In the near future, I want to subclass gen6_hw_ppgtt as it contains a
few specialised members and I wish to add more. To avoid the ugliness of
using ppgtt->base.base, rename the i915_hw_ppgtt base member
(i915_address_space) as vm, which is our common shorthand for an
i915_address_space local.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Matthew Auld <matthew.william.auld@gmail.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180605153758.18422-1-chris@chris-wilson.co.uk
smatch does not track initialised values as well as gcc, and this
triggers many warnings by smatch not presented by gcc. Silence smatch by
initialising the error values to -ENODEV, which we use to denote
internal errors. (If we see a selftest fail with a silent -ENODEV, we
know smatch was right!)
v2: smatch was right about igt_create_vma(), it may unlikely fail on the
first object allocation which we want to be loud about.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20171114223346.25958-1-chris@chris-wilson.co.uk
Reviewed-by: Dhinakaran Pandiyan <dhinakaran.pandiyan@intel.com>
If we move the actual cleanup of the context to a worker, we can allow
the final free to be called from any context and avoid undue latency in
the caller.
v2: Negotiate handling the delayed contexts free by flushing the
workqueue before calling i915_gem_context_fini() and performing the final
free of the kernel context directly
v3: Flush deferred frees before new context allocations
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20170620110547.15947-2-chris@chris-wilson.co.uk
The major scaling bottleneck in execbuffer is the processing of the
execobjects. Creating an auxiliary list is inefficient when compared to
using the execobject array we already have allocated.
Reservation is then split into phases. As we lookup up the VMA, we
try and bind it back into active location. Only if that fails, do we add
it to the unbound list for phase 2. In phase 2, we try and add all those
objects that could not fit into their previous location, with fallback
to retrying all objects and evicting the VM in case of severe
fragmentation. (This is the same as before, except that phase 1 is now
done inline with looking up the VMA to avoid an iteration over the
execobject array. In the ideal case, we eliminate the separate reservation
phase). During the reservation phase, we only evict from the VM between
passes (rather than currently as we try to fit every new VMA). In
testing with Unreal Engine's Atlantis demo which stresses the eviction
logic on gen7 class hardware, this speed up the framerate by a factor of
2.
The second loop amalgamation is between move_to_gpu and move_to_active.
As we always submit the request, even if incomplete, we can use the
current request to track active VMA as we perform the flushes and
synchronisation required.
The next big advancement is to avoid copying back to the user any
execobjects and relocations that are not changed.
v2: Add a Theory of Operation spiel.
v3: Fall back to slow relocations in preparation for flushing userptrs.
v4: Document struct members, factor out eb_validate_vma(), add a few
more comments to explain some magic and hide other magic behind macros.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>