There is a race with multi-threaded applications between context switch and
pagetable upgrade. In switch_mm() a new user_asce is built from mm->pgd and
mm->context.asce_bits, w/o holding any locks. A concurrent mmap with a
pagetable upgrade on another thread in crst_table_upgrade() could already
have set new asce_bits, but not yet the new mm->pgd. This would result in a
corrupt user_asce in switch_mm(), and eventually in a kernel panic from a
translation exception.
Fix this by storing the complete asce instead of just the asce_bits, which
can then be read atomically from switch_mm(), so that it either sees the
old value or the new value, but no mixture. Both cases are OK. Having the
old value would result in a page fault on access to the higher level memory,
but the fault handler would see the new mm->pgd, if it was a valid access
after the mmap on the other thread has completed. So as worst-case scenario
we would have a page fault loop for the racing thread until the next time
slice.
Also remove dead code and simplify the upgrade/downgrade path, there are no
upgrades from 2 levels, and only downgrades from 3 levels for compat tasks.
There are also no concurrent upgrades, because the mmap_sem is held with
down_write() in do_mmap, so the flush and table checks during upgrade can
be removed.
Reported-by: Michael Munday <munday@ca.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the 31 bit support in order to reduce maintenance cost and
effectively remove dead code. Since a couple of years there is no
distribution left that comes with a 31 bit kernel.
The 31 bit kernel also has been broken since more than a year before
anybody noticed. In addition I added a removal warning to the kernel
shown at ipl for 5 minutes: a960062e58 ("s390: add 31 bit warning
message") which let everybody know about the plan to remove 31 bit
code. We didn't get any response.
Given that the last 31 bit only machine was introduced in 1999 let's
remove the code.
Anybody with 31 bit user space code can still use the compat mode.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The zEC12 machines introduced the local-clearing control for the IDTE
and IPTE instruction. If the control is set only the TLB of the local
CPU is cleared of entries, either all entries of a single address space
for IDTE, or the entry for a single page-table entry for IPTE.
Without the local-clearing control the TLB flush is broadcasted to all
CPUs in the configuration, which is expensive.
The reset of the bit mask of the CPUs that need flushing after a
non-local IDTE is tricky. As TLB entries for an address space remain
in the TLB even if the address space is detached a new bit field is
required to keep track of attached CPUs vs. CPUs in the need of a
flush. After a non-local flush with IDTE the bit-field of attached CPUs
is copied to the bit-field of CPUs in need of a flush. The ordering
of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is
such that an underindication in mm_cpumask(mm) is prevented but an
overindication in mm_cpumask(mm) is possible.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Isolate the logic of IDTE vs. IPTE flushing of ptes in two functions,
ptep_flush_lazy and __tlb_flush_mm_lazy.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Our flush_tlb_kernel_range() implementation calls __tlb_flush_mm() with
&init_mm as argument. __tlb_flush_mm() however will only flush tlbs
for the passed in mm if its mm_cpumask is not empty.
For the init_mm however its mm_cpumask has never any bits set. Which in
turn means that our flush_tlb_kernel_range() implementation doesn't
work at all.
This can be easily verified with a vmalloc/vfree loop which allocates
a page, writes to it and then frees the page again. A crash will follow
almost instantly.
To fix this remove the cpumask_empty() check in __tlb_flush_mm() since
there shouldn't be too many mms with a zero mm_cpumask, besides the
init_mm of course.
Cc: stable@vger.kernel.org
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
git commit cd2934a3 moved the flush_tlb_range() within
__unmap_hugepage_range() inside the mm->page_table_lock, which
triggered a deadlock in s390 tlb flushing code. __tlb_flush_mm_cond()
also tries to acquire the mm->page_table_lock, but that is not needed
because all callers already have mm->mmap_sem or mm->page_table_lock,
so it can be safely removed to fix the deadlock.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Replace __s390x__ with CONFIG_64BIT in all places that are not exported
to userspace or guarded with #ifdef __KERNEL__.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Fix this compiler error for !CONFIG_SMP:
CC arch/s390/mm/pgtable.o
arch/s390/mm/pgtable.c: In function ‘gmap_flush_tlb’:
arch/s390/mm/pgtable.c:202:3: error: implicit declaration of function ‘__tlb_flush_global’ [-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
Signed-off-by: Jan Glauber <jang@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add code that allows KVM to control the virtual memory layout that
is seen by a guest. The guest address space uses a second page table
that shares the last level pte-tables with the process page table.
If a page is unmapped from the process page table it is automatically
unmapped from the guest page table as well.
The guest address space mapping starts out empty, KVM can map any
individual 1MB segments from the process virtual memory to any 1MB
aligned location in the guest virtual memory. If a target segment in
the process virtual memory does not exist or is unmapped while a
guest mapping exists the desired target address is stored as an
invalid segment table entry in the guest page table.
The population of the guest page table is fault driven.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The noexec support on s390 does not rely on a bit in the page table
entry but utilizes the secondary space mode to distinguish between
memory accesses for instructions vs. data. The noexec code relies
on the assumption that the cpu will always use the secondary space
page table for data accesses while it is running in the secondary
space mode. Up to the z9-109 class machines this has been the case.
Unfortunately this is not true anymore with z10 and later machines.
The load-relative-long instructions lrl, lgrl and lgfrl access the
memory operand using the same addressing-space mode that has been
used to fetch the instruction.
This breaks the noexec mode for all user space binaries compiled
with march=z10 or later. The only option is to remove the current
noexec support.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The tlb flushing code uses the mm_users field of the mm_struct to
decide if each page table entry needs to be flushed individually with
IPTE or if a global flush for the mm_struct is sufficient after all page
table updates have been done. The comment for mm_users says "How many
users with user space?" but the /proc code increases mm_users after it
found the process structure by pid without creating a new user process.
Which makes mm_users useless for the decision between the two tlb
flusing methods. The current code can be confused to not flush tlb
entries by a concurrent access to /proc files if e.g. a fork is in
progres. The solution for this problem is to make the tlb flushing
logic independent from the mm_users field.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Makes code futureproof against the impending change to mm->cpu_vm_mask.
It's also a chance to use the new cpumask_ ops which take a pointer
(the older ones are deprecated, but there's no hurry for arch code).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>