyS_write+0x38/0x68) from [<c0205de0>] (ret_fast_syscall+0x0/0x30)
Fix that by taking locks at appropriate places in __cpufreq_add_dev()
as well.
Reported-by: Saravana Kannan <skannan@codeaurora.org>
Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Policy must be fully initialized before it is being made available
for use by others. Otherwise cpufreq_cpu_get() would be able to grab
a half initialized policy structure that might not have affected_cpus
(for example) populated. Then, anybody accessing those fields will get
a wrong value and that will lead to unpredictable results.
In order to fix this, do all the necessary initialization before we
make the policy structure available via cpufreq_cpu_get(). That will
guarantee that any code accessing fields of the policy will get
correct data from them.
Reported-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
[rjw: Changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If a module calls cpufreq_get while cpufreq is initializing, it's
possible for it to be called after cpufreq_driver is set but before
cpufreq_cpu_data is written during subsys_interface_register. This
happens because cpufreq_get doesn't take the cpufreq_driver_lock
around its use of cpufreq_cpu_data.
Fix this by using cpufreq_cpu_get(cpu) to look up the policy rather
than reading it out of cpufreq_cpu_data directly. cpufreq_cpu_get()
takes the appropriate locks to prevent this race from happening.
Since it's possible for policy to be NULL if the caller passes in an
invalid CPU number or calls the function before cpufreq is initialized,
delete the BUG_ON(!policy) and simply return 0. Don't try to return
-ENOENT because that's negative and the function returns an unsigned
integer.
References: https://bbs.archlinux.org/viewtopic.php?id=177934
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Cc: 3.13+ <stable@vger.kernel.org> # 3.13+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
cpufreq_frequency_get_table() is called from all callers of
__cpufreq_stats_create_table(). So, move it inside.
Suggested-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove sysfs group if __cpufreq_stats_create_table() fails after creating
one.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
__cpufreq_stats_create_table always gets pass the valid and real policy
struct. So, there's no need to call cpufreq_cpu_get() to get the policy
again.
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
commit d253d2a526 (Improve accuracy by not truncating until final
result), changed internal variables of the PID to be fixed point
numbers. Update the pid_reset() to reflect this change.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Remove unneeded sample buffers, intel_pstate operates on the most
recent sample only. This save some memory and make the code more
readable.
Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
cpufreq_update_policy() calls cpufreq_driver->get() to get current
frequency of a CPU and it is not supposed to fail or return zero.
Return error in case that happens.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Enable cpufreq and power kconfig menus on arm64 along with arm cpufreq
drivers. The power menu is needed for OPP support. At least on Calxeda
systems, the same cpufreq driver is used for arm and arm64 based
systems.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Mark Brown <broonie@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>