KVM currently uses an 'unsigned int' for the MMIO generation number
despite it being derived from the 64-bit memslots generation and
being propagated to (potentially) 64-bit sptes. There is no hidden
agenda behind using an 'unsigned int', it's done simply because the
MMIO generation will never set bits above bit 19.
Passing a u64 will allow the "update in-progress" flag to be relocated
from bit 0 to bit 63 and removes the need to cast the generation back
to a u64 when propagating it to a spte.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM uses bit 0 of the memslots generation as an "update in-progress"
flag, which is used by x86 to prevent caching MMIO access while the
memslots are changing. Although the intended behavior is flag-like,
e.g. MMIO sptes intentionally drop the in-progress bit so as to avoid
caching data from in-flux memslots, the implementation oftentimes treats
the bit as part of the generation number itself, e.g. incrementing the
generation increments twice, once to set the flag and once to clear it.
Prior to commit 4bd518f159 ("KVM: use separate generations for
each address space"), incorporating the "update in-progress" bit into
the generation number largely made sense, e.g. "real" generations are
even, "bogus" generations are odd, most code doesn't need to be aware of
the bit, etc...
Now that unique memslots generation numbers are assigned to each address
space, stealthing the in-progress status into the generation number
results in a wide variety of subtle code, e.g. kvm_create_vm() jumps
over bit 0 when initializing the memslots generation without any hint as
to why.
Explicitly define the flag and convert as much code as possible (which
isn't much) to actually treat it like a flag. This paves the way for
eventually using a different bit for "update in-progress" so that it can
be a flag in truth instead of a awkward extension to the generation
number.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When installing new memslots, KVM sets bit 0 of the generation number to
indicate that an update is in-progress. Until the update is complete,
there are no guarantees as to whether a vCPU will see the old or the new
memslots. Explicity prevent caching MMIO accesses so as to avoid using
an access cached from the old memslots after the new memslots have been
installed.
Note that it is unclear whether or not disabling caching during the
update window is strictly necessary as there is no definitive
documentation as to what ordering guarantees KVM provides with respect
to updating memslots. That being said, the MMIO spte code does not
allow reusing sptes created while an update is in-progress, and the
associated documentation explicitly states:
We do not want to use an MMIO sptes created with an odd generation
number, ... If KVM is unlucky and creates an MMIO spte while the
low bit is 1, the next access to the spte will always be a cache miss.
At the very least, disabling the per-vCPU MMIO cache during updates will
make its behavior consistent with the MMIO spte behavior and
documentation.
Fixes: 56f17dd3fb ("kvm: x86: fix stale mmio cache bug")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The check to detect a wrap of the MMIO generation explicitly looks for a
generation number of zero. Now that unique memslots generation numbers
are assigned to each address space, only address space 0 will get a
generation number of exactly zero when wrapping. E.g. when address
space 1 goes from 0x7fffe to 0x80002, the MMIO generation number will
wrap to 0x2. Adjust the MMIO generation to strip the address space
modifier prior to checking for a wrap.
Fixes: 4bd518f159 ("KVM: use separate generations for each address space")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound. x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.
Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots. Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.
Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.
Tested:
Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
introduced no new failures.
Ran a kernel memory accounting test which creates a VM to touch
memory and then checks that the kernel memory allocated for the
process is within certain bounds.
With this patch we account for much more of the vmalloc and slab memory
allocated for the VM.
There remain a few allocations which should be charged to the VM's
cgroup but are not. In x86, they include:
vcpu->arch.pio_data
There allocations are unaccounted in this patch because they are mapped
to userspace, and accounting them to a cgroup causes problems. This
should be addressed in a future patch.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The preemption timer can be started even if there is a vmentry
failure during or after loading guest state. That is pointless,
move the call after all conditions have been checked.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, 'commit f99e3daf94 ("KVM: x86: Add Intel PT
virtualization work mode")' work mode' offered framework
to support Intel PT virtualization. However, the patch has
some typos in vmx_vmentry_ctrl() and vmx_vmexit_ctrl(), e.g.
used wrong flags and wrong variable, which will cause the
VM entry failure later.
Fixes: 'commit f99e3daf94 ("KVM: x86: Add Intel PT virtualization work mode")'
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ensure that the VCPU free path goes through vmx_leave_nested and
thus nested_vmx_vmexit, so that the cancellation of the timer does
not have to be in free_nested. In addition, because some paths through
nested_vmx_vmexit do not go through sync_vmcs12, the cancellation of
the timer is moved there.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some Posted-Interrupts from passthrough devices may be lost or
overwritten when the vCPU is in runnable state.
The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will
be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state
but not running on physical CPU). If a posted interrupt coming at this
time, the irq remmaping facility will set the bit of PIR (Posted
Interrupt Requests) without ON (Outstanding Notification).
So this interrupt can't be sync to APIC virtualization register and
will not be handled by Guest because ON is zero.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
[Eliminate the pi_clear_sn fast path. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data directly into memory without caching the data.
Availability of the MOVDIR64B instruction is indicated by the presence
of the CPUID feature flag MOVDIR64B (CPUID.0x07.0x0:ECX[bit 28]).
This patch exposes the movdir64b feature to the guest.
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Cc: Xu Tao <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data directly into memory without caching the data.
Availability of the MOVDIRI instruction is indicated by the presence of
the CPUID feature flag MOVDIRI(CPUID.0x07.0x0:ECX[bit 27]).
This patch exposes the movdiri feature to the guest.
The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf
Signed-off-by: Liu Jingqi <jingqi.liu@intel.com>
Cc: Xu Tao <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD's SME/SEV is no longer the only case which reduces supported
physical address bits, since Intel introduced Multi-key Total Memory
Encryption (MKTME), which repurposes high bits of physical address as
keyID, thus effectively shrinks supported physical address bits. To
cover both cases (and potential similar future features), kernel MM
introduced generic dynamaic physical address mask instead of hard-coded
__PHYSICAL_MASK in 'commit 94d49eb30e ("x86/mm: Decouple dynamic
__PHYSICAL_MASK from AMD SME")'. KVM should use that too.
Change PT64_BASE_ADDR_MASK to use kernel dynamic physical address mask
when it is enabled, instead of sme_clr. PT64_DIR_BASE_ADDR_MASK is also
deleted since it is not used at all.
Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX is only accessible in protected mode, remove a confusing check
that causes the conditional to lack a final "else" branch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Regarding segments with a limit==0xffffffff, the SDM officially states:
When the effective limit is FFFFFFFFH (4 GBytes), these accesses may
or may not cause the indicated exceptions. Behavior is
implementation-specific and may vary from one execution to another.
In practice, all CPUs that support VMX ignore limit checks for "flat
segments", i.e. an expand-up data or code segment with base=0 and
limit=0xffffffff. This is subtly different than wrapping the effective
address calculation based on the address size, as the flat segment
behavior also applies to accesses that would wrap the 4g boundary, e.g.
a 4-byte access starting at 0xffffffff will access linear addresses
0xffffffff, 0x0, 0x1 and 0x2.
Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The address size of an instruction affects the effective address, not
the virtual/linear address. The final address may still be truncated,
e.g. to 32-bits outside of long mode, but that happens irrespective of
the address size, e.g. a 32-bit address size can yield a 64-bit virtual
address when using FS/GS with a non-zero base.
Fixes: 064aea7747 ("KVM: nVMX: Decoding memory operands of VMX instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMCS.EXIT_QUALIFCATION field reports the displacements of memory
operands for various instructions, including VMX instructions, as a
naturally sized unsigned value, but masks the value by the addr size,
e.g. given a ModRM encoded as -0x28(%ebp), the -0x28 displacement is
reported as 0xffffffd8 for a 32-bit address size. Despite some weird
wording regarding sign extension, the SDM explicitly states that bits
beyond the instructions address size are undefined:
In all cases, bits of this field beyond the instruction’s address
size are undefined.
Failure to sign extend the displacement results in KVM incorrectly
treating a negative displacement as a large positive displacement when
the address size of the VMX instruction is smaller than KVM's native
size, e.g. a 32-bit address size on a 64-bit KVM.
The very original decoding, added by commit 064aea7747 ("KVM: nVMX:
Decoding memory operands of VMX instructions"), sort of modeled sign
extension by truncating the final virtual/linear address for a 32-bit
address size. I.e. it messed up the effective address but made it work
by adjusting the final address.
When segmentation checks were added, the truncation logic was kept
as-is and no sign extension logic was introduced. In other words, it
kept calculating the wrong effective address while mostly generating
the correct virtual/linear address. As the effective address is what's
used in the segment limit checks, this results in KVM incorreclty
injecting #GP/#SS faults due to non-existent segment violations when
a nested VMM uses negative displacements with an address size smaller
than KVM's native address size.
Using the -0x28(%ebp) example, an EBP value of 0x1000 will result in
KVM using 0x100000fd8 as the effective address when checking for a
segment limit violation. This causes a 100% failure rate when running
a 32-bit KVM build as L1 on top of a 64-bit KVM L0.
Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function svm_refresh_apicv_exec_ctrl() always returning prematurely
as kvm_vcpu_apicv_active() always return false when calling from
the function arch/x86/kvm/x86.c:kvm_vcpu_deactivate_apicv().
This is because the apicv_active is set to false just before calling
refresh_apicv_exec_ctrl().
Also, we need to mark VMCB_AVIC bit as dirty instead of VMCB_INTR.
So, fix svm_refresh_apicv_exec_ctrl() to properly deactivate AVIC.
Fixes: 67034bb9dd ('KVM: SVM: Add irqchip_split() checks before enabling AVIC')
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently apicv_active can be true even if in-kernel LAPIC
emulation is disabled. Avoid this by properly initializing
it in kvm_arch_vcpu_init, and then do not do anything to
deactivate APICv when it is actually not used
(Currently APICv is only deactivated by SynIC code that in turn
is only reachable when in-kernel LAPIC is in use. However, it is
cleaner if kvm_vcpu_deactivate_apicv avoids relying on this.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current SVM AVIC driver makes two incorrect assumptions:
1. APIC LDR register cannot be zero
2. APIC DFR for all vCPUs must be the same
LDR=0 means the local APIC does not support logical destination mode.
Therefore, the driver should mark any previously assigned logical APIC ID
table entry as invalid, and return success. Also, DFR is specific to
a particular local APIC, and can be different among all vCPUs
(as observed on Windows 10).
These incorrect assumptions cause Windows 10 and FreeBSD VMs to fail
to boot with AVIC enabled. So, instead of flush the whole logical APIC ID
table, handle DFR and LDR for each vCPU independently.
Fixes: 18f40c53e1 ('svm: Add VMEXIT handlers for AVIC')
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Julian Stecklina <jsteckli@amazon.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMs may show incorrect uptime and dmesg printk offsets on hypervisors with
unstable clock. The problem is produced when VM is rebooted without exiting
from qemu.
The fix is to calculate clock offset not only for stable clock but for
unstable clock as well, and use kvm_sched_clock_read() which substracts
the offset for both clocks.
This is safe, because pvclock_clocksource_read() does the right thing and
makes sure that clock always goes forward, so once offset is calculated
with unstable clock, we won't get new reads that are smaller than offset,
and thus won't get negative results.
Thank you Jon DeVree for helping to reproduce this issue.
Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Cc: stable@vger.kernel.org
Reported-by: Dominique Martinet <asmadeus@codewreck.org>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the clearing of the common registers (not 64-bit-only) to the start
of the flow that clears registers holding guest state. This is
purely a cosmetic change so that the label doesn't point at a blank line
and a #define.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that the sub-routine follows standard calling conventions.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to make it callable from C code.
Note that because KVM chooses to be ultra paranoid about guest register
values, all callee-save registers are still cleared after VM-Exit even
though the host's values are now reloaded from the stack.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for making the assembly sub-routine callable from C code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for making the sub-routine callable from C code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for making the sub-routine callable from C code. That
means returning the result in RAX. Since RAX will be used to return the
result, use it as the scratch register as well to make the code readable
and to document that the scratch register is more or less arbitrary.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that the name is no longer usurped by a defunct helper function.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that the code is no longer tagged with STACK_FRAME_NON_STANDARD.
Arguably, providing __vmx_vcpu_run() to break up vmx_vcpu_run() is
valuable on its own, but the previous split was purposely made as small
as possible to limit the effects STACK_FRAME_NON_STANDARD. In other
words, the current split is now completely arbitrary and likely not the
most logical.
This also allows renaming ____vmx_vcpu_run() to __vmx_vcpu_run() in a
future patch.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As evidenced by the myriad patches leading up to this moment, using
an inline asm blob for vCPU-run is nothing short of horrific. It's also
been called "unholy", "an abomination" and likely a whole host of other
names that would violate the Code of Conduct if recorded here and now.
The code is relocated nearly verbatim, e.g. quotes, newlines, tabs and
__stringify need to be dropped, but other than those cosmetic changes
the only functional changees are to add the "call" and replace the final
"jmp" with a "ret".
Note that STACK_FRAME_NON_STANDARD is also dropped from __vmx_vcpu_run().
Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...in preparation for moving to a proper assembly sub-routnine.
vCPU-run isn't a leaf function since it calls vmx_update_host_rsp()
and vmx_vmenter(). And since we need to save/restore RBP anyways,
unconditionally creating the frame costs a single MOV, i.e. don't
bother keying off CONFIG_FRAME_POINTER or using FRAME_BEGIN, etc...
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to prepare for moving the inline asm to a proper asm sub-routine.
Eliminating the immediates allows a nearly verbatim move, e.g. quotes,
newlines, tabs and __stringify need to be dropped, but other than those
cosmetic changes the only function change will be to replace the final
"jmp" with a "ret".
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Declaring the VCPU_REGS_* as enums allows for more robust C code, but it
prevents using the values in assembly files. Expliciting #define the
indices in an asm-friendly file to prepare for VMX moving its transition
code to a proper assembly file, but keep the enums for general usage.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...now that all other references to struct vcpu_vmx have been removed.
Note that 'vmx' still needs to be passed into the asm blob in _ASM_ARG1
as it is consumed by vmx_update_host_rsp(). And similar to that code,
use _ASM_ARG2 in the assembly code to prepare for moving to proper asm,
while explicitly referencing the exact registers in the clobber list for
clarity in the short term and to avoid additional precompiler games.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A failed VM-Enter (obviously) didn't succeed, meaning the CPU never
executed an instrunction in guest mode and so can't have changed the
general purpose registers.
In addition to saving some instructions in the VM-Fail case, this also
provides a separate path entirely and thus an opportunity to propagate
the fail condition to vmx->fail via register without introducing undue
pain. Using a register, as opposed to directly referencing vmx->fail,
eliminates the need to pass the offset of 'fail', which will simplify
moving the code to proper assembly in future patches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Switching the ordering allows for an out-of-line path for VM-Fail
that elides saving guest state but still shares the register clearing
with the VM-Exit path.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...and remove struct vcpu_vmx's temporary __launched variable.
Eliminating __launched is a bonus, the real motivation is to get to the
point where the only reference to struct vcpu_vmx in the asm code is
to vcpu.arch.regs, which will simplify moving the blob to a proper asm
file. Note that also means this approach is deliberately different than
what is used in nested_vmx_check_vmentry_hw().
Use BL as it is a callee-save register in both 32-bit and 64-bit ABIs,
i.e. it can't be modified by vmx_update_host_rsp(), to avoid having to
temporarily save/restore the launched flag.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Providing a helper function to update HOST_RSP is visibly easier to
read, and more importantly (for the future) eliminates two arguments to
the VM-Enter assembly blob. Reducing the number of arguments to the asm
blob is for all intents and purposes a prerequisite to moving the code
to a proper assembly routine. It's not truly mandatory, but it greatly
simplifies the future code, and the cost of the extra CALL+RET is
negligible in the grand scheme.
Note that although _ASM_ARG[1-3] can be used in the inline asm itself,
the intput/output constraints need to be manually defined. gcc will
actually compile with _ASM_ARG[1-3] specified as constraints, but what
it actually ends up doing with the bogus constraint is unknown.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to eliminate its parameter and struct vcpu_vmx offset definition
from the assembly blob. Accessing CR2 from C versus assembly doesn't
change the likelihood of taking a page fault (and modifying CR2) while
it's loaded with the guest's value, so long as we don't do anything
silly between accessing CR2 and VM-Enter/VM-Exit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, host_rsp is cached on a per-vCPU basis, i.e. it's stored in
struct vcpu_vmx. In non-nested usage the caching is for all intents
and purposes 100% effective, e.g. only the first VMLAUNCH needs to
synchronize VMCS.HOST_RSP since the call stack to vmx_vcpu_run() is
identical each and every time. But when running a nested guest, KVM
must invalidate the cache when switching the current VMCS as it can't
guarantee the new VMCS has the same HOST_RSP as the previous VMCS. In
other words, the cache loses almost all of its efficacy when running a
nested VM.
Move host_rsp to struct vmcs_host_state, which is per-VMCS, so that it
is cached on a per-VMCS basis and restores its 100% hit rate when
nested VMs are in play.
Note that the host_rsp cache for vmcs02 essentially "breaks" when
nested early checks are enabled as nested_vmx_check_vmentry_hw() will
see a different RSP at the time of its VM-Enter. While it's possible
to avoid even that VMCS.HOST_RSP synchronization, e.g. by employing a
dedicated VM-Exit stack, there is little motivation for doing so as
the overhead of two VMWRITEs (~55 cycles) is dwarfed by the overhead
of the extra VMX transition (600+ cycles) and is a proverbial drop in
the ocean relative to the total cost of a nested transtion (10s of
thousands of cycles).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...and provide an explicit name for the constraint. Naming the input
constraint makes the code self-documenting and also avoids the fragility
of numerically referring to constraints, e.g. %4 breaks badly whenever
the constraints are modified.
Explicitly using RDX was inherited from vCPU-run, i.e. completely
arbitrary. Even vCPU-run doesn't truly need to explicitly use RDX, but
doing so is more robust as vCPU-run needs tight control over its
register usage.
Note that while the naming "conflict" between host_rsp and HOST_RSP
is slightly confusing, the former will be renamed slightly in a
future patch, at which point HOST_RSP is absolutely what is desired.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Temporarily propagating vmx->loaded_vmcs->launched to vmx->__launched
is not functionally necessary, but rather was done historically to
avoid passing both 'vmx' and 'loaded_vmcs' to the vCPU-run asm blob.
Nested early checks inherited this behavior by virtue of copy+paste.
A future patch will move HOST_RSP caching to be per-VMCS, i.e. store
'host_rsp' in loaded VMCS. Now that the reference to 'vmx->fail' is
also gone from nested early checks, referencing 'loaded_vmcs' directly
means we can drop the 'vmx' reference when introducing per-VMCS RSP
caching. And it means __launched can be dropped from struct vcpu_vmx
if/when vCPU-run receives similar treatment.
Note the use of a named register constraint for 'loaded_vmcs'. Using
RCX to hold 'vmx' was inherited from vCPU-run. In the vCPU-run case,
the scratch register needs to be explicitly defined as it is crushed
when loading guest state, i.e. deferring to the compiler would corrupt
the pointer. Since nested early checks never loads guests state, it's
a-ok to let the compiler pick any register. Naming the constraint
avoids the fragility of referencing constraints via %1, %2, etc.., which
breaks horribly when modifying constraints, and generally makes the asm
blob more readable.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to take advantage of __GCC_ASM_FLAG_OUTPUTS__ when possible.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unlike the primary vCPU-run flow, the nested early checks code doesn't
actually want to propagate VM-Fail back to 'vmx'. Yay copy+paste.
In additional to eliminating the need to clear vmx->fail before
returning, using a local boolean also drops a reference to 'vmx' in the
asm blob. Dropping the reference to 'vmx' will save a register in the
long run as future patches will shift all pointer references from 'vmx'
to 'vmx->loaded_vmcs'.
Fixes: 52017608da ("KVM: nVMX: add option to perform early consistency checks via H/W")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using %1 to reference RCX, i.e. the 'vmx' pointer', is obtuse and
fragile, e.g. it results in cryptic and infurating compile errors if the
output constraints are touched by anything more than a gentle breeze.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...as it doesn't technically actually do anything non-standard with the
stack even though it modifies RSP in a weird way. E.g. RSP is loaded
with VMCS.HOST_RSP if the VM-Enter gets far enough to trigger VM-Exit,
but it's simply reloaded with the current value.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RAX is not touched by nested_vmx_check_vmentry_hw(), directly or
indirectly (e.g. vmx_vmenter()). Remove it from the clobber list.
Fixes: 52017608da ("KVM: nVMX: add option to perform early consistency checks via H/W")
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per commit c20363006a ("KVM: VMX: Let gcc to choose which registers
to save (x86_64)"), the only reason RDX is saved/loaded to/from the
stack is because it was specified as an input, i.e. couldn't be marked
as clobbered (ignoring the fact that "saving" it to a dummy output
would indirectly mark it as clobbered).
Now that RDX is no longer an input, clobber it.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>