Pull m68knommu arch update from Greg Ungerer:
"Quite a varied set of changes this time.
- A little more merge cleanup, this time the assembler entry code.
- New sub-architecture support for the ColdFire 5251/5253 and 5441x
CPU families.
- Specific clk support code for the ColdFire 520x and 532x CPU
familes.
- Refactoring of the ColdFire GPIO support.
- PCI bus support for some ColdFire CPUS that have PCI hardware (54xx
family). This showed up a few problems with ColdFire cache,
allocating coherent memory and bi-directional DMA support. Fixes
for those too."
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (21 commits)
m68k: allow PCI bus to be enabled for ColdFire m54xx CPUs
m68k: add PCI bus code support for the ColdFire M54xx SoC family
m68k: add IO access definitions to support PCI on ColdFire platforms
m68k: add PCI bus support definitions for the ColdFire M54xx SoC family
m68k: common PCI support definitions and code
m68k: add support for DMA_BIDIRECTIONAL in dma support functions
m68k: fix ColdFire clear cache operation
m68k: use simpler dma_alloc_coherent() for ColdFire CPUs
m68knommu: platform support for 8390 based ethernet used on some boards
m68knommu: Add clk definitions for m532x.
m68knommu: Add clk definitions for m520x.
m68knommu: Add rtc device for m5441x.
m68knommu: add definitions for the third interrupt controller on devices that don't have a third interrupt controller.
m68knommu: Add support for the Coldfire m5441x.
m68knommu: use MCF_IRQ_PIT1 instead of MCFINT_VECBASE + MCFINT_PIT1
coldfire-qspi: Add support for the Coldfire 5251/5253.
m68knommu: Add support for the Coldfire 5251/5253
m68knommu: refactor Coldfire GPIO not to require GPIOLIB, eliminate mcf_gpio_chips.
m68k: merge the MMU and non-MMU versions of the entry.S code
m68k: use jbsr to call functions instead of bsrl
...
Define the usual memory access functions (readb/writeb/...) and I/O space
functions (inb/outb/...) for PCI bus support on ColdFire CPU based platforms.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Add all the required definitoins to support the ColdFire M54xx SoC PCI
hardware unit. These are strait out of the MCF5475 Reference Manual.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Basic set of definitions and support code required to turn on CONFIG_PCI
for the m68k architecture. Nothing specific to any PCI implementation in
any m68k class CPU hardware yet.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The code for clearing (invalidating) the ColdFire cache is actually performing
a push operation. Add functions to clear the cache, and fix cache_clear() to
call the appropriate clear cache function.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The 532x has individually controllable clocks for it peripherals. Add clk
definitions for these and add default initialization of either enabled or
disabled.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
The 520x has individually controllable clocks for its peripherals. Add clk
definitions for these and add default initialization of either enabled or
disabled for all of the clocks.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Extending the interrupt controller code in intc-simr.c to support the third
interrupt controller on the m5441x means we need to add defines (as 0) for the
third interrupt controller on devices that don't have a third interrupt
controller.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Add support for the Coldfire 5441x (54410/54415/54416/54417/54418). Currently
we only support noMMU mode. It requires the PIT patch posted previously as it
uses the PIT instead of the dma timer as a clock source so we can get all that
GENERIC_CLOCKEVENTS goodness. It also adds some simple clk definitions and
very simple minded power management. The gpio code is tweeked and some
additional devices are added to devices.c. The Makefile uses -mv4e as
apparently, the only difference a v4m (m5441x) and a v4e is the later has a
FPU, which I don't think should matter to us in the kernel.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
use MCF_IRQ_PIT1 instead of MCFINT_VECBASE + MCFINT_PIT1 so we can support
those parts that have the pit1 interrupt on other than the first interrupt
controller.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we're not connecting external GPIO extenders via i2c or spi or whatever, we
probably don't need GPIOLIB. If we provide an alternate implementation of
the GPIOLIB functions to use when only on-chip GPIO is needed, we can change
ARCH_REQUIRE_GPIOLIB to ARCH_WANTS_OPTIONAL_GPIOLIB so that GPIOLIB becomes
optional.
The downside is that in the GPIOLIB=n case, we lose all error checking done by
gpiolib, ie multiply allocating the gpio, free'ing gpio etc., so that the
only checking that can be done is if we reference a gpio on an external part.
Targets that need the extra error checking can still select GPIOLIB=y.
For the case where GPIOLIB=y, we can simplify the table of gpio chips to use a
single chip, eliminating the tables of chips in the 5xxx.c files. The
original motivation for the definition of multiple chips was to match the way
many of the Coldfire variants defined their gpio as a spare array in memory.
However, all this really gains us is some error checking when we request a
gpio, gpiolib can check that it doesn't fall in one of the holes. If thats
important, I think we can still come up with a better way of accomplishing
that.
Also in this patch is some general cleanup and reorganizing of the gpio header
files (I'm sure I must have had a reason why I sometimes used a prefix of
mcf_gpio and other times mcfgpio but for the life of me I can't think of it
now).
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
A number of older ColdFire CPU based boards use NS8390 based network
controllers. Most use the Davicom 9008F or the UMC 9008F. This driver
provides the support code to get these devices working on these platforms.
Generally the NS8390 based eth device is direct connected via the general
purpose bus of the ColdFire CPU. So its addressing and interrupt setup is
fixed on each of the different platforms (classic platform setup).
This driver is based on the other drivers/net/ethernet/8390 drivers, and
includes the lib8390.c code. It uses the existing definitions of the
board NS8390 device addresses, interrupts and access types from the
arch/m68k/include/asm/mcf8390.h, but moves the IO access functions into
the driver code and out of that header.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The mcfne.h include contains definitions to support NS8390 eth based hardware
on ColdFire based CPU boards. So change its name to reflect that better.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull m68k update from Geert Uytterhoeven.
This makes m68k use the generic library functions for the user-space
strn[cpy|len] functions.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k: Use generic strncpy_from_user(), strlen_user(), and strnlen_user()
The consolidation of the qspi code missed a definition for 528x.
Signed-off-by: Steven King <sfking@fdwdc.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Pull KVM changes from Avi Kivity:
"Changes include additional instruction emulation, page-crossing MMIO,
faster dirty logging, preventing the watchdog from killing a stopped
guest, module autoload, a new MSI ABI, and some minor optimizations
and fixes. Outside x86 we have a small s390 and a very large ppc
update.
Regarding the new (for kvm) rebaseless workflow, some of the patches
that were merged before we switch trees had to be rebased, while
others are true pulls. In either case the signoffs should be correct
now."
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
arch/powerpc/kvm/book3s_segment.S and arch/x86/include/asm/kvm_para.h.
I suspect the kvm_para.h resolution ends up doing the "do I have cpuid"
check effectively twice (it was done differently in two different
commits), but better safe than sorry ;)
* 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (125 commits)
KVM: make asm-generic/kvm_para.h have an ifdef __KERNEL__ block
KVM: s390: onereg for timer related registers
KVM: s390: epoch difference and TOD programmable field
KVM: s390: KVM_GET/SET_ONEREG for s390
KVM: s390: add capability indicating COW support
KVM: Fix mmu_reload() clash with nested vmx event injection
KVM: MMU: Don't use RCU for lockless shadow walking
KVM: VMX: Optimize %ds, %es reload
KVM: VMX: Fix %ds/%es clobber
KVM: x86 emulator: convert bsf/bsr instructions to emulate_2op_SrcV_nobyte()
KVM: VMX: unlike vmcs on fail path
KVM: PPC: Emulator: clean up SPR reads and writes
KVM: PPC: Emulator: clean up instruction parsing
kvm/powerpc: Add new ioctl to retreive server MMU infos
kvm/book3s: Make kernel emulated H_PUT_TCE available for "PR" KVM
KVM: PPC: bookehv: Fix r8/r13 storing in level exception handler
KVM: PPC: Book3S: Enable IRQs during exit handling
KVM: PPC: Fix PR KVM on POWER7 bare metal
KVM: PPC: Fix stbux emulation
KVM: PPC: bookehv: Use lwz/stw instead of PPC_LL/PPC_STL for 32-bit fields
...
Pull first series of signal handling cleanups from Al Viro:
"This is just the first part of the queue (about a half of it);
assorted fixes all over the place in signal handling.
This one ends with all sigsuspend() implementations switched to
generic one (->saved_sigmask-based).
With this, a bunch of assorted old buglets are fixed and most of the
missing bits of NOTIFY_RESUME hookup are in place. Two more fixes sit
in arm and um trees respectively, and there's a couple of broken ones
that need obvious fixes - parisc and avr32 check TIF_NOTIFY_RESUME
only on one of two codepaths; fixes for that will happen in the next
series"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (55 commits)
unicore32: if there's no handler we need to restore sigmask, syscall or no syscall
xtensa: add handling of TIF_NOTIFY_RESUME
microblaze: drop 'oldset' argument of do_notify_resume()
microblaze: handle TIF_NOTIFY_RESUME
score: add handling of NOTIFY_RESUME to do_notify_resume()
m68k: add TIF_NOTIFY_RESUME and handle it.
sparc: kill ancient comment in sparc_sigaction()
h8300: missing checks of __get_user()/__put_user() return values
frv: missing checks of __get_user()/__put_user() return values
cris: missing checks of __get_user()/__put_user() return values
powerpc: missing checks of __get_user()/__put_user() return values
sh: missing checks of __get_user()/__put_user() return values
sparc: missing checks of __get_user()/__put_user() return values
avr32: struct old_sigaction is never used
m32r: struct old_sigaction is never used
xtensa: xtensa_sigaction doesn't exist
alpha: tidy signal delivery up
score: don't open-code force_sigsegv()
cris: don't open-code force_sigsegv()
blackfin: don't open-code force_sigsegv()
...
Pull fpu state cleanups from Ingo Molnar:
"This tree streamlines further aspects of FPU handling by eliminating
the prepare_to_copy() complication and moving that logic to
arch_dup_task_struct().
It also fixes the FPU dumps in threaded core dumps, removes and old
(and now invalid) assumption plus micro-optimizes the exit path by
avoiding an FPU save for dead tasks."
Fixed up trivial add-add conflict in arch/sh/kernel/process.c that came
in because we now do the FPU handling in arch_dup_task_struct() rather
than the legacy (and now gone) prepare_to_copy().
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, fpu: drop the fpu state during thread exit
x86, xsave: remove thread_has_fpu() bug check in __sanitize_i387_state()
coredump: ensure the fpu state is flushed for proper multi-threaded core dump
fork: move the real prepare_to_copy() users to arch_dup_task_struct()
TIF_NOTIFY_RESUME added (as bit 5). That way nommu glue needs no changes at
all; mmu one needs just to replace jmi do_signal_return to jne do_signal_return
There we have flags shifted up, until bit 6 (SIGPENDING) is in MSBit; instead
of checking that MSBit is set (jmi) we check that MSBit or something below it
is set (jne); bits 0..4 are never set, so that's precisely "bit 6 or bit 5 is
set".
Usual handling of NOTIFY_RESUME/SIGPENDING is done in do_notify_resume(); glue
calls it instead of do_signal().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull m68knommu tree from Greg Ungerer:
"More merge and clean up of MMU and non-MMU common files, namely
signal.c and dma.c. There is also a simplification of the ColdFire
GPIO setup tables. Using a couple of simple macros we make the init
tables really small and easy to read, and save a couple of thousand
lines of code. Also a move of all the ColdFire subarch support files
into the existing coldfire directory. The sub-directories just ended
up duplicating Makefiles and now only contain really simple pieces of
code. This saves quite a few lines of code too.
As always a couple of bugs fixes thrown in too. Oh and a new
defconfig for the ColdFire platforms that support having the MMU
enabled."
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (39 commits)
m68k: add a defconfig for the M5475EVB ColdFire with MMU board
m68knommu: unaligned.h fix for M68000 core
m68k: merge the MMU and non-MMU versions of the arch dma code
m68knommu: reorganize the no-MMU cache flushing to match m68k
m68knommu: move the 54xx platform code into the common ColdFire code directory
m68knommu: move the 532x platform code into the common ColdFire code directory
m68knommu: move the 5407 platform code into the common ColdFire code directory
m68knommu: move the 5307 platform code into the common ColdFire code directory
m68knommu: move the 528x platform code into the common ColdFire code directory
m68knommu: move the 527x platform code into the common ColdFire code directory
m68knommu: move the 5272 platform code into the common ColdFire code directory
m68knommu: move the 5249 platform code into the common ColdFire code directory
m68knommu: move the 523x platform code into the common ColdFire code directory
m68knommu: move the 520x platform code into the common ColdFire code directory
m68knommu: move the 5206 platform code into the common ColdFire code directory
m68knommu: simplify the ColdFire 5407 GPIO struct setup
m68knommu: simplify the ColdFire 532x GPIO struct setup
m68knommu: simplify the ColdFire 5307 GPIO struct setup
m68knommu: simplify the ColdFire 528x GPIO struct setup
m68knommu: simplify the ColdFire 527x GPIO struct setup
...
This patch fixes unaligned memory access for the 68000 core based cpu's.
Some time ago, my cpu (68000) was raising address/bus error's when mounting
cifs shares (didn't bother to debug it at the time). After developing the
MMC/SD card driver I was having the same issue when mounting the vfat fs.
I've traced the issue down to the 'unaligned.h' file. (I guess nobody has
ever used unaligned.h back in the 68328 'era'.
Signed-off-by: Luis Alves <ljalvs@gmail.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Introduce cache_push() and cache_clear() functions for the non-MMU m68k
devices. With these in place we can more easily merge some of the common
m68k arch code.
In particular by reorganizing the __flush_cache_all() code and separating
the cache push and clear functions it becomes trivial to implement the
new cache_push() and cache_clear() functions.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
The code that adds each ColdFire platforms GPIO signals is duplicated in
each platforms specific code. Remove it from each platforms code and put
a single version in the existing ColdFire gpio subsystem init code.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Steven King <sfking@fdwdc.com>
Modify the GPIO setup table to use the mcfgpio.h macros for table init.
Simplifies code and reduces line count significantly.
We also need to rename some of the GPIO registers to be consistent with
all other ColdFire parts (we can't use the new GPIO macros otherwise).
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Steven King <sfking@fdwdc.com>
We have very large tables in the ColdFire CPU GPIO setup code that essentially
boil down to 2 distinct types of GPIO pin initiaization. Using 2 macros we can
reduce these large tables to at most a dozen lines of setup code, and in quite
a few cases a single table entry.
Introduce these 2 macros into the existing mcfgpio.h header.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: Steven King <sfking@fdwdc.com>
This patch removes the following warning:
fs/binfmt_flat.c:752: warning: unused variable 'persistent'.
There is neither functionality change, nor extra code generated.
Signed-off-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Historical prepare_to_copy() is mostly a no-op, duplicated for majority of
the architectures and the rest following the x86 model of flushing the extended
register state like fpu there.
Remove it and use the arch_dup_task_struct() instead.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1336692811-30576-1-git-send-email-suresh.b.siddha@intel.com
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Booting a 3.2, 3.3, or 3.4-rc4 kernel on an Atari using the
`nfeth' ethernet device triggers a WARN_ONCE() in generic irq
handling code on the first irq for that device:
WARNING: at kernel/irq/handle.c:146 handle_irq_event_percpu+0x134/0x142()
irq 3 handler nfeth_interrupt+0x0/0x194 enabled interrupts
Modules linked in:
Call Trace: [<000299b2>] warn_slowpath_common+0x48/0x6a
[<000299c0>] warn_slowpath_common+0x56/0x6a
[<00029a4c>] warn_slowpath_fmt+0x2a/0x32
[<0005b34c>] handle_irq_event_percpu+0x134/0x142
[<0005b34c>] handle_irq_event_percpu+0x134/0x142
[<0000a584>] nfeth_interrupt+0x0/0x194
[<001ba0a8>] schedule_preempt_disabled+0x0/0xc
[<0005b37a>] handle_irq_event+0x20/0x2c
[<0005add4>] generic_handle_irq+0x2c/0x3a
[<00002ab6>] do_IRQ+0x20/0x32
[<0000289e>] auto_irqhandler_fixup+0x4/0x6
[<00003144>] cpu_idle+0x22/0x2e
[<001b8a78>] printk+0x0/0x18
[<0024d112>] start_kernel+0x37a/0x386
[<0003021d>] __do_proc_dointvec+0xb1/0x366
[<0003021d>] __do_proc_dointvec+0xb1/0x366
[<0024c31e>] _sinittext+0x31e/0x9c0
After invoking the irq's handler the kernel sees !irqs_disabled()
and concludes that the handler erroneously enabled interrupts.
However, debugging shows that !irqs_disabled() is true even before
the handler is invoked, which indicates a problem in the platform
code rather than the specific driver.
The warning does not occur in 3.1 or older kernels.
It turns out that the ALLOWINT definition for Atari is incorrect.
The Atari definition of ALLOWINT is ~0x400, the stated purpose of
that is to avoid taking HSYNC interrupts. irqs_disabled() returns
true if the 3-bit ipl & 4 is non-zero. The nfeth interrupt runs at
ipl 3 (it's autovector 3), but 3 & 4 is zero so irqs_disabled() is
false, and the warning above is generated.
When interrupts are explicitly disabled, ipl is set to 7. When they
are enabled, ipl is masked with ALLOWINT. On Atari this will result
in ipl = 3, which blocks interrupts at ipl 3 and below. So how come
nfeth interrupts at ipl 3 are received at all? That's because ipl
is reset to 2 by Atari-specific code in default_idle(), again with
the stated purpose of blocking HSYNC interrupts. This discrepancy
means that ipl 3 can remain blocked for longer than intended.
Both default_idle() and falcon_hblhandler() identify HSYNC with
ipl 2, and the "Atari ST/.../F030 Hardware Register Listing" agrees,
but ALLOWINT is defined as if HSYNC was ipl 3.
[As an experiment I modified default_idle() to reset ipl to 3, and
as expected that resulted in all nfeth interrupts being blocked.]
The fix is simple: define ALLOWINT as ~0x500 instead. This makes
arch_local_irq_enable() consistent with default_idle(), and prevents
the !irqs_disabled() problems for ipl 3 interrupts.
Tested on Atari running in an Aranym VM.
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Tested-by: Michael Schmitz <schmitzmic@googlemail.com> (on Falcon/CT60)
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
For now, it just contains the hack for cirrusfb on Amiga, which is moved
out of <video/vga.h> with some slight modifications (use raw_*() instead of
z_*(), which are defined on all m68k platforms).
This makes it safe to include <video/vga.h> in all contexts. Before it
could fail to compile with
include/video/vga.h: In function ‘vga_mm_r’:
include/video/vga.h:242: error: implicit declaration of function ‘z_readb’
include/video/vga.h: In function ‘vga_mm_w’:
include/video/vga.h:247: error: implicit declaration of function ‘z_writeb’
include/video/vga.h: In function ‘vga_mm_w_fast’:
include/video/vga.h:253: error: implicit declaration of function ‘z_writew’
or
include/video/vga.h:23:21: error: asm/vga.h: No such file or directory
depending on the value of CONFIG_AMIGA.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: linux-fbdev@vger.kernel.org
Cc: dri-devel@lists.freedesktop.org
drivers/usb/musb/musb_io.h provides default implementations for
{read,write}s[bwl]() on most platforms, some of which will conflict soon
with platform-specific counterparts on m68k.
To avoid having to add more platform-specific checks to musb_io.h later,
make sure {read,write}s[bwl]() are always defined on m68k, and disable the
default implementations in musb_io.h on m68k, like is already done for
several other architectures.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Felipe Balbi <balbi@ti.com>
Device interrupts numbers were changed to unsigned int in 1997, the year
IRQ_MACHSPEC was killed as well.
Also kill a related cast while we're at it.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: netdev@vger.kernel.org
When a host stops or suspends a VM it will set a flag to show this. The
watchdog will use these functions to determine if a softlockup is real, or the
result of a suspended VM.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
asm-generic changes Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
After commit 9ffc93f203 ("Remove all
CC init/main.o
In file included from include/linux/mm.h:15:0,
from include/linux/ring_buffer.h:5,
from include/linux/ftrace_event.h:4,
from include/trace/syscall.h:6,
from include/linux/syscalls.h:78,
from init/main.c:16:
include/linux/debug_locks.h: In function ‘__debug_locks_off’:
include/linux/debug_locks.h:16:2: error: implicit declaration of function ‘xchg’
There is no indirect inclusions of the new asm/cmpxchg.h for m68k here.
Looking at most other architectures they include asm/cmpxchg.h in their
asm/atomic.h. M68k currently does not do this. Including this in atomic.h
fixes all m68k build problems.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Pull x32 support for x86-64 from Ingo Molnar:
"This tree introduces the X32 binary format and execution mode for x86:
32-bit data space binaries using 64-bit instructions and 64-bit kernel
syscalls.
This allows applications whose working set fits into a 32 bits address
space to make use of 64-bit instructions while using a 32-bit address
space with shorter pointers, more compressed data structures, etc."
Fix up trivial context conflicts in arch/x86/{Kconfig,vdso/vma.c}
* 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
x32: Fix alignment fail in struct compat_siginfo
x32: Fix stupid ia32/x32 inversion in the siginfo format
x32: Add ptrace for x32
x32: Switch to a 64-bit clock_t
x32: Provide separate is_ia32_task() and is_x32_task() predicates
x86, mtrr: Use explicit sizing and padding for the 64-bit ioctls
x86/x32: Fix the binutils auto-detect
x32: Warn and disable rather than error if binutils too old
x32: Only clear TIF_X32 flag once
x32: Make sure TS_COMPAT is cleared for x32 tasks
fs: Remove missed ->fds_bits from cessation use of fd_set structs internally
fs: Fix close_on_exec pointer in alloc_fdtable
x32: Drop non-__vdso weak symbols from the x32 VDSO
x32: Fix coding style violations in the x32 VDSO code
x32: Add x32 VDSO support
x32: Allow x32 to be configured
x32: If configured, add x32 system calls to system call tables
x32: Handle process creation
x32: Signal-related system calls
x86: Add #ifdef CONFIG_COMPAT to <asm/sys_ia32.h>
...
Fix the m68k versions of xchg() and cmpxchg() to fail to link if given an
inappropriately sized pointer rather than BUG()'ing at runtime.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
cc: linux-m68k@lists.linux-m68k.org
Pull m68knommu arch updates from Greg Ungerer:
"Includes a cleanup of the non-MMU linker script (it now almost
exclusively uses the well defined linker script support macros and
definitions). Some more merging of MMU and non-MMU common files
(specifically the arch process.c, ptrace and time.c). And a big
cleanup of the massively duplicated ColdFire device definition code.
Overall we remove about 2000 lines of code, and end up with a single
set of platform device definitions for the serial ports, ethernet
ports and QSPI ports common in most ColdFire SoCs.
I expect you will get a merge conflict on arch/m68k/kernel/process.c,
in cpu_idle(). It should be relatively strait forward to fixup."
And cpu_idle() conflict resolution was indeed trivial (merging the
nommu/mmu versions of process.c trivially conflicting with the
conversion to use the schedule_preempt_disabled() helper function)
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: (57 commits)
m68knommu: factor more common ColdFire cpu reset code
m68knommu: make 528x CPU reset register addressing consistent
m68knommu: make 527x CPU reset register addressing consistent
m68knommu: make 523x CPU reset register addressing consistent
m68knommu: factor some common ColdFire cpu reset code
m68knommu: move old ColdFire timers init from CPU init to timers code
m68knommu: clean up init code in ColdFire 532x startup
m68knommu: clean up init code in ColdFire 528x startup
m68knommu: clean up init code in ColdFire 523x startup
m68knommu: merge common ColdFire QSPI platform setup code
m68knommu: make 532x QSPI platform addressing consistent
m68knommu: make 528x QSPI platform addressing consistent
m68knommu: make 527x QSPI platform addressing consistent
m68knommu: make 5249 QSPI platform addressing consistent
m68knommu: make 523x QSPI platform addressing consistent
m68knommu: make 520x QSPI platform addressing consistent
m68knommu: merge common ColdFire FEC platform setup code
m68knommu: make 532x FEC platform addressing consistent
m68knommu: make 528x FEC platform addressing consistent
m68knommu: make 527x FEC platform addressing consistent
...
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all MCF_RCR (CPU reset register) addressing consistent across all
ColdFire CPU family members that use it then we will be able to remove the
duplicated copies of the code that use it.
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 532x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 528x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 527x QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
If we make all QSPI (SPI protocol) addressing consistent across all ColdFire
family members then we will be able to remove the duplicated plaform data
and code and use a single setup for all.
So modify the ColdFire 5249 QSPI addressing so that:
. base addresses are absolute (not relative to MBAR peripheral register)
. use a common name for IRQs used
. move chip select definitions (CS) to appropriate header
Signed-off-by: Greg Ungerer <gerg@uclinux.org>