While hashing out BPF's current_task_under_cgroup helper bits, it came
to discussion that the skb_in_cgroup helper name was suboptimally chosen.
Tejun says:
So, I think in_cgroup should mean that the object is in that
particular cgroup while under_cgroup in the subhierarchy of that
cgroup. Let's rename the other subhierarchy test to under too. I
think that'd be a lot less confusing going forward.
[...]
It's more intuitive and gives us the room to implement the real
"in" test if ever necessary in the future.
Since this touches uapi bits, we need to change this as long as v4.8
is not yet officially released. Thus, change the helper enum and rename
related bits.
Fixes: 4a482f34af ("cgroup: bpf: Add bpf_skb_in_cgroup_proto")
Reference: http://patchwork.ozlabs.org/patch/658500/
Suggested-by: Sargun Dhillon <sargun@sargun.me>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
This allows user memory to be written to during the course of a kprobe.
It shouldn't be used to implement any kind of security mechanism
because of TOC-TOU attacks, but rather to debug, divert, and
manipulate execution of semi-cooperative processes.
Although it uses probe_kernel_write, we limit the address space
the probe can write into by checking the space with access_ok.
We do this as opposed to calling copy_to_user directly, in order
to avoid sleeping. In addition we ensure the threads's current fs
/ segment is USER_DS and the thread isn't exiting nor a kernel thread.
Given this feature is meant for experiments, and it has a risk of
crashing the system, and running programs, we print a warning on
when a proglet that attempts to use this helper is installed,
along with the pid and process name.
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
XDP enabled drivers must transmit received packets back out on the same
port they were received on when a program returns this action.
Signed-off-by: Brenden Blanco <bblanco@plumgrid.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new bpf prog type that is intended to run in early stages of the
packet rx path. Only minimal packet metadata will be available, hence a
new context type, struct xdp_md, is exposed to userspace. So far only
expose the packet start and end pointers, and only in read mode.
An XDP program must return one of the well known enum values, all other
return codes are reserved for future use. Unfortunately, this
restriction is hard to enforce at verification time, so take the
approach of warning at runtime when such programs are encountered. Out
of bounds return codes should alias to XDP_ABORTED.
Signed-off-by: Brenden Blanco <bblanco@plumgrid.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work addresses a couple of issues bpf_skb_event_output()
helper currently has: i) We need two copies instead of just a
single one for the skb data when it should be part of a sample.
The data can be non-linear and thus needs to be extracted via
bpf_skb_load_bytes() helper first, and then copied once again
into the ring buffer slot. ii) Since bpf_skb_load_bytes()
currently needs to be used first, the helper needs to see a
constant size on the passed stack buffer to make sure BPF
verifier can do sanity checks on it during verification time.
Thus, just passing skb->len (or any other non-constant value)
wouldn't work, but changing bpf_skb_load_bytes() is also not
the proper solution, since the two copies are generally still
needed. iii) bpf_skb_load_bytes() is just for rather small
buffers like headers, since they need to sit on the limited
BPF stack anyway. Instead of working around in bpf_skb_load_bytes(),
this work improves the bpf_skb_event_output() helper to address
all 3 at once.
We can make use of the passed in skb context that we have in
the helper anyway, and use some of the reserved flag bits as
a length argument. The helper will use the new __output_custom()
facility from perf side with bpf_skb_copy() as callback helper
to walk and extract the data. It will pass the data for setup
to bpf_event_output(), which generates and pushes the raw record
with an additional frag part. The linear data used in the first
frag of the record serves as programmatically defined meta data
passed along with the appended sample.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
over time there were multiple requests to access different data
structures and fields of task_struct current, so finally add
the helper to access 'current' as-is. Tracing bpf programs will do
the rest of walking the pointers via bpf_probe_read().
Note that current can be null and bpf program has to deal it with,
but even dumb passing null into bpf_probe_read() is still safe.
Suggested-by: Brendan Gregg <brendan.d.gregg@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
If skb_clear_hash() was invoked due to mangling of relevant headers and
BPF program needs skb->hash later on, we can add a helper to trigger hash
recalculation via bpf_get_hash_recalc().
The helper will return the newly retrieved hash directly, but later access
can also be done via skb context again through skb->hash directly (inline)
without needing to call the helper once more.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adds a bpf helper, bpf_skb_in_cgroup, to decide if a skb->sk
belongs to a descendant of a cgroup2. It is similar to the
feature added in netfilter:
commit c38c4597e4 ("netfilter: implement xt_cgroup cgroup2 path match")
The user is expected to populate a BPF_MAP_TYPE_CGROUP_ARRAY
which will be used by the bpf_skb_in_cgroup.
Modifications to the bpf verifier is to ensure BPF_MAP_TYPE_CGROUP_ARRAY
and bpf_skb_in_cgroup() are always used together.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a BPF_MAP_TYPE_CGROUP_ARRAY and its bpf_map_ops's implementations.
To update an element, the caller is expected to obtain a cgroup2 backed
fd by open(cgroup2_dir) and then update the array with that fd.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds a helper for changing skb->pkt_type in a controlled way.
We only allow a subset of possible values and can extend that in future
should other use cases come up. Doing this as a helper has the advantage
that errors can be handeled gracefully and thus helper kept extensible.
It's a write counterpart to pkt_type member we can already read from
struct __sk_buff context. Major use case is to change incoming skbs to
PACKET_HOST in a programmatic way instead of having to recirculate via
redirect(..., BPF_F_INGRESS), for example.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a minimal helper for doing the groundwork of changing
the skb->protocol in a controlled way. Currently supported is v4 to
v6 and vice versa transitions, which allows f.e. for a minimal, static
nat64 implementation where applications in containers that still
require IPv4 can be transparently operated in an IPv6-only environment.
For example, host facing veth of the container can transparently do
the transitions in a programmatic way with the help of clsact qdisc
and cls_bpf.
Idea is to separate concerns for keeping complexity of the helper
lower, which means that the programs utilize bpf_skb_change_proto(),
bpf_skb_store_bytes() and bpf_lX_csum_replace() to get the job done,
instead of doing everything in a single helper (and thus partially
duplicating helper functionality). Also, bpf_skb_change_proto()
shouldn't need to deal with raw packet data as this is done by other
helpers.
bpf_skb_proto_6_to_4() and bpf_skb_proto_4_to_6() unclone the skb to
operate on a private one, push or pop additionally required header
space and migrate the gso/gro meta data from the shared info. We do
mark the gso type as dodgy so that headers are checked and segs
recalculated by the gso/gro engine. The gso_size target is adapted
as well. The flags argument added is currently reserved and can be
used for future extensions.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Follow-up commit to 1e33759c78 ("bpf, trace: add BPF_F_CURRENT_CPU
flag for bpf_perf_event_output") to add the same functionality into
bpf_perf_event_read() helper. The split of index into flags and index
component is also safe here, since such large maps are rejected during
map allocation time.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extended BPF carried over two instructions from classic to access
packet data: LD_ABS and LD_IND. They're highly optimized in JITs,
but due to their design they have to do length check for every access.
When BPF is processing 20M packets per second single LD_ABS after JIT
is consuming 3% cpu. Hence the need to optimize it further by amortizing
the cost of 'off < skb_headlen' over multiple packet accesses.
One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW
with similar usage as skb_header_pointer().
The kernel part for interpreter and x64 JIT was implemented in [1], but such
new insns behave like old ld_abs and abort the program with 'return 0' if
access is beyond linear data. Such hidden control flow is hard to workaround
plus changing JITs and rolling out new llvm is incovenient.
Therefore allow cls_bpf/act_bpf program access skb->data directly:
int bpf_prog(struct __sk_buff *skb)
{
struct iphdr *ip;
if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end)
/* packet too small */
return 0;
ip = skb->data + ETH_HLEN;
/* access IP header fields with direct loads */
if (ip->version != 4 || ip->saddr == 0x7f000001)
return 1;
[...]
}
This solution avoids introduction of new instructions. llvm stays
the same and all JITs stay the same, but verifier has to work extra hard
to prove safety of the above program.
For XDP the direct store instructions can be allowed as well.
The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check
the alignment. The complex packet parsers where packet pointer is adjusted
incrementally cannot be tracked for alignment, so allow byte access in such cases
and misaligned access on architectures that define efficient_unaligned_access
[1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a BPF_F_CURRENT_CPU flag to optimize the use-case where user space has
per-CPU ring buffers and the eBPF program pushes the data into the current
CPU's ring buffer which saves us an extra helper function call in eBPF.
Also, make sure to properly reserve the remaining flags which are not used.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_PROG_TYPE_TRACEPOINT program type and allow it to be attached
to the perf tracepoint handler, which will copy the arguments into
the per-cpu buffer and pass it to the bpf program as its first argument.
The layout of the fields can be discovered by doing
'cat /sys/kernel/debug/tracing/events/sched/sched_switch/format'
prior to the compilation of the program with exception that first 8 bytes
are reserved and not accessible to the program. This area is used to store
the pointer to 'struct pt_regs' which some of the bpf helpers will use:
+---------+
| 8 bytes | hidden 'struct pt_regs *' (inaccessible to bpf program)
+---------+
| N bytes | static tracepoint fields defined in tracepoint/format (bpf readonly)
+---------+
| dynamic | __dynamic_array bytes of tracepoint (inaccessible to bpf yet)
+---------+
Not that all of the fields are already dumped to user space via perf ring buffer
and broken application access it directly without consulting tracepoint/format.
Same rule applies here: static tracepoint fields should only be accessed
in a format defined in tracepoint/format. The order of fields and
field sizes are not an ABI.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make the 2 byte padding in struct bpf_tunnel_key between tunnel_ttl
and tunnel_label members explicit. No issue has been observed, and
gcc/llvm does padding for the old struct already, where tunnel_label
was not yet present, so the current code works, but since it's part
of uapi, make sure we don't introduce holes in structs.
Therefore, add tunnel_ext that we can use generically in future
(f.e. to flag OAM messages for backends, etc). Also add the offset
to the compat tests to be sure should some compilers not padd the
tail of the old version of bpf_tunnel_key.
Fixes: 4018ab1875 ("bpf: support flow label for bpf_skb_{set, get}_tunnel_key")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch extends bpf_tunnel_key with a tunnel_label member, that maps
to ip_tunnel_key's label so underlying backends like vxlan and geneve
can propagate the label to udp_tunnel6_xmit_skb(), where it's being set
in the IPv6 header. It allows for having 20 more bits to encode/decode
flow related meta information programmatically. Tested with vxlan and
geneve.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
If kprobe is placed on spin_unlock then calling kmalloc/kfree from
bpf programs is not safe, since the following dead lock is possible:
kfree->spin_lock(kmem_cache_node->lock)...spin_unlock->kprobe->
bpf_prog->map_update->kmalloc->spin_lock(of the same kmem_cache_node->lock)
and deadlocks.
The following solutions were considered and some implemented, but
eventually discarded
- kmem_cache_create for every map
- add recursion check to slow-path of slub
- use reserved memory in bpf_map_update for in_irq or in preempt_disabled
- kmalloc via irq_work
At the end pre-allocation of all map elements turned out to be the simplest
solution and since the user is charged upfront for all the memory, such
pre-allocation doesn't affect the user space visible behavior.
Since it's impossible to tell whether kprobe is triggered in a safe
location from kmalloc point of view, use pre-allocation by default
and introduce new BPF_F_NO_PREALLOC flag.
While testing of per-cpu hash maps it was discovered
that alloc_percpu(GFP_ATOMIC) has odd corner cases and often
fails to allocate memory even when 90% of it is free.
The pre-allocation of per-cpu hash elements solves this problem as well.
Turned out that bpf_map_update() quickly followed by
bpf_map_lookup()+bpf_map_delete() is very common pattern used
in many of iovisor/bcc/tools, so there is additional benefit of
pre-allocation, since such use cases are must faster.
Since all hash map elements are now pre-allocated we can remove
atomic increment of htab->count and save few more cycles.
Also add bpf_map_precharge_memlock() to check rlimit_memlock early to avoid
large malloc/free done by users who don't have sufficient limits.
Pre-allocation is done with vmalloc and alloc/free is done
via percpu_freelist. Here are performance numbers for different
pre-allocation algorithms that were implemented, but discarded
in favor of percpu_freelist:
1 cpu:
pcpu_ida 2.1M
pcpu_ida nolock 2.3M
bt 2.4M
kmalloc 1.8M
hlist+spinlock 2.3M
pcpu_freelist 2.6M
4 cpu:
pcpu_ida 1.5M
pcpu_ida nolock 1.8M
bt w/smp_align 1.7M
bt no/smp_align 1.1M
kmalloc 0.7M
hlist+spinlock 0.2M
pcpu_freelist 2.0M
8 cpu:
pcpu_ida 0.7M
bt w/smp_align 0.8M
kmalloc 0.4M
pcpu_freelist 1.5M
32 cpu:
kmalloc 0.13M
pcpu_freelist 0.49M
pcpu_ida nolock is a modified percpu_ida algorithm without
percpu_ida_cpu locks and without cross-cpu tag stealing.
It's faster than existing percpu_ida, but not as fast as pcpu_freelist.
bt is a variant of block/blk-mq-tag.c simlified and customized
for bpf use case. bt w/smp_align is using cache line for every 'long'
(similar to blk-mq-tag). bt no/smp_align allocates 'long'
bitmasks continuously to save memory. It's comparable to percpu_ida
and in some cases faster, but slower than percpu_freelist
hlist+spinlock is the simplest free list with single spinlock.
As expeceted it has very bad scaling in SMP.
kmalloc is existing implementation which is still available via
BPF_F_NO_PREALLOC flag. It's significantly slower in single cpu and
in 8 cpu setup it's 3 times slower than pre-allocation with pcpu_freelist,
but saves memory, so in cases where map->max_entries can be large
and number of map update/delete per second is low, it may make
sense to use it.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
After eBPF being able to programmatically access/manage tunnel key meta
data via commit d3aa45ce6b ("bpf: add helpers to access tunnel metadata")
and more recently also for IPv6 through c6c3345407 ("bpf: support ipv6
for bpf_skb_{set,get}_tunnel_key"), this work adds two complementary
helpers to generically access their auxiliary tunnel options.
Geneve and vxlan support this facility. For geneve, TLVs can be pushed,
and for the vxlan case its GBP extension. I.e. setting tunnel key for geneve
case only makes sense, if we can also read/write TLVs into it. In the GBP
case, it provides the flexibility to easily map the group policy ID in
combination with other helpers or maps.
I chose to model this as two separate helpers, bpf_skb_{set,get}_tunnel_opt(),
for a couple of reasons. bpf_skb_{set,get}_tunnel_key() is already rather
complex by itself, and there may be cases for tunnel key backends where
tunnel options are not always needed. If we would have integrated this
into bpf_skb_{set,get}_tunnel_key() nevertheless, we are very limited with
remaining helper arguments, so keeping compatibility on structs in case of
passing in a flat buffer gets more cumbersome. Separating both also allows
for more flexibility and future extensibility, f.e. options could be fed
directly from a map, etc.
Moreover, change geneve's xmit path to test only for info->options_len
instead of TUNNEL_GENEVE_OPT flag. This makes it more consistent with vxlan's
xmit path and allows for avoiding to specify a protocol flag in the API on
xmit, so it can be protocol agnostic. Having info->options_len is enough
information that is needed. Tested with vxlan and geneve.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Added by 9a628224a6 ("ip_tunnel: Add dont fragment flag."), allow to
feed df flag into tunneling facilities (currently supported on TX by
vxlan, geneve and gre) as a hint from eBPF's bpf_skb_set_tunnel_key()
helper.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When overwriting parts of the packet with bpf_skb_store_bytes() that
were fed previously into skb->hash calculation, we should clear the
current hash with skb_clear_hash(), so that a next skb_get_hash() call
can determine the correct hash related to this skb.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Several cases of overlapping changes, as well as one instance
(vxlan) of a bug fix in 'net' overlapping with code movement
in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
The fix in 35e2d1152b ("tunnels: Allow IPv6 UDP checksums to be correctly
controlled.") changed behavior for bpf_set_tunnel_key() when in use with
IPv6 and thus uncovered a bug that TUNNEL_CSUM needed to be set but wasn't.
As a result, the stack dropped ingress vxlan IPv6 packets, that have been
sent via eBPF through collect meta data mode due to checksum now being zero.
Since after LCO, we enable IPv4 checksum by default, so make that analogous
and only provide a flag BPF_F_ZERO_CSUM_TX for the user to turn it off in
IPv4 case.
Fixes: 35e2d1152b ("tunnels: Allow IPv6 UDP checksums to be correctly controlled.")
Fixes: c6c3345407 ("bpf: support ipv6 for bpf_skb_{set,get}_tunnel_key")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When using this helper for updating UDP checksums, we need to extend
this in order to write CSUM_MANGLED_0 for csum computations that result
into 0 as sum. Reason we need this is because packets with a checksum
could otherwise become incorrectly marked as a packet without a checksum.
Likewise, if the user indicates BPF_F_MARK_MANGLED_0, then we should
not turn packets without a checksum into ones with a checksum.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
For L4 checksums, we currently have bpf_l4_csum_replace() helper. It's
currently limited to handle 2 and 4 byte changes in a header and feeds the
from/to into inet_proto_csum_replace{2,4}() helpers of the kernel. When
working with IPv6, for example, this makes it rather cumbersome to deal
with, similarly when editing larger parts of a header.
Instead, extend the API in a more generic way: For bpf_l4_csum_replace(),
add a case for header field mask of 0 to change the checksum at a given
offset through inet_proto_csum_replace_by_diff(), and provide a helper
bpf_csum_diff() that can generically calculate a from/to diff for arbitrary
amounts of data.
This can be used in multiple ways: for the bpf_l4_csum_replace() only
part, this even provides us with the option to insert precalculated diffs
from user space f.e. from a map, or from bpf_csum_diff() during runtime.
bpf_csum_diff() has a optional from/to stack buffer input, so we can
calculate a diff by using a scratchbuffer for scenarios where we're
inserting (from is NULL), removing (to is NULL) or diffing (from/to buffers
don't need to be of equal size) data. Also, bpf_csum_diff() allows to
feed a previous csum into csum_partial(), so the function can also be
cascaded.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
add new map type to store stack traces and corresponding helper
bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id
@ctx: struct pt_regs*
@map: pointer to stack_trace map
@flags: bits 0-7 - numer of stack frames to skip
bit 8 - collect user stack instead of kernel
bit 9 - compare stacks by hash only
bit 10 - if two different stacks hash into the same stackid
discard old
other bits - reserved
Return: >= 0 stackid on success or negative error
stackid is a 32-bit integer handle that can be further combined with
other data (including other stackid) and used as a key into maps.
Userspace will access stackmap using standard lookup/delete syscall commands to
retrieve full stack trace for given stackid.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Primary use case is a histogram array of latency
where bpf program computes the latency of block requests or other
events and stores histogram of latency into array of 64 elements.
All cpus are constantly running, so normal increment is not accurate,
bpf_xadd causes cache ping-pong and this per-cpu approach allows
fastest collision-free counters.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce BPF_MAP_TYPE_PERCPU_HASH map type which is used to do
accurate counters without need to use BPF_XADD instruction which turned
out to be too costly for high-performance network monitoring.
In the typical use case the 'key' is the flow tuple or other long
living object that sees a lot of events per second.
bpf_map_lookup_elem() returns per-cpu area.
Example:
struct {
u32 packets;
u32 bytes;
} * ptr = bpf_map_lookup_elem(&map, &key);
/* ptr points to this_cpu area of the value, so the following
* increments will not collide with other cpus
*/
ptr->packets ++;
ptr->bytes += skb->len;
bpf_update_elem() atomically creates a new element where all per-cpu
values are zero initialized and this_cpu value is populated with
given 'value'.
Note that non-per-cpu hash map always allocates new element
and then deletes old after rcu grace period to maintain atomicity
of update. Per-cpu hash map updates element values in-place.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
After IPv6 support has recently been added to metadata dst and related
encaps, add support for populating/reading it from an eBPF program.
Commit d3aa45ce6b ("bpf: add helpers to access tunnel metadata") started
with initial IPv4-only support back then (due to IPv6 metadata support
not being available yet).
To stay compatible with older programs, we need to test for the passed
structure size. Also TOS and TTL support from the ip_tunnel_info key has
been added. Tested with vxlan devs in collect meta data mode with IPv4,
IPv6 and in compat mode over different network namespaces.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Export flags used by eBPF helper functions through UAPI, so they can be
used by programs (instead of them redefining all flags each time or just
using the hard-coded values). It also gives a better overview what flags
are used where and we can further get rid of the extra macros defined in
filter.c. Moreover, reject invalid flags.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When hacking tc programs with eBPF, one of the issues that come up
from time to time is to load addresses from headers. In eBPF as in
classic BPF, we have BPF_LD | BPF_ABS | BPF_{B,H,W} instructions that
extract a byte, half-word or word out of the skb data though helpers
such as bpf_load_pointer() (interpreter case).
F.e. extracting a whole IPv6 address could possibly look like ...
union v6addr {
struct {
__u32 p1;
__u32 p2;
__u32 p3;
__u32 p4;
};
__u8 addr[16];
};
[...]
a.p1 = htonl(load_word(skb, off));
a.p2 = htonl(load_word(skb, off + 4));
a.p3 = htonl(load_word(skb, off + 8));
a.p4 = htonl(load_word(skb, off + 12));
[...]
/* access to a.addr[...] */
This work adds a complementary helper bpf_skb_load_bytes() (we also
have bpf_skb_store_bytes()) as an alternative where the same call
would look like from an eBPF program:
ret = bpf_skb_load_bytes(skb, off, addr, sizeof(addr));
Same verifier restrictions apply as in ffeedafbf0 ("bpf: introduce
current->pid, tgid, uid, gid, comm accessors") case, where stack memory
access needs to be statically verified and thus guaranteed to be
initialized in first use (otherwise verifier cannot tell whether a
subsequent access to it is valid or not as it's runtime dependent).
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds support for "persistent" eBPF maps/programs. The term
"persistent" is to be understood that maps/programs have a facility
that lets them survive process termination. This is desired by various
eBPF subsystem users.
Just to name one example: tc classifier/action. Whenever tc parses
the ELF object, extracts and loads maps/progs into the kernel, these
file descriptors will be out of reach after the tc instance exits.
So a subsequent tc invocation won't be able to access/relocate on this
resource, and therefore maps cannot easily be shared, f.e. between the
ingress and egress networking data path.
The current workaround is that Unix domain sockets (UDS) need to be
instrumented in order to pass the created eBPF map/program file
descriptors to a third party management daemon through UDS' socket
passing facility. This makes it a bit complicated to deploy shared
eBPF maps or programs (programs f.e. for tail calls) among various
processes.
We've been brainstorming on how we could tackle this issue and various
approches have been tried out so far, which can be read up further in
the below reference.
The architecture we eventually ended up with is a minimal file system
that can hold map/prog objects. The file system is a per mount namespace
singleton, and the default mount point is /sys/fs/bpf/. Any subsequent
mounts within a given namespace will point to the same instance. The
file system allows for creating a user-defined directory structure.
The objects for maps/progs are created/fetched through bpf(2) with
two new commands (BPF_OBJ_PIN/BPF_OBJ_GET). I.e. a bpf file descriptor
along with a pathname is being passed to bpf(2) that in turn creates
(we call it eBPF object pinning) the file system nodes. Only the pathname
is being passed to bpf(2) for getting a new BPF file descriptor to an
existing node. The user can use that to access maps and progs later on,
through bpf(2). Removal of file system nodes is being managed through
normal VFS functions such as unlink(2), etc. The file system code is
kept to a very minimum and can be further extended later on.
The next step I'm working on is to add dump eBPF map/prog commands
to bpf(2), so that a specification from a given file descriptor can
be retrieved. This can be used by things like CRIU but also applications
can inspect the meta data after calling BPF_OBJ_GET.
Big thanks also to Alexei and Hannes who significantly contributed
in the design discussion that eventually let us end up with this
architecture here.
Reference: https://lkml.org/lkml/2015/10/15/925
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This helper is used to send raw data from eBPF program into
special PERF_TYPE_SOFTWARE/PERF_COUNT_SW_BPF_OUTPUT perf_event.
User space needs to perf_event_open() it (either for one or all cpus) and
store FD into perf_event_array (similar to bpf_perf_event_read() helper)
before eBPF program can send data into it.
Today the programs triggered by kprobe collect the data and either store
it into the maps or print it via bpf_trace_printk() where latter is the debug
facility and not suitable to stream the data. This new helper replaces
such bpf_trace_printk() usage and allows programs to have dedicated
channel into user space for post-processing of the raw data collected.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using routing realms as part of the classifier is quite useful, it
can be viewed as a tag for one or multiple routing entries (think of
an analogy to net_cls cgroup for processes), set by user space routing
daemons or via iproute2 as an indicator for traffic classifiers and
later on processed in the eBPF program.
Unlike actions, the classifier can inspect device flags and enable
netif_keep_dst() if necessary. tc actions don't have that possibility,
but in case people know what they are doing, it can be used from there
as well (e.g. via devs that must keep dsts by design anyway).
If a realm is set, the handler returns the non-zero realm. User space
can set the full 32bit realm for the dst.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Existing bpf_clone_redirect() helper clones skb before redirecting
it to RX or TX of destination netdev.
Introduce bpf_redirect() helper that does that without cloning.
Benchmarked with two hosts using 10G ixgbe NICs.
One host is doing line rate pktgen.
Another host is configured as:
$ tc qdisc add dev $dev ingress
$ tc filter add dev $dev root pref 10 u32 match u32 0 0 flowid 1:2 \
action bpf run object-file tcbpf1_kern.o section clone_redirect_xmit drop
so it receives the packet on $dev and immediately xmits it on $dev + 1
The section 'clone_redirect_xmit' in tcbpf1_kern.o file has the program
that does bpf_clone_redirect() and performance is 2.0 Mpps
$ tc filter add dev $dev root pref 10 u32 match u32 0 0 flowid 1:2 \
action bpf run object-file tcbpf1_kern.o section redirect_xmit drop
which is using bpf_redirect() - 2.4 Mpps
and using cls_bpf with integrated actions as:
$ tc filter add dev $dev root pref 10 \
bpf run object-file tcbpf1_kern.o section redirect_xmit integ_act classid 1
performance is 2.5 Mpps
To summarize:
u32+act_bpf using clone_redirect - 2.0 Mpps
u32+act_bpf using redirect - 2.4 Mpps
cls_bpf using redirect - 2.5 Mpps
For comparison linux bridge in this setup is doing 2.1 Mpps
and ixgbe rx + drop in ip_rcv - 7.8 Mpps
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Often cls_bpf classifier is used with single action drop attached.
Optimize this use case and let cls_bpf return both classid and action.
For backwards compatibility reasons enable this feature under
TCA_BPF_FLAG_ACT_DIRECT flag.
Then more interesting programs like the following are easier to write:
int cls_bpf_prog(struct __sk_buff *skb)
{
/* classify arp, ip, ipv6 into different traffic classes
* and drop all other packets
*/
switch (skb->protocol) {
case htons(ETH_P_ARP):
skb->tc_classid = 1;
break;
case htons(ETH_P_IP):
skb->tc_classid = 2;
break;
case htons(ETH_P_IPV6):
skb->tc_classid = 3;
break;
default:
return TC_ACT_SHOT;
}
return TC_ACT_OK;
}
Joint work with Daniel Borkmann.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
According to the perf_event_map_fd and index, the function
bpf_perf_event_read() can convert the corresponding map
value to the pointer to struct perf_event and return the
Hardware PMU counter value.
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce a new bpf map type 'BPF_MAP_TYPE_PERF_EVENT_ARRAY'.
This map only stores the pointer to struct perf_event. The
user space event FDs from perf_event_open() syscall are converted
to the pointer to struct perf_event and stored in map.
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add skb->hash to the __sk_buff offset map, so it can be accessed from
an eBPF program. We currently already do this for classic BPF filters,
but not yet on eBPF, it might be useful as a demuxer in combination with
helpers like bpf_clone_redirect(), toy example:
__section("cls-lb") int ingress_main(struct __sk_buff *skb)
{
unsigned int which = 3 + (skb->hash & 7);
/* bpf_skb_store_bytes(skb, ...); */
/* bpf_l{3,4}_csum_replace(skb, ...); */
bpf_clone_redirect(skb, which, 0);
return -1;
}
I was thinking whether to add skb_get_hash(), but then concluded the
raw skb->hash seems fine in this case: we can directly access the hash
w/o extra eBPF helper function call, it's filled out by many NICs on
ingress, and in case the entropy level would not be sufficient, people
can still implement their own specific sw fallback hash mix anyway.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduce helpers to let eBPF programs attached to TC manipulate tunnel metadata:
bpf_skb_[gs]et_tunnel_key(skb, key, size, flags)
skb: pointer to skb
key: pointer to 'struct bpf_tunnel_key'
size: size of 'struct bpf_tunnel_key'
flags: room for future extensions
First eBPF program that uses these helpers will allocate per_cpu
metadata_dst structures that will be used on TX.
On RX metadata_dst is allocated by tunnel driver.
Typical usage for TX:
struct bpf_tunnel_key tkey;
... populate tkey ...
bpf_skb_set_tunnel_key(skb, &tkey, sizeof(tkey), 0);
bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
RX:
struct bpf_tunnel_key tkey = {};
bpf_skb_get_tunnel_key(skb, &tkey, sizeof(tkey), 0);
... lookup or redirect based on tkey ...
'struct bpf_tunnel_key' will be extended in the future by adding
elements to the end and the 'size' argument will indicate which fields
are populated, thereby keeping backwards compatibility.
The 'flags' argument may be used as well when the 'size' is not enough or
to indicate completely different layout of bpf_tunnel_key.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow eBPF programs attached to TC qdiscs call skb_vlan_push/pop via
helper functions. These functions may change skb->data/hlen which are
cached by some JITs to improve performance of ld_abs/ld_ind instructions.
Therefore JITs need to recognize bpf_skb_vlan_push/pop() calls,
re-compute header len and re-cache skb->data/hlen back into cpu registers.
Note, skb->data/hlen are not directly accessible from the programs,
so any changes to skb->data done either by these helpers or by other
TC actions are safe.
eBPF JIT supported by three architectures:
- arm64 JIT is using bpf_load_pointer() without caching, so it's ok as-is.
- x64 JIT re-caches skb->data/hlen unconditionally after vlan_push/pop calls
(experiments showed that conditional re-caching is slower).
- s390 JIT falls back to interpreter for now when bpf_skb_vlan_push() is present
in the program (re-caching is tbd).
These helpers allow more scalable handling of vlan from the programs.
Instead of creating thousands of vlan netdevs on top of eth0 and attaching
TC+ingress+bpf to all of them, the program can be attached to eth0 directly
and manipulate vlans as necessary.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It would be very useful to retrieve the net_cls's classid from an eBPF
program to allow for a more fine-grained classification, it could be
directly used or in conjunction with additional policies. I.e. docker,
but also tooling such as cgexec, can easily run applications via net_cls
cgroups:
cgcreate -g net_cls:/foo
echo 42 > foo/net_cls.classid
cgexec -g net_cls:foo <prog>
Thus, their respecitve classid cookie of foo can then be looked up on
the egress path to apply further policies. The helper is desigend such
that a non-zero value returns the cgroup id.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Thomas Graf <tgraf@suug.ch>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
eBPF programs attached to kprobes need to filter based on
current->pid, uid and other fields, so introduce helper functions:
u64 bpf_get_current_pid_tgid(void)
Return: current->tgid << 32 | current->pid
u64 bpf_get_current_uid_gid(void)
Return: current_gid << 32 | current_uid
bpf_get_current_comm(char *buf, int size_of_buf)
stores current->comm into buf
They can be used from the programs attached to TC as well to classify packets
based on current task fields.
Update tracex2 example to print histogram of write syscalls for each process
instead of aggregated for all.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
allow programs read/write skb->mark, tc_index fields and
((struct qdisc_skb_cb *)cb)->data.
mark and tc_index are generically useful in TC.
cb[0]-cb[4] are primarily used to pass arguments from one
program to another called via bpf_tail_call() which can
be seen in sockex3_kern.c example.
All fields of 'struct __sk_buff' are readable to socket and tc_cls_act progs.
mark, tc_index are writeable from tc_cls_act only.
cb[0]-cb[4] are writeable by both sockets and tc_cls_act.
Add verifier tests and improve sample code.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow eBPF programs attached to classifier/actions to call
bpf_clone_redirect(skb, ifindex, flags) helper which will
mirror or redirect the packet by dynamic ifindex selection
from within the program to a target device either at ingress
or at egress. Can be used for various scenarios, for example,
to load balance skbs into veths, split parts of the traffic
to local taps, etc.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
classic BPF already exposes skb->dev->ifindex via SKF_AD_IFINDEX extension.
Allow eBPF program to access it as well. Note that classic aborts execution
of the program if 'skb->dev == NULL' (which is inconvenient for program
writers), whereas eBPF returns zero in such case.
Also expose the 'skb_iif' field, since programs triggered by redirected
packet need to known the original interface index.
Summary:
__skb->ifindex -> skb->dev->ifindex
__skb->ingress_ifindex -> skb->skb_iif
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce bpf_tail_call(ctx, &jmp_table, index) helper function
which can be used from BPF programs like:
int bpf_prog(struct pt_regs *ctx)
{
...
bpf_tail_call(ctx, &jmp_table, index);
...
}
that is roughly equivalent to:
int bpf_prog(struct pt_regs *ctx)
{
...
if (jmp_table[index])
return (*jmp_table[index])(ctx);
...
}
The important detail that it's not a normal call, but a tail call.
The kernel stack is precious, so this helper reuses the current
stack frame and jumps into another BPF program without adding
extra call frame.
It's trivially done in interpreter and a bit trickier in JITs.
In case of x64 JIT the bigger part of generated assembler prologue
is common for all programs, so it is simply skipped while jumping.
Other JITs can do similar prologue-skipping optimization or
do stack unwind before jumping into the next program.
bpf_tail_call() arguments:
ctx - context pointer
jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
index - index in the jump table
Since all BPF programs are idenitified by file descriptor, user space
need to populate the jmp_table with FDs of other BPF programs.
If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
and program execution continues as normal.
New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
populate this jmp_table array with FDs of other bpf programs.
Programs can share the same jmp_table array or use multiple jmp_tables.
The chain of tail calls can form unpredictable dynamic loops therefore
tail_call_cnt is used to limit the number of calls and currently is set to 32.
Use cases:
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
==========
- simplify complex programs by splitting them into a sequence of small programs
- dispatch routine
For tracing and future seccomp the program may be triggered on all system
calls, but processing of syscall arguments will be different. It's more
efficient to implement them as:
int syscall_entry(struct seccomp_data *ctx)
{
bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
... default: process unknown syscall ...
}
int sys_write_event(struct seccomp_data *ctx) {...}
int sys_read_event(struct seccomp_data *ctx) {...}
syscall_jmp_table[__NR_write] = sys_write_event;
syscall_jmp_table[__NR_read] = sys_read_event;
For networking the program may call into different parsers depending on
packet format, like:
int packet_parser(struct __sk_buff *skb)
{
... parse L2, L3 here ...
__u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
... default: process unknown protocol ...
}
int parse_tcp(struct __sk_buff *skb) {...}
int parse_udp(struct __sk_buff *skb) {...}
ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
- for TC use case, bpf_tail_call() allows to implement reclassify-like logic
- bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
are atomic, so user space can build chains of BPF programs on the fly
Implementation details:
=======================
- high performance of bpf_tail_call() is the goal.
It could have been implemented without JIT changes as a wrapper on top of
BPF_PROG_RUN() macro, but with two downsides:
. all programs would have to pay performance penalty for this feature and
tail call itself would be slower, since mandatory stack unwind, return,
stack allocate would be done for every tailcall.
. tailcall would be limited to programs running preempt_disabled, since
generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
need to be either global per_cpu variable accessed by helper and by wrapper
or global variable protected by locks.
In this implementation x64 JIT bypasses stack unwind and jumps into the
callee program after prologue.
- bpf_prog_array_compatible() ensures that prog_type of callee and caller
are the same and JITed/non-JITed flag is the same, since calling JITed
program from non-JITed is invalid, since stack frames are different.
Similarly calling kprobe type program from socket type program is invalid.
- jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
abstraction, its user space API and all of verifier logic.
It's in the existing arraymap.c file, since several functions are
shared with regular array map.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For the short-term solution, lets fix bpf helper functions to use
skb->mac_header relative offsets instead of skb->data in order to
get the same eBPF programs with cls_bpf and act_bpf work on ingress
and egress qdisc path. We need to ensure that mac_header is set
before calling into programs. This is effectively the first option
from below referenced discussion.
More long term solution for LD_ABS|LD_IND instructions will be more
intrusive but also more beneficial than this, and implemented later
as it's too risky at this point in time.
I.e., we plan to look into the option of moving skb_pull() out of
eth_type_trans() and into netif_receive_skb() as has been suggested
as second option. Meanwhile, this solution ensures ingress can be
used with eBPF, too, and that we won't run into ABI troubles later.
For dealing with negative offsets inside eBPF helper functions,
we've implemented bpf_skb_clone_unwritable() to test for unwriteable
headers.
Reference: http://thread.gmane.org/gmane.linux.network/359129/focus=359694
Fixes: 608cd71a9c ("tc: bpf: generalize pedit action")
Fixes: 91bc4822c3 ("tc: bpf: add checksum helpers")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking updates from David Miller:
1) Add BQL support to via-rhine, from Tino Reichardt.
2) Integrate SWITCHDEV layer support into the DSA layer, so DSA drivers
can support hw switch offloading. From Floria Fainelli.
3) Allow 'ip address' commands to initiate multicast group join/leave,
from Madhu Challa.
4) Many ipv4 FIB lookup optimizations from Alexander Duyck.
5) Support EBPF in cls_bpf classifier and act_bpf action, from Daniel
Borkmann.
6) Remove the ugly compat support in ARP for ugly layers like ax25,
rose, etc. And use this to clean up the neigh layer, then use it to
implement MPLS support. All from Eric Biederman.
7) Support L3 forwarding offloading in switches, from Scott Feldman.
8) Collapse the LOCAL and MAIN ipv4 FIB tables when possible, to speed
up route lookups even further. From Alexander Duyck.
9) Many improvements and bug fixes to the rhashtable implementation,
from Herbert Xu and Thomas Graf. In particular, in the case where
an rhashtable user bulk adds a large number of items into an empty
table, we expand the table much more sanely.
10) Don't make the tcp_metrics hash table per-namespace, from Eric
Biederman.
11) Extend EBPF to access SKB fields, from Alexei Starovoitov.
12) Split out new connection request sockets so that they can be
established in the main hash table. Much less false sharing since
hash lookups go direct to the request sockets instead of having to
go first to the listener then to the request socks hashed
underneath. From Eric Dumazet.
13) Add async I/O support for crytpo AF_ALG sockets, from Tadeusz Struk.
14) Support stable privacy address generation for RFC7217 in IPV6. From
Hannes Frederic Sowa.
15) Hash network namespace into IP frag IDs, also from Hannes Frederic
Sowa.
16) Convert PTP get/set methods to use 64-bit time, from Richard
Cochran.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1816 commits)
fm10k: Bump driver version to 0.15.2
fm10k: corrected VF multicast update
fm10k: mbx_update_max_size does not drop all oversized messages
fm10k: reset head instead of calling update_max_size
fm10k: renamed mbx_tx_dropped to mbx_tx_oversized
fm10k: update xcast mode before synchronizing multicast addresses
fm10k: start service timer on probe
fm10k: fix function header comment
fm10k: comment next_vf_mbx flow
fm10k: don't handle mailbox events in iov_event path and always process mailbox
fm10k: use separate workqueue for fm10k driver
fm10k: Set PF queues to unlimited bandwidth during virtualization
fm10k: expose tx_timeout_count as an ethtool stat
fm10k: only increment tx_timeout_count in Tx hang path
fm10k: remove extraneous "Reset interface" message
fm10k: separate PF only stats so that VF does not display them
fm10k: use hw->mac.max_queues for stats
fm10k: only show actual queues, not the maximum in hardware
fm10k: allow creation of VLAN on default vid
fm10k: fix unused warnings
...
Commit 608cd71a9c ("tc: bpf: generalize pedit action") has added the
possibility to mangle packet data to BPF programs in the tc pipeline.
This patch adds two helpers bpf_l3_csum_replace() and bpf_l4_csum_replace()
for fixing up the protocol checksums after the packet mangling.
It also adds 'flags' argument to bpf_skb_store_bytes() helper to avoid
unnecessary checksum recomputations when BPF programs adjusting l3/l4
checksums and documents all three helpers in uapi header.
Moreover, a sample program is added to show how BPF programs can make use
of the mangle and csum helpers.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>