Fix error distribution by immediately delivering the errors to all the
affected calls rather than deferring them to a worker thread. The problem
with the latter is that retries and things can happen in the meantime when we
want to stop that sooner.
To this end:
(1) Stop the error distributor from removing calls from the error_targets
list so that peer->lock isn't needed to synchronise against other adds
and removals.
(2) Require the peer's error_targets list to be accessed with RCU, thereby
avoiding the need to take peer->lock over distribution.
(3) Don't attempt to affect a call's state if it is already marked complete.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the ACK proposal tracepoint outcomes list by making the one that's an
empty string not an empty string - which gets rendered as a hex number
string instead.
Signed-off-by: David Howells <dhowells@redhat.com>
Trace successful packet transmission (kernel_sendmsg() succeeded, that is)
in AF_RXRPC. We can share the enum that defines the transmission points
with the trace_rxrpc_tx_fail() tracepoint, so rename its constants to be
applicable to both.
Also, save the internal call->debug_id in the rxrpc_channel struct so that
it can be used in retransmission trace lines.
Signed-off-by: David Howells <dhowells@redhat.com>
Sometimes an in-progress call will stop responding on the fileserver when
the fileserver quietly cancels the call with an internally marked abort
(RX_CALL_DEAD), without sending an ABORT to the client.
This causes the client's call to eventually expire from lack of incoming
packets directed its way, which currently leads to it being cancelled
locally with ETIME. Note that it's not currently clear as to why this
happens as it's really hard to reproduce.
The rotation policy implement by kAFS, however, doesn't differentiate
between ETIME meaning we didn't get any response from the server and ETIME
meaning the call got cancelled mid-flow. The latter leads to an oops when
fetching data as the rotation partially resets the afs_read descriptor,
which can result in a cleared page pointer being dereferenced because that
page has already been filled.
Handle this by the following means:
(1) Set a flag on a call when we receive a packet for it.
(2) Store the highest packet serial number so far received for a call
(bearing in mind this may wrap).
(3) If, when the "not received anything recently" timeout expires on a
call, we've received at least one packet for a call and the connection
as a whole has received packets more recently than that call, then
cancel the call locally with ECONNRESET rather than ETIME.
This indicates that the call was definitely in progress on the server.
(4) In kAFS, if the rotation algorithm sees ECONNRESET rather than ETIME,
don't try the next server, but rather abort the call.
This avoids the oops as we don't try to reuse the afs_read struct.
Rather, as-yet ungotten pages will be reread at a later data.
Also:
(5) Add an rxrpc tracepoint to log detection of the call being reset.
Without this, I occasionally see an oops like the following:
general protection fault: 0000 [#1] SMP PTI
...
RIP: 0010:_copy_to_iter+0x204/0x310
RSP: 0018:ffff8800cae0f828 EFLAGS: 00010206
RAX: 0000000000000560 RBX: 0000000000000560 RCX: 0000000000000560
RDX: ffff8800cae0f968 RSI: ffff8800d58b3312 RDI: 0005080000000000
RBP: ffff8800cae0f968 R08: 0000000000000560 R09: ffff8800ca00f400
R10: ffff8800c36f28d4 R11: 00000000000008c4 R12: ffff8800cae0f958
R13: 0000000000000560 R14: ffff8800d58b3312 R15: 0000000000000560
FS: 00007fdaef108080(0000) GS:ffff8800ca680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb28a8fa000 CR3: 00000000d2a76002 CR4: 00000000001606e0
Call Trace:
skb_copy_datagram_iter+0x14e/0x289
rxrpc_recvmsg_data.isra.0+0x6f3/0xf68
? trace_buffer_unlock_commit_regs+0x4f/0x89
rxrpc_kernel_recv_data+0x149/0x421
afs_extract_data+0x1e0/0x798
? afs_wait_for_call_to_complete+0xc9/0x52e
afs_deliver_fs_fetch_data+0x33a/0x5ab
afs_deliver_to_call+0x1ee/0x5e0
? afs_wait_for_call_to_complete+0xc9/0x52e
afs_wait_for_call_to_complete+0x12b/0x52e
? wake_up_q+0x54/0x54
afs_make_call+0x287/0x462
? afs_fs_fetch_data+0x3e6/0x3ed
? rcu_read_lock_sched_held+0x5d/0x63
afs_fs_fetch_data+0x3e6/0x3ed
afs_fetch_data+0xbb/0x14a
afs_readpages+0x317/0x40d
__do_page_cache_readahead+0x203/0x2ba
? ondemand_readahead+0x3a7/0x3c1
ondemand_readahead+0x3a7/0x3c1
generic_file_buffered_read+0x18b/0x62f
__vfs_read+0xdb/0xfe
vfs_read+0xb2/0x137
ksys_read+0x50/0x8c
do_syscall_64+0x7d/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Note the weird value in RDI which is a result of trying to kmap() a NULL
page pointer.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a tracepoint to track rxrpc calls moving into the completed state and
to log the completion type and the recorded error value and abort code.
Signed-off-by: David Howells <dhowells@redhat.com>
In rxrpc and afs, use the debug_ids that are monotonically allocated to
various objects as they're allocated rather than pointers as kernel
pointers are now hashed making them less useful. Further, the debug ids
aren't reused anywhere nearly as quickly.
In addition, allow kernel services that use rxrpc, such as afs, to take
numbers from the rxrpc counter, assign them to their own call struct and
pass them in to rxrpc for both client and service calls so that the trace
lines for each will have the same ID tag.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint to trace packet resend events and to dump the Tx
annotation buffer for added illumination.
Signed-off-by: David Howells <dhowells@rdhat.com>
RxRPC service endpoints expire like they're supposed to by the following
means:
(1) Mark dead rxrpc_net structs (with ->live) rather than twiddling the
global service conn timeout, otherwise the first rxrpc_net struct to
die will cause connections on all others to expire immediately from
then on.
(2) Mark local service endpoints for which the socket has been closed
(->service_closed) so that the expiration timeout can be much
shortened for service and client connections going through that
endpoint.
(3) rxrpc_put_service_conn() needs to schedule the reaper when the usage
count reaches 1, not 0, as idle conns have a 1 count.
(4) The accumulator for the earliest time we might want to schedule for
should be initialised to jiffies + MAX_JIFFY_OFFSET, not ULONG_MAX as
the comparison functions use signed arithmetic.
(5) Simplify the expiration handling, adding the expiration value to the
idle timestamp each time rather than keeping track of the time in the
past before which the idle timestamp must go to be expired. This is
much easier to read.
(6) Ignore the timeouts if the net namespace is dead.
(7) Restart the service reaper work item rather the client reaper.
Signed-off-by: David Howells <dhowells@redhat.com>
We need to transmit a packet every so often to act as a keepalive for the
peer (which has a timeout from the last time it received a packet) and also
to prevent any intervening firewalls from closing the route.
Do this by resetting a timer every time we transmit a packet. If the timer
ever expires, we transmit a PING ACK packet and thereby also elicit a PING
RESPONSE ACK from the other side - which prevents our last-rx timeout from
expiring.
The timer is set to 1/6 of the last-rx timeout so that we can detect the
other side going away if it misses 6 replies in a row.
This is particularly necessary for servers where the processing of the
service function may take a significant amount of time.
Signed-off-by: David Howells <dhowells@redhat.com>
Add an extra timeout that is set/updated when we send a DATA packet that
has the request-ack flag set. This allows us to detect if we don't get an
ACK in response to the latest flagged packet.
The ACK packet is adjudged to have been lost if it doesn't turn up within
2*RTT of the transmission.
If the timeout occurs, we schedule the sending of a PING ACK to find out
the state of the other side. If a new DATA packet is ready to go sooner,
we cancel the sending of the ping and set the request-ack flag on that
instead.
If we get back a PING-RESPONSE ACK that indicates a lower tx_top than what
we had at the time of the ping transmission, we adjudge all the DATA
packets sent between the response tx_top and the ping-time tx_top to have
been lost and retransmit immediately.
Rather than sending a PING ACK, we could just pick a DATA packet and
speculatively retransmit that with request-ack set. It should result in
either a REQUESTED ACK or a DUPLICATE ACK which we can then use in lieu the
a PING-RESPONSE ACK mentioned above.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the rxrpc call expiration timeouts and make them settable from
userspace. By analogy with other rx implementations, there should be three
timeouts:
(1) "Normal timeout"
This is set for all calls and is triggered if we haven't received any
packets from the peer in a while. It is measured from the last time
we received any packet on that call. This is not reset by any
connection packets (such as CHALLENGE/RESPONSE packets).
If a service operation takes a long time, the server should generate
PING ACKs at a duration that's substantially less than the normal
timeout so is to keep both sides alive. This is set at 1/6 of normal
timeout.
(2) "Idle timeout"
This is set only for a service call and is triggered if we stop
receiving the DATA packets that comprise the request data. It is
measured from the last time we received a DATA packet.
(3) "Hard timeout"
This can be set for a call and specified the maximum lifetime of that
call. It should not be specified by default. Some operations (such
as volume transfer) take a long time.
Allow userspace to set/change the timeouts on a call with sendmsg, using a
control message:
RXRPC_SET_CALL_TIMEOUTS
The data to the message is a number of 32-bit words, not all of which need
be given:
u32 hard_timeout; /* sec from first packet */
u32 idle_timeout; /* msec from packet Rx */
u32 normal_timeout; /* msec from data Rx */
This can be set in combination with any other sendmsg() that affects a
call.
Signed-off-by: David Howells <dhowells@redhat.com>
Make it possible for a client to use AuriStor's service upgrade facility.
The client does this by adding an RXRPC_UPGRADE_SERVICE control message to
the first sendmsg() of a call. This takes no parameters.
When recvmsg() starts returning data from the call, the service ID field in
the returned msg_name will reflect the result of the upgrade attempt. If
the upgrade was ignored, srx_service will match what was set in the
sendmsg(); if the upgrade happened the srx_service will be altered to
indicate the service the server upgraded to.
Note that:
(1) The choice of upgrade service is up to the server
(2) Further client calls to the same server that would share a connection
are blocked if an upgrade probe is in progress.
(3) This should only be used to probe the service. Clients should then
use the returned service ID in all subsequent communications with that
server (and not set the upgrade). Note that the kernel will not
retain this information should the connection expire from its cache.
(4) If a server that supports upgrading is replaced by one that doesn't,
whilst a connection is live, and if the replacement is running, say,
OpenAFS 1.6.4 or older or an older IBM AFS, then the replacement
server will not respond to packets sent to the upgraded connection.
At this point, calls will time out and the server must be reprobed.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint (rxrpc_connect_call) to log the combination of rxrpc_call
pointer, afs_call pointer/user data and wire call parameters to make it
easier to match the tracebuffer contents to captured network packets.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint (rxrpc_rx_rwind_change) to log changes in a call's receive
window size as imposed by the peer through an ACK packet.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint (rxrpc_rx_proto) to record protocol errors in received
packets. The following changes are made:
(1) Add a function, __rxrpc_abort_eproto(), to note a protocol error on a
call and mark the call aborted. This is wrapped by
rxrpc_abort_eproto() that makes the why string usable in trace.
(2) Add trace_rxrpc_rx_proto() or rxrpc_abort_eproto() to protocol error
generation points, replacing rxrpc_abort_call() with the latter.
(3) Only send an abort packet in rxkad_verify_packet*() if we actually
managed to abort the call.
Note that a trace event is also emitted if a kernel user (e.g. afs) tries
to send data through a call when it's not in the transmission phase, though
it's not technically a receive event.
Signed-off-by: David Howells <dhowells@redhat.com>
All the routines by which rxrpc is accessed from the outside are serialised
by means of the socket lock (sendmsg, recvmsg, bind,
rxrpc_kernel_begin_call(), ...) and this presents a problem:
(1) If a number of calls on the same socket are in the process of
connection to the same peer, a maximum of four concurrent live calls
are permitted before further calls need to wait for a slot.
(2) If a call is waiting for a slot, it is deep inside sendmsg() or
rxrpc_kernel_begin_call() and the entry function is holding the socket
lock.
(3) sendmsg() and recvmsg() or the in-kernel equivalents are prevented
from servicing the other calls as they need to take the socket lock to
do so.
(4) The socket is stuck until a call is aborted and makes its slot
available to the waiter.
Fix this by:
(1) Provide each call with a mutex ('user_mutex') that arbitrates access
by the users of rxrpc separately for each specific call.
(2) Make rxrpc_sendmsg() and rxrpc_recvmsg() unlock the socket as soon as
they've got a call and taken its mutex.
Note that I'm returning EWOULDBLOCK from recvmsg() if MSG_DONTWAIT is
set but someone else has the lock. Should I instead only return
EWOULDBLOCK if there's nothing currently to be done on a socket, and
sleep in this particular instance because there is something to be
done, but we appear to be blocked by the interrupt handler doing its
ping?
(3) Make rxrpc_new_client_call() unlock the socket after allocating a new
call, locking its user mutex and adding it to the socket's call tree.
The call is returned locked so that sendmsg() can add data to it
immediately.
From the moment the call is in the socket tree, it is subject to
access by sendmsg() and recvmsg() - even if it isn't connected yet.
(4) Lock new service calls in the UDP data_ready handler (in
rxrpc_new_incoming_call()) because they may already be in the socket's
tree and the data_ready handler makes them live immediately if a user
ID has already been preassigned.
Note that the new call is locked before any notifications are sent
that it is live, so doing mutex_trylock() *ought* to always succeed.
Userspace is prevented from doing sendmsg() on calls that are in a
too-early state in rxrpc_do_sendmsg().
(5) Make rxrpc_new_incoming_call() return the call with the user mutex
held so that a ping can be scheduled immediately under it.
Note that it might be worth moving the ping call into
rxrpc_new_incoming_call() and then we can drop the mutex there.
(6) Make rxrpc_accept_call() take the lock on the call it is accepting and
release the socket after adding the call to the socket's tree. This
is slightly tricky as we've dequeued the call by that point and have
to requeue it.
Note that requeuing emits a trace event.
(7) Make rxrpc_kernel_send_data() and rxrpc_kernel_recv_data() take the
new mutex immediately and don't bother with the socket mutex at all.
This patch has the nice bonus that calls on the same socket are now to some
extent parallelisable.
Note that we might want to move rxrpc_service_prealloc() calls out from the
socket lock and give it its own lock, so that we don't hang progress in
other calls because we're waiting for the allocator.
We probably also want to avoid calling rxrpc_notify_socket() from within
the socket lock (rxrpc_accept_call()).
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.c.dionne@auristor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the following extra tracing information:
(1) Modify the rxrpc_transmit tracepoint to record the Tx window size as
this is varied by the slow-start algorithm.
(2) Modify the rxrpc_rx_ack tracepoint to record more information from
received ACK packets.
(3) Add an rxrpc_rx_data tracepoint to record the information in DATA
packets.
(4) Add an rxrpc_disconnect_call tracepoint to record call disconnection,
including the reason the call was disconnected.
(5) Add an rxrpc_improper_term tracepoint to record implicit termination
of a call by a client either by starting a new call on a particular
connection channel without first transmitting the final ACK for the
previous call.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the way enum values are translated into strings in AF_RXRPC
tracepoints. The problem with just doing a lookup in a normal flat array
of strings or chars is that external tracing infrastructure can't find it.
Rather, TRACE_DEFINE_ENUM must be used.
Also sort the enums and string tables to make it easier to keep them in
order so that a future patch to __print_symbolic() can be optimised to try
a direct lookup into the table first before iterating over it.
A couple of _proto() macro calls are removed because they refered to tables
that got moved to the tracing infrastructure. The relevant data can be
found by way of tracing.
Signed-off-by: David Howells <dhowells@redhat.com>
Keep that call timeouts as ktimes rather than jiffies so that they can be
expressed as functions of RTT.
Signed-off-by: David Howells <dhowells@redhat.com>
In rxrpc_send_data_packet() make the loss-injection path return through the
same code as the transmission path so that the RTT determination is
initiated and any future timer shuffling will be done, despite the packet
having been binned.
Whilst we're at it:
(1) Add to the tx_data tracepoint an indication of whether or not we're
retransmitting a data packet.
(2) When we're deciding whether or not to request an ACK, rather than
checking if we're in fast-retransmit mode check instead if we're
retransmitting.
(3) Don't invoke the lose_skb tracepoint when losing a Tx packet as we're
not altering the sk_buff refcount nor are we just seeing it after
getting it off the Tx list.
(4) The rxrpc_skb_tx_lost note is then no longer used so remove it.
(5) rxrpc_lose_skb() no longer needs to deal with rxrpc_skb_tx_lost.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement RxRPC slow-start, which is similar to RFC 5681 for TCP. A
tracepoint is added to log the state of the congestion management algorithm
and the decisions it makes.
Notes:
(1) Since we send fixed-size DATA packets (apart from the final packet in
each phase), counters and calculations are in terms of packets rather
than bytes.
(2) The ACK packet carries the equivalent of TCP SACK.
(3) The FLIGHT_SIZE calculation in RFC 5681 doesn't seem particularly
suited to SACK of a small number of packets. It seems that, almost
inevitably, by the time three 'duplicate' ACKs have been seen, we have
narrowed the loss down to one or two missing packets, and the
FLIGHT_SIZE calculation ends up as 2.
(4) In rxrpc_resend(), if there was no data that apparently needed
retransmission, we transmit a PING ACK to ask the peer to tell us what
its Rx window state is.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint to log in rxrpc_resend() which packets will be
retransmitted. Note that if a positive ACK comes in whilst we have dropped
the lock to retransmit another packet, the actual retransmission may not
happen, though some of the effects will (such as altering the congestion
management).
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint to log proposed ACKs, including whether the proposal is
used to update a pending ACK or is discarded in favour of an easlier,
higher priority ACK.
Whilst we're at it, get rid of the rxrpc_acks() function and access the
name array directly. We do, however, need to validate the ACK reason
number given to trace_rxrpc_rx_ack() to make sure we don't overrun the
array.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint to log transmission of DATA packets (including loss
injection).
Adjust the ACK transmission tracepoint to include the packet serial number
and to line this up with the DATA transmission display.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a function to track the average RTT for a peer. Sources of RTT data
will be added in subsequent patches.
The RTT data will be useful in the future for determining resend timeouts
and for handling the slow-start part of the Rx protocol.
Also add a pair of tracepoints, one to log transmissions to elicit a
response for RTT purposes and one to log responses that contribute RTT
data.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve sk_buff tracing within AF_RXRPC by the following means:
(1) Use an enum to note the event type rather than plain integers and use
an array of event names rather than a big multi ?: list.
(2) Distinguish Rx from Tx packets and account them separately. This
requires the call phase to be tracked so that we know what we might
find in rxtx_buffer[].
(3) Add a parameter to rxrpc_{new,see,get,free}_skb() to indicate the
event type.
(4) A pair of 'rotate' events are added to indicate packets that are about
to be rotated out of the Rx and Tx windows.
(5) A pair of 'lost' events are added, along with rxrpc_lose_skb() for
packet loss injection recording.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint to follow the insertion of a packet into the transmit
buffer, its transmission and its rotation out of the buffer.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a pair of tracepoints, one to track rxrpc_connection struct ref
counting and the other to track the client connection cache state.
Signed-off-by: David Howells <dhowells@redhat.com>
Print a symbolic packet type name for each valid received packet in the
trace output, not just a number.
Signed-off-by: David Howells <dhowells@redhat.com>
Add two tracepoints:
(1) Record the RxRPC protocol header of packets retrieved from the UDP
socket by the data_ready handler.
(2) Record the outcome of the data_ready handler.
Signed-off-by: David Howells <dhowells@redhat.com>
Remove the sk_buff count from the rxrpc_call struct as it's less useful
once we stop queueing sk_buffs.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a tracepoint for working out where local aborts happen. Each
tracepoint call is labelled with a 3-letter code so that they can be
distinguished - and the DATA sequence number is added too where available.
rxrpc_kernel_abort_call() also takes a 3-letter code so that AFS can
indicate the circumstances when it aborts a call.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve the call tracking tracepoint by showing more differentiation
between some of the put and get events, including:
(1) Getting and putting refs for the socket call user ID tree.
(2) Getting and putting refs for queueing and failing to queue the call
processor work item.
Note that these aren't necessarily used in this patch, but will be taken
advantage of in future patches.
An enum is added for the event subtype numbers rather than coding them
directly as decimal numbers and a table of 3-letter strings is provided
rather than a sequence of ?: operators.
Signed-off-by: David Howells <dhowells@redhat.com>