To do dirty loging with huge pages, we protect huge pmds in the
gmap. When they are written to, we unprotect them and mark them dirty.
We introduce the function gmap_test_and_clear_dirty_pmd which handles
dirty sync for huge pages.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Like for ptes, we also need invalidation notification for pmds, to
make sure the guest lowcore pages are always accessible and later
addition of shadowed pmds.
With PMDs we do not have PGSTEs or some other bits we could use in the
host PMD. Instead we pick one of the free bits in the gmap PMD. Every
time a host pmd will be invalidated, we will check if the respective
gmap PMD has the bit set and in that case fire up the notifier.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Currently we use the software PGSTE bits PGSTE_IN_BIT and
PGSTE_VSIE_BIT to notify before an invalidation occurs on a prefix
page or a VSIE page respectively. Both bits are pgste specific, but
are used when protecting a memory range.
Let's introduce abstract GMAP_NOTIFY_* bits that will be realized into
the respective bits when gmap DAT table entries are protected.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Nested virtualization will have to enable own gmaps. Current code
would enable the wrong gmap whenever scheduled out and back in,
therefore resulting in the wrong gmap being enabled.
This patch reenables the last enabled gmap, therefore avoiding having to
touch vcpu->arch.gmap when enabling a different gmap.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
It will be very helpful to have a mechanism to check without any locks
if a given gmap shadow is still valid and matches the given properties.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can easily support real-space designation just like EDAT1 and EDAT2.
So guest2 can provide for guest3 an asce with the real-space control being
set.
We simply have to allocate the biggest page table possible and fake all
levels.
There is no protection to consider. If we exceed guest memory, vsie code
will inject an addressing exception (via program intercept). In the future,
we could limit the fake table level to the gmap page table.
As the top level page table can never go away, such gmap shadows will never
get unshadowed, we'll have to come up with another way to limit the number
of kept gmap shadows.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the guest is enabled for EDAT2, we can easily create shadows for
guest2 -> guest3 provided tables that make use of EDAT2.
If guest2 references a 2GB page, this memory looks consecutive for guest2,
but it does not have to be so for us. Therefore we have to create fake
segment and page tables.
This works just like EDAT1 support, so page tables are removed when the
parent table (r3t table entry) is changed.
We don't hve to care about:
- ACCF-Validity Control in RTTE
- Access-Control Bits in RTTE
- Fetch-Protection Bit in RTTE
- Common-Region Bit in RTTE
Just like for EDAT1, all bits might be dropped and there is no guaranteed
that they are active.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the guest is enabled for EDAT1, we can easily create shadows for
guest2 -> guest3 provided tables that make use of EDAT1.
If guest2 references a 1MB page, this memory looks consecutive for guest2,
but it might not be so for us. Therefore we have to create fake page tables.
We can easily add that to our existing infrastructure. The invalidation
mechanism will make sure that fake page tables are removed when the parent
table (sgt table entry) is changed.
As EDAT1 also introduced protection on all page table levels, we have to
also shadow these correctly.
We don't have to care about:
- ACCF-Validity Control in STE
- Access-Control Bits in STE
- Fetch-Protection Bit in STE
- Common-Segment Bit in STE
As all bits might be dropped and there is no guaranteed that they are
active ("unpredictable whether the CPU uses these bits", "may be used").
Without using EDAT1 in the shadow ourselfes (STE-format control == 0),
simply shadowing these bits would not be enough. They would be ignored.
Please note that we are using the "fake" flag to make this look consistent
with further changes (EDAT2, real-space designation support) and don't let
the shadow functions handle fc=1 stes.
In the future, with huge pages in the host, gmap_shadow_pgt() could simply
try to map a huge host page if "fake" is set to one and indicate via return
value that no lower fake tables / shadow ptes are required.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In preparation for EDAT1/EDAT2 support for gmap shadows, we have to store
the requested edat level in the gmap shadow.
The edat level used during shadow translation is a property of the gmap
shadow. Depending on that level, the gmap shadow will look differently for
the same guest tables. We have to store it internally in order to support
it later.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Before any thread is allowed to use a gmap_shadow, it has to be fully
initialized. However, for invalidation to work properly, we have to
register the new gmap_shadow before we protect the parent gmap table.
Because locking is tricky, and we have to avoid duplicate gmaps, let's
introduce an initialized field, that signalizes other threads if that
gmap_shadow can already be used or if they have to retry.
Let's properly return errors using ERR_PTR() instead of simply returning
NULL, so a caller can properly react on the error.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We really want to avoid manually handling protection for nested
virtualization. By shadowing pages with the protection the guest asked us
for, the SIE can handle most protection-related actions for us (e.g.
special handling for MVPG) and we can directly forward protection
exceptions to the guest.
PTEs will now always be shadowed with the correct _PAGE_PROTECT flag.
Unshadowing will take care of any guest changes to the parent PTE and
any host changes to the host PTE. If the host PTE doesn't have the
fitting access rights or is not available, we have to fix it up.
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For a nested KVM guest the outer KVM host needs to create shadow
page tables for the nested guest. This patch adds the basic support
to the guest address space (gmap) code.
For each guest address space the inner KVM host creates, the first
outer KVM host needs to create shadow page tables. The address space
is identified by the ASCE loaded into the control register 1 at the
time the inner SIE instruction for the second nested KVM guest is
executed. The outer KVM host creates the shadow tables starting with
the table identified by the ASCE on a on-demand basis. The outer KVM
host will get repeated faults for all the shadow tables needed to
run the second KVM guest.
While a shadow page table for the second KVM guest is active the access
to the origin region, segment and page tables needs to be restricted
for the first KVM guest. For region and segment and page tables the first
KVM guest may read the memory, but write attempt has to lead to an
unshadow. This is done using the page invalid and read-only bits in the
page table of the first KVM guest. If the first guest re-accesses one of
the origin pages of a shadow, it gets a fault and the affected parts of
the shadow page table hierarchy needs to be removed again.
PGSTE tables don't have to be shadowed, as all interpretation assist can't
deal with the invalid bits in the shadow pte being set differently than
the original ones provided by the first KVM guest.
Many bug fixes and improvements by David Hildenbrand.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's use a reference counter mechanism to control the lifetime of
gmap structures. This will be needed for further changes related to
gmap shadows.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The current gmap pte notifier forces a pte into to a read-write state.
If the pte is invalidated the gmap notifier is called to inform KVM
that the mapping will go away.
Extend this approach to allow read-write, read-only and no-access
as possible target states and call the pte notifier for any change
to the pte.
This mechanism is used to temporarily set specific access rights for
a pte without doing the heavy work of a true mprotect call.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The gmap notifier list and the gmap list in the mm_struct change rarely.
Use RCU to optimize the reader of these lists.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Pass an address range to the page table invalidation notifier
for KVM. This allows to notify changes that affect a larger
virtual memory area, e.g. for 1MB pages.
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The pgtable.c file is quite big, before it grows any larger split it
into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related
header definitions into the new gmap.h header and all of the pgste
helpers from pgtable.h to pgtable.c.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>