On Spectrum-1, timestamps arrive through a pair of dedicated events:
MLXSW_TRAP_ID_PTP_ING_FIFO and _EGR_FIFO. The payload delivered with
those traps is contents of the timestamp FIFO at a given port in a given
direction. Add a Spectrum-1-specific handler for these two events which
decodes the timestamps and forwards them to the PTP module.
Add a function that parses a packet, dispatching to ptp_classify_raw(),
and decodes PTP message type, domain number, and sequence ID. Add a new
mlxsw dependency on the PTP classifier.
Add helpers that can store and retrieve unmatched timestamps and SKBs to
the hash table added in a preceding patch.
Add the matching code itself: upon arrival of a timestamp or a packet,
look up the corresponding unmatched entry, and match it up. If there is
none, add a new unmatched entry. This logic is the same on ingress as on
egress.
Packets and timestamps that never matched need to be eventually disposed
of. A garbage collector added in a follow-up patch will take care of
that. Since currently all this code is turned off, no crud will
accumulate in the hash table.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add two ptp_ops: init and fini, to initialize and finalize the PTP
subsystem. Call as appropriate from mlxsw_sp_init() and _fini().
Lay the groundwork for Spectrum-1 support. On Spectrum-1, the received
timestamped packets and their corresponding timestamps arrive
independently, and need to be matched up. Introduce the related data types
and add to struct mlxsw_sp_ptp_state the hash table that will keep the
unmatched entries.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On Spectrum-1, timestamps are delivered separately from the packets, and
need to paired up. Therefore, at some point after mlxsw_sp_port_xmit()
is invoked, it is necessary to involve the chip-specific driver code to
allow it to do the necessary bookkeeping and matching.
On Spectrum-2, timestamps are delivered in CQE. For that reason,
position the point of driver involvement into mlxsw_pci_cqe_sdq_handle()
to make it hopefully easier to extend for Spectrum-2 in the future.
To tell the driver what port the packet was sent on, keep tx_info
in SKB control buffer.
Introduce a new driver core interface mlxsw_core_ptp_transmitted(), a
driver callback ptp_transmitted, and a PTP op transmitted. The callee is
responsible for taking care of releasing the SKB passed to the new
interfaces, and correspondingly have the new stub callbacks just call
dev_kfree_skb_any().
Follow-up patches will introduce the actual content into
mlxsw_sp1_ptp_transmitted() in particular.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When configured, the Spectrum hardware can recognize PTP packets and
trap them to the CPU using dedicated traps, PTP0 and PTP1.
One reason to get PTP packets under dedicated traps is to have a
separate policer suitable for the amount of PTP traffic expected when
switch is operated as a boundary clock. For this, add two new trap
groups, MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0 and _PTP1, and associate the
two PTP traps with these two groups.
In the driver, specifically for Spectrum-1, event PTP packets will need
to be paired up with their timestamps. Those arrive through a different
set of traps, added later in the patch set. To support this future use,
introduce a new PTP op, ptp_receive.
It is possible to configure which PTP messages should be trapped under
which PTP trap. On Spectrum systems, we will use PTP0 for event
packets (which need timestamping), and PTP1 for control packets (which
do not). Thus configure PTP0 trap with a custom callback that defers to
the ptp_receive op.
Additionally, L2 PTP packets are actually trapped through the LLDP trap,
not through any of the PTP traps. So treat the LLDP trap the same way as
the PTP0 trap. Unlike PTP traps, which are currently still disabled,
LLDP trap is active. Correspondingly, have all the implementations of
the ptp_receive op return true, which the handler treats as a signal to
forward the packet immediately.
Signed-off-by: Petr Machata <petrm@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>