Commit Graph

1888 Commits

Author SHA1 Message Date
Nikolay Borisov
64f54188ea btrfs: make btrfs_create_dio_extent take btrfs_inode
Take btrfs_inode directly and stop using superfulous BTRFS_I calls.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:34 +02:00
Nikolay Borisov
c1e095202c btrfs: make btrfs_add_ordered_extent_dio take btrfs_inode
Simply forwards its argument so let's get rid of one extra BTRFS_I by
taking btrfs_inode directly.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:34 +02:00
Nikolay Borisov
98456b9c46 btrfs: make btrfs_run_delalloc_range take btrfs_inode
All children now take btrfs_inode so convert it to taking it as a
parameter as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:34 +02:00
Nikolay Borisov
0c4942258c btrfs: make need_force_cow take btrfs_inode
Gets rid of superfulous BTRFS_I() calls and prepare for converting
btrfs_run_delalloc_range to using btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:34 +02:00
Nikolay Borisov
808a129232 btrfs: make inode_need_compress take btrfs_inode
Simply gets rid of superfluous BTRFS_I() calls.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:33 +02:00
Nikolay Borisov
99c88dc71c btrfs: make inode_can_compress take btrfs_inode
Gets rid of superfluous BTRFS_I() calls.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:33 +02:00
Nikolay Borisov
64e1db566d btrfs: make btrfs_cleanup_ordered_extents take btrfs_inode
Preparation to converting btrfs_run_delalloc_range to using btrfs_inode
without BTRFS_I() calls.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:33 +02:00
Nikolay Borisov
b672b5c156 btrfs: make __endio_write_update_ordered take btrfs_inode
It really wants btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:33 +02:00
Nikolay Borisov
7095821ee1 btrfs: make btrfs_dec_test_first_ordered_pending take btrfs_inode
It doesn't really need vfs_inode but btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:33 +02:00
Nikolay Borisov
751b64318d btrfs: make cow_file_range_async take btrfs_inode
It only uses vfs inode for assigning it to the async_chunk function.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:32 +02:00
Nikolay Borisov
968322c8c6 btrfs: make run_delalloc_nocow take btrfs_inode
It only really uses btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:32 +02:00
Nikolay Borisov
8ba96f3dd6 btrfs: make fallback_to_cow take btrfs_inode
It really wants btrfs_inode and is prepration to converting
run_delalloc_nocow to taking btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:32 +02:00
Nikolay Borisov
c553f94df4 btrfs: make insert_reserved_file_extent take btrfs_inode
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>c
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:32 +02:00
Nikolay Borisov
72b7d15bf1 btrfs: make btrfs_qgroup_release_data take btrfs_inode
It just forwards its argument to __btrfs_qgroup_release_data.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:32 +02:00
Nikolay Borisov
a0ff10dcc4 btrfs: make submit_compressed_extents take btrfs_inode
All but 3 uses require vfs_inode so convert the logic to have
btrfs_inode be the main inode struct.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:31 +02:00
Nikolay Borisov
c7ee1819dc btrfs: make btrfs_submit_compressed_write take btrfs_inode
Majority of its uses are for btrfs_inode so take it as an argument
directly.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:31 +02:00
Nikolay Borisov
4cc612090b btrfs: make btrfs_add_ordered_extent_compress take btrfs_inode
It simpy forwards its inode argument to __btrfs_add_ordered_extent which
already takes btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:31 +02:00
Nikolay Borisov
6e26c44223 btrfs: make cow_file_range take btrfs_inode
All its children functions take btrfs_inode so convert it to taking
btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:31 +02:00
Nikolay Borisov
e7fbf60453 btrfs: make btrfs_add_ordered_extent take btrfs_inode
Preparation to converting its callers to taking btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:31 +02:00
Nikolay Borisov
a0349401c1 btrfs: make cow_file_range_inline take btrfs_inode
It has only 2 uses for the vfs_inode - insert_inline_extent and
i_size_read.  On the flipside it will allow converting its callers to
btrfs_inode, so convert it to taking btrfs_inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:30 +02:00
Nikolay Borisov
8b8a979f1f btrfs: make btrfs_qgroup_free_data take btrfs_inode
It passes btrfs_inode to its callee so change the interface.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:30 +02:00
Qu Wenruo
38d37aa9c3 btrfs: refactor btrfs_check_can_nocow() into two variants
The function btrfs_check_can_nocow() now has two completely different
call patterns.

For nowait variant, callers don't need to do any cleanup.  While for
wait variant, callers need to release the lock if they can do nocow
write.

This is somehow confusing, and is already a problem for the exported
btrfs_check_can_nocow().

So this patch will separate the different patterns into different
functions.
For nowait variant, the function will be called check_nocow_nolock().
For wait variant, the function pair will be btrfs_check_nocow_lock()
btrfs_check_nocow_unlock().

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:28 +02:00
Qu Wenruo
e4ecaf90bc btrfs: add comments for btrfs_check_can_nocow() and can_nocow_extent()
These two functions have extra conditions that their callers need to
meet, and some not-that-common parameters used for return value.

So adding some comments may save reviewers some time.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:28 +02:00
Qu Wenruo
6d4572a9d7 btrfs: allow btrfs_truncate_block() to fallback to nocow for data space reservation
[BUG]
When the data space is exhausted, even if the inode has NOCOW attribute,
we will still refuse to truncate unaligned range due to ENOSPC.

The following script can reproduce it pretty easily:
  #!/bin/bash

  dev=/dev/test/test
  mnt=/mnt/btrfs

  umount $dev &> /dev/null
  umount $mnt &> /dev/null

  mkfs.btrfs -f $dev -b 1G
  mount -o nospace_cache $dev $mnt
  touch $mnt/foobar
  chattr +C $mnt/foobar

  xfs_io -f -c "pwrite -b 4k 0 4k" $mnt/foobar > /dev/null
  xfs_io -f -c "pwrite -b 4k 0 1G" $mnt/padding &> /dev/null
  sync

  xfs_io -c "fpunch 0 2k" $mnt/foobar
  umount $mnt

Currently this will fail at the fpunch part.

[CAUSE]
Because btrfs_truncate_block() always reserves space without checking
the NOCOW attribute.

Since the writeback path follows NOCOW bit, we only need to bother the
space reservation code in btrfs_truncate_block().

[FIX]
Make btrfs_truncate_block() follow btrfs_buffered_write() to try to
reserve data space first, and fall back to NOCOW check only when we
don't have enough space.

Such always-try-reserve is an optimization introduced in
btrfs_buffered_write(), to avoid expensive btrfs_check_can_nocow() call.

This patch will export check_can_nocow() as btrfs_check_can_nocow(), and
use it in btrfs_truncate_block() to fix the problem.

Reported-by: Martin Doucha <martin.doucha@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:28 +02:00
David Sterba
bab16e21e8 btrfs: don't use UAPI types for fiemap callback
The fiemap callback is not part of UAPI interface and the prototypes
don't have the __u64 types either.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:27 +02:00
Nikolay Borisov
906c448c3d btrfs: make __btrfs_drop_extents take btrfs_inode
It has only 4 uses of a vfs_inode for inode_sub_bytes but unifies the
interface with the non  __ prefixed version. Will also makes converting
its callers to btrfs_inode easier.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:26 +02:00
Nikolay Borisov
bd242a08a6 btrfs: make btrfs_csum_one_bio takae btrfs_inode
Will enable converting btrfs_submit_compressed_write to btrfs_inode more
easily.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:26 +02:00
Nikolay Borisov
ad7ff17b65 btrfs: make extent_clear_unlock_delalloc take btrfs_inode
It has one VFS and 1 btrfs inode usages but converting it to btrfs_inode
interface will allow seamless conversion of its callers.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:26 +02:00
Nikolay Borisov
4b67c11dd1 btrfs: make create_io_em take btrfs_inode
It really wants a btrfs_inode and will allow submit_compressed_extents
to be completely converted to btrfs_inode in follow up patches.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:26 +02:00
Nikolay Borisov
7bfa953501 btrfs: make btrfs_reloc_clone_csums take btrfs_inode
It really wants btrfs_inode and not a vfs inode.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:26 +02:00
Nikolay Borisov
c350437269 btrfs: make btrfs_lookup_ordered_extent take btrfs_inode
It doesn't use the generic vfs inode for anything use btrfs_inode
directly.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:25 +02:00
Nikolay Borisov
43c69849ae btrfs: make get_extent_allocation_hint take btrfs_inode
It doesn't use the vfs inode for anything, can just as easily take
btrfs_inode.  Follow up patches will convert callers as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:25 +02:00
Qu Wenruo
7dbeaad0af btrfs: change timing for qgroup reserved space for ordered extents to fix reserved space leak
[BUG]
The following simple workload from fsstress can lead to qgroup reserved
data space leak:
  0/0: creat f0 x:0 0 0
  0/0: creat add id=0,parent=-1
  0/1: write f0[259 1 0 0 0 0] [600030,27288] 0
  0/4: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 64 627318] return 25, fallback to stat()
  0/4: dwrite f0[259 1 0 0 64 627318] [610304,106496] 0

This would cause btrfs qgroup to leak 20480 bytes for data reserved
space.  If btrfs qgroup limit is enabled, such leak can lead to
unexpected early EDQUOT and unusable space.

[CAUSE]
When doing direct IO, kernel will try to writeback existing buffered
page cache, then invalidate them:
  generic_file_direct_write()
  |- filemap_write_and_wait_range();
  |- invalidate_inode_pages2_range();

However for btrfs, the bi_end_io hook doesn't finish all its heavy work
right after bio ends.  In fact, it delays its work further:

  submit_extent_page(end_io_func=end_bio_extent_writepage);
  end_bio_extent_writepage()
  |- btrfs_writepage_endio_finish_ordered()
     |- btrfs_init_work(finish_ordered_fn);

  <<< Work queue execution >>>
  finish_ordered_fn()
  |- btrfs_finish_ordered_io();
     |- Clear qgroup bits

This means, when filemap_write_and_wait_range() returns,
btrfs_finish_ordered_io() is not guaranteed to be executed, thus the
qgroup bits for related range are not cleared.

Now into how the leak happens, this will only focus on the overlapping
part of buffered and direct IO part.

1. After buffered write
   The inode had the following range with QGROUP_RESERVED bit:
   	596		616K
	|///////////////|
   Qgroup reserved data space: 20K

2. Writeback part for range [596K, 616K)
   Write back finished, but btrfs_finish_ordered_io() not get called
   yet.
   So we still have:
   	596K		616K
	|///////////////|
   Qgroup reserved data space: 20K

3. Pages for range [596K, 616K) get released
   This will clear all qgroup bits, but don't update the reserved data
   space.
   So we have:
   	596K		616K
	|		|
   Qgroup reserved data space: 20K
   That number doesn't match the qgroup bit range anymore.

4. Dio prepare space for range [596K, 700K)
   Qgroup reserved data space for that range, we got:
   	596K		616K			700K
	|///////////////|///////////////////////|
   Qgroup reserved data space: 20K + 104K = 124K

5. btrfs_finish_ordered_range() gets executed for range [596K, 616K)
   Qgroup free reserved space for that range, we got:
   	596K		616K			700K
	|		|///////////////////////|
   We need to free that range of reserved space.
   Qgroup reserved data space: 124K - 20K = 104K

6. btrfs_finish_ordered_range() gets executed for range [596K, 700K)
   However qgroup bit for range [596K, 616K) is already cleared in
   previous step, so we only free 84K for qgroup reserved space.
   	596K		616K			700K
	|		|			|
   We need to free that range of reserved space.
   Qgroup reserved data space: 104K - 84K = 20K

   Now there is no way to release that 20K unless disabling qgroup or
   unmounting the fs.

[FIX]
This patch will change the timing of btrfs_qgroup_release/free_data()
call.  Here it uses buffered COW write as an example.

	The new timing			|	The old timing
----------------------------------------+---------------------------------------
 btrfs_buffered_write()			| btrfs_buffered_write()
 |- btrfs_qgroup_reserve_data() 	| |- btrfs_qgroup_reserve_data()
					|
 btrfs_run_delalloc_range()		| btrfs_run_delalloc_range()
 |- btrfs_add_ordered_extent()  	|
    |- btrfs_qgroup_release_data()	|
       The reserved is passed into	|
       btrfs_ordered_extent structure	|
					|
 btrfs_finish_ordered_io()		| btrfs_finish_ordered_io()
 |- The reserved space is passed to 	| |- btrfs_qgroup_release_data()
    btrfs_qgroup_record			|    The resereved space is passed
					|    to btrfs_qgroup_recrod
					|
 btrfs_qgroup_account_extents()		| btrfs_qgroup_account_extents()
 |- btrfs_qgroup_free_refroot()		| |- btrfs_qgroup_free_refroot()

The point of such change is to ensure, when ordered extents are
submitted, the qgroup reserved space is already released, to keep the
timing aligned with file_write_and_wait_range().

So that qgroup data reserved space is all bound to btrfs_ordered_extent
and solve the timing mismatch.

Fixes: f695fdcef8 ("btrfs: qgroup: Introduce functions to release/free qgroup reserve data space")
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
9729f10a60 btrfs: inode: move qgroup reserved space release to the callers of insert_reserved_file_extent()
This is to prepare for the incoming timing change of qgroup reserved
data space and ordered extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:24 +02:00
Qu Wenruo
203f44c519 btrfs: inode: refactor the parameters of insert_reserved_file_extent()
Function insert_reserved_file_extent() takes a long list of parameters,
which are all for btrfs_file_extent_item, even including two reserved
members, encryption and other_encoding.

This makes the parameter list unnecessary long for a function which only
gets called twice.

This patch will refactor the parameter list, by using
btrfs_file_extent_item as parameter directly to hugely reduce the number
of parameters.

Also, since there are only two callers, one in btrfs_finish_ordered_io()
which inserts file extent for ordered extent, and one
__btrfs_prealloc_file_range().

These two call sites have completely different context, where ordered
extent can be compressed, but will always be regular extent, while the
preallocated one is never going to be compressed and always has PREALLOC
type.

So use two small wrapper for these two different call sites to improve
readability.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:23 +02:00
Filipe Manana
46d4dac888 btrfs: remove the start argument from btrfs_free_reserved_data_space_noquota()
The start argument for btrfs_free_reserved_data_space_noquota() is only
used to make sure the amount of bytes we decrement from the bytes_may_use
counter of the data space_info object is aligned to the filesystem's
sector size. It serves no other purpose.

All its current callers always pass a length argument that is already
aligned to the sector size, so we can make the start argument go away.
In fact its presence makes it impossible to use it in a context where we
just want to free a number of bytes for a range for which either we do
not know its start offset or for freeing multiple ranges at once (which
are not contiguous).

This change is preparatory work for a patch (third patch in this series)
that makes relocation of data block groups that are not full reserve less
data space.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:21 +02:00
Linus Torvalds
0669704270 for-5.8-rc6-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8auzgACgkQxWXV+ddt
 WDv0CRAAooFO+hloV+br40eEfJwZJJk+iIvc3tyq3TRUrmt1D0G4F7nUtiHjb8JU
 ch2HK+GNZkIK4747OCgcFREpYZV2m0hrKybzf/j4mYb7OXzHmeHTMfGVut1g80e7
 dlpvP7q4VZbBP8BTo/8wqdSAdCUiNhLFy5oYzyUwyflJ5S8FpjY+3dXIRHUnhxPU
 lxMANWhX9y/qQEceGvxqwqJBiYT6WI7dwONiULc1klWDIug/2BGZQR0WuC5PVr0G
 YNuxcEU6rluWzKWJ5k3104t+N1Nc5+xglIgBLeLKAyTVYq8zAMf+P8bBPnQ3QDkV
 zniNIH9ND8tYSjmGkmO0ltExFrE2o9NRnjapOFXfB0WGXee5LfzFfzd5Hk9YV+Ua
 bs98VNGR4B12Iw++DvrbhbFAMxBHiBfAX/O44xJ81uAYVUs21OfefxHWrLzTJK+1
 xYfiyfCDxZDGpC/weg9GOPcIZAzzoSAvqDqWHyWY5cCZdB60RaelGJprdG5fP/gA
 Y+hDIdutVXMHfhaX0ktWsDvhPRXcC7MT0bjasljkN5WUJ/xZZQr6QmgngY+FA8G/
 0n/dv0pYdOTK/8YVZAMO+VklzrDhziqzc2sBrH1k3MA9asa/Ls5v+r2PU+qBKZJm
 cBJGtxxsx72CHbkIhtd5oGj5LNTXFdXeHph37ErzW3ajeamO4X0=
 =51h/
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into master

Pull btrfs fixes from David Sterba:
 "A few resouce leak fixes from recent patches, all are stable material.

  The problems have been observed during testing or have a reproducer"

* tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix mount failure caused by race with umount
  btrfs: fix page leaks after failure to lock page for delalloc
  btrfs: qgroup: fix data leak caused by race between writeback and truncate
  btrfs: fix double free on ulist after backref resolution failure
2020-07-24 14:11:43 -07:00
Qu Wenruo
fa91e4aa17 btrfs: qgroup: fix data leak caused by race between writeback and truncate
[BUG]
When running tests like generic/013 on test device with btrfs quota
enabled, it can normally lead to data leak, detected at unmount time:

  BTRFS warning (device dm-3): qgroup 0/5 has unreleased space, type 0 rsv 4096
  ------------[ cut here ]------------
  WARNING: CPU: 11 PID: 16386 at fs/btrfs/disk-io.c:4142 close_ctree+0x1dc/0x323 [btrfs]
  RIP: 0010:close_ctree+0x1dc/0x323 [btrfs]
  Call Trace:
   btrfs_put_super+0x15/0x17 [btrfs]
   generic_shutdown_super+0x72/0x110
   kill_anon_super+0x18/0x30
   btrfs_kill_super+0x17/0x30 [btrfs]
   deactivate_locked_super+0x3b/0xa0
   deactivate_super+0x40/0x50
   cleanup_mnt+0x135/0x190
   __cleanup_mnt+0x12/0x20
   task_work_run+0x64/0xb0
   __prepare_exit_to_usermode+0x1bc/0x1c0
   __syscall_return_slowpath+0x47/0x230
   do_syscall_64+0x64/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  ---[ end trace caf08beafeca2392 ]---
  BTRFS error (device dm-3): qgroup reserved space leaked

[CAUSE]
In the offending case, the offending operations are:
2/6: writev f2X[269 1 0 0 0 0] [1006997,67,288] 0
2/7: truncate f2X[269 1 0 0 48 1026293] 18388 0

The following sequence of events could happen after the writev():
	CPU1 (writeback)		|		CPU2 (truncate)
-----------------------------------------------------------------
btrfs_writepages()			|
|- extent_write_cache_pages()		|
   |- Got page for 1003520		|
   |  1003520 is Dirty, no writeback	|
   |  So (!clear_page_dirty_for_io())   |
   |  gets called for it		|
   |- Now page 1003520 is Clean.	|
   |					| btrfs_setattr()
   |					| |- btrfs_setsize()
   |					|    |- truncate_setsize()
   |					|       New i_size is 18388
   |- __extent_writepage()		|
   |  |- page_offset() > i_size		|
      |- btrfs_invalidatepage()		|
	 |- Page is clean, so no qgroup |
	    callback executed

This means, the qgroup reserved data space is not properly released in
btrfs_invalidatepage() as the page is Clean.

[FIX]
Instead of checking the dirty bit of a page, call
btrfs_qgroup_free_data() unconditionally in btrfs_invalidatepage().

As qgroup rsv are completely bound to the QGROUP_RESERVED bit of
io_tree, not bound to page status, thus we won't cause double freeing
anyway.

Fixes: 0b34c261e2 ("btrfs: qgroup: Prevent qgroup->reserved from going subzero")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-21 22:08:32 +02:00
Linus Torvalds
72c34e8d70 for-5.8-rc4-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl8K3ugACgkQxWXV+ddt
 WDsDNBAAn5iaMNwlCBYpwAaWlltMog3SKg+vgpEcFD9qLlmimW/1TlrjjGRzp6Mn
 nnNp+YjYDotqU9pP1OwESpY1LTzuVQlQL1yaiPLrehw/WsZgjdDWBk/EyU0n1vz1
 Sr5wcyCVyVZZyO2/BEVTDhkvu+sj9Rcwo2QCsC2aIOTVSfQGFSklMp2VNdu2YQBy
 zyTOhbwpn3OPPZsvScEujvSY9oUAN3J8WYA9jmgtwjZD7sr6UNyNI9vy8woi0VAQ
 Uo7nXc43ZcS1xTwziGOpC6fZi90zrF7ZvfFT0qY92EEDcAQcCzPDl6f4OnAjr6/b
 rnZcLvusEcENjFQn3pD7fCuXiIRrN8eHspj5+K/oRBTXWC5AykBwsLWt7M+tTMYa
 ljEBRZlQlHMlC3xSEZNDccEvScXrEIu3Q2WrTOTXSgXi4e3q89VUTEIjAhfnTTzJ
 VwHhGZIB6o+V7wZ0EhWdt9b1/Ro/AcADddV+AxTsfC1YCHVZOsSSa3DxV243ORsA
 /U3t2a4SMp/iSHTtoLIwbr/O1Uj9UaOk2n1DcNbGIgdn14yYt6YWOhvrOPBampEa
 zfBzmAOx9r5Mf2wWD0iTm4gJEZsrB+IpboYZ6cuBcOI29+A4k0POBfRLXgf8/jMo
 5kBWm+C3KKkZO8u/Z4gtVG1ZFdxsnYAc+q+UXS5ZSJMH+++UoZQ=
 =hTok
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "Two refcounting fixes and one prepartory patch for upcoming splice
  cleanup:

   - fix double put of block group with nodatacow

   - fix missing block group put when remounting with discard=async

   - explicitly set splice callback (no functional change), to ease
     integrating splice cleanup patches"

* tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: wire up iter_file_splice_write
  btrfs: fix double put of block group with nocow
  btrfs: discard: add missing put when grabbing block group from unused list
2020-07-12 10:58:35 -07:00
Josef Bacik
230ed39743 btrfs: fix double put of block group with nocow
While debugging a patch that I wrote I was hitting use-after-free panics
when accessing block groups on unmount.  This turned out to be because
in the nocow case if we bail out of doing the nocow for whatever reason
we need to call btrfs_dec_nocow_writers() if we called the inc.  This
puts our block group, but a few error cases does

if (nocow) {
    btrfs_dec_nocow_writers();
    goto error;
}

unfortunately, error is

error:
	if (nocow)
		btrfs_dec_nocow_writers();

so we get a double put on our block group.  Fix this by dropping the
error cases calling of btrfs_dec_nocow_writers(), as it's handled at the
error label now.

Fixes: 762bf09893 ("btrfs: improve error handling in run_delalloc_nocow")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-09 17:44:26 +02:00
Herbert Xu
7999096fa9 iov_iter: Move unnecessary inclusion of crypto/hash.h
The header file linux/uio.h includes crypto/hash.h which pulls in
most of the Crypto API.  Since linux/uio.h is used throughout the
kernel this means that every tiny bit of change to the Crypto API
causes the entire kernel to get rebuilt.

This patch fixes this by moving it into lib/iov_iter.c instead
where it is actually used.

This patch also fixes the ifdef to use CRYPTO_HASH instead of just
CRYPTO which does not guarantee the existence of ahash.

Unfortunately a number of drivers were relying on linux/uio.h to
provide access to linux/slab.h.  This patch adds inclusions of
linux/slab.h as detected by build failures.

Also skbuff.h was relying on this to provide a declaration for
ahash_request.  This patch adds a forward declaration instead.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-06-30 09:34:23 -04:00
Linus Torvalds
3e08a95294 for-5.8-rc2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7yABEACgkQxWXV+ddt
 WDtGoQ//cBWRRWLlLTRgpaKnY6t8JgVUqNvPJISHHf45cNbOJh0yo8hUuKMW+440
 8ovYqtFoZD+JHcHDE2sMueHBFe38rG5eT/zh8j/ruhBzeJcTb3lSYz53d7sfl5kD
 cIVngPEVlGziDqW2PsWLlyh8ulBGzY3YmS6kAEkyP/6/uhE/B1dq6qn3GUibkbKI
 dfNjHTLwZVmwnqoxLu8ZE2/hHFbzhl0sm09snsXYSVu13g36+edp0Z+pF0MlKGVk
 G6YrnZcts8TWwneZ4nogD9f2CMvzMhYDDLyEjsX0Ouhb+Cu2WNxdfrJ2ZbPNU82w
 EGbo451mIt6Ht8wicEjh27LWLI7YMraF/Ig/ODMdvFBYDbhl4voX2t+4n+p5Czbg
 AW6Wtg/q5EaaNFqrTsqAAiUn0+R3sMiDWrE0AewcE7syPGqQ2XMwP4la5pZ36rz8
 8Vo5KIGo44PIJ1dMwcX+bg3HTtUnBJSxE5fUi0rJ3ZfHKGjLS79VonEeQjh3QD6W
 0UlK+jCjo6KZoe33XdVV2hVkHd63ZIlliXWv0LOR+gpmqqgW2b3wf181zTvo/5sI
 v0fDjstA9caqf68ChPE9jJi7rZPp/AL1yAQGEiNzjKm4U431TeZJl2cpREicMJDg
 FCDU51t9425h8BFkM4scErX2/53F1SNNNSlAsFBGvgJkx6rTENs=
 =/eCR
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A number of fixes, located in two areas, one performance fix and one
  fixup for better integration with another patchset.

   - bug fixes in nowait aio:
       - fix snapshot creation hang after nowait-aio was used
       - fix failure to write to prealloc extent past EOF
       - don't block when extent range is locked

   - block group fixes:
       - relocation failure when scrub runs in parallel
       - refcount fix when removing fails
       - fix race between removal and creation
       - space accounting fixes

   - reinstante fast path check for log tree at unlink time, fixes
     performance drop up to 30% in REAIM

   - kzfree/kfree fixup to ease treewide patchset renaming kzfree"

* tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: use kfree() in btrfs_ioctl_get_subvol_info()
  btrfs: fix RWF_NOWAIT writes blocking on extent locks and waiting for IO
  btrfs: fix RWF_NOWAIT write not failling when we need to cow
  btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
  btrfs: fix hang on snapshot creation after RWF_NOWAIT write
  btrfs: check if a log root exists before locking the log_mutex on unlink
  btrfs: fix bytes_may_use underflow when running balance and scrub in parallel
  btrfs: fix data block group relocation failure due to concurrent scrub
  btrfs: fix race between block group removal and block group creation
  btrfs: fix a block group ref counter leak after failure to remove block group
2020-06-23 09:20:11 -07:00
Filipe Manana
4b1946284d btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
If we attempt to write to prealloc extent located after eof using a
RWF_NOWAIT write, we always fail with -EAGAIN.

We do actually check if we have an allocated extent for the write at
the start of btrfs_file_write_iter() through a call to check_can_nocow(),
but later when we go into the actual direct IO write path we simply
return -EAGAIN if the write starts at or beyond EOF.

Trivial to reproduce:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ touch /mnt/foo
  $ chattr +C /mnt/foo

  $ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foo
  wrote 65536/65536 bytes at offset 0
  64 KiB, 16 ops; 0.0004 sec (135.575 MiB/sec and 34707.1584 ops/sec)

  $ xfs_io -c "falloc -k 64K 1M" /mnt/foo

  $ xfs_io -d -c "pwrite -N -V 1 -S 0xfe -b 64K 64K 64K" /mnt/foo
  pwrite: Resource temporarily unavailable

On xfs and ext4 the write succeeds, as expected.

Fix this by removing the wrong check at btrfs_direct_IO().

Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:31 +02:00
Filipe Manana
6bd335b469 btrfs: fix bytes_may_use underflow when running balance and scrub in parallel
When balance and scrub are running in parallel it is possible to end up
with an underflow of the bytes_may_use counter of the data space_info
object, which triggers a warning like the following:

   [134243.793196] BTRFS info (device sdc): relocating block group 1104150528 flags data
   [134243.806891] ------------[ cut here ]------------
   [134243.807561] WARNING: CPU: 1 PID: 26884 at fs/btrfs/space-info.h:125 btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
   [134243.808819] Modules linked in: btrfs blake2b_generic xor (...)
   [134243.815779] CPU: 1 PID: 26884 Comm: kworker/u8:8 Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
   [134243.816944] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
   [134243.818389] Workqueue: writeback wb_workfn (flush-btrfs-108483)
   [134243.819186] RIP: 0010:btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
   [134243.819963] Code: 0b f2 85 (...)
   [134243.822271] RSP: 0018:ffffa4160aae7510 EFLAGS: 00010287
   [134243.822929] RAX: 000000000000c000 RBX: ffff96159a8c1000 RCX: 0000000000000000
   [134243.823816] RDX: 0000000000008000 RSI: 0000000000000000 RDI: ffff96158067a810
   [134243.824742] RBP: ffff96158067a800 R08: 0000000000000001 R09: 0000000000000000
   [134243.825636] R10: ffff961501432a40 R11: 0000000000000000 R12: 000000000000c000
   [134243.826532] R13: 0000000000000001 R14: ffffffffffff4000 R15: ffff96158067a810
   [134243.827432] FS:  0000000000000000(0000) GS:ffff9615baa00000(0000) knlGS:0000000000000000
   [134243.828451] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   [134243.829184] CR2: 000055bd7e414000 CR3: 00000001077be004 CR4: 00000000003606e0
   [134243.830083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
   [134243.830975] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
   [134243.831867] Call Trace:
   [134243.832211]  find_free_extent+0x4a0/0x16c0 [btrfs]
   [134243.832846]  btrfs_reserve_extent+0x91/0x180 [btrfs]
   [134243.833487]  cow_file_range+0x12d/0x490 [btrfs]
   [134243.834080]  fallback_to_cow+0x82/0x1b0 [btrfs]
   [134243.834689]  ? release_extent_buffer+0x121/0x170 [btrfs]
   [134243.835370]  run_delalloc_nocow+0x33f/0xa30 [btrfs]
   [134243.836032]  btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
   [134243.836725]  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
   [134243.837450]  writepage_delalloc+0xe8/0x150 [btrfs]
   [134243.838059]  __extent_writepage+0xe8/0x4c0 [btrfs]
   [134243.838674]  extent_write_cache_pages+0x237/0x530 [btrfs]
   [134243.839364]  extent_writepages+0x44/0xa0 [btrfs]
   [134243.839946]  do_writepages+0x23/0x80
   [134243.840401]  __writeback_single_inode+0x59/0x700
   [134243.841006]  writeback_sb_inodes+0x267/0x5f0
   [134243.841548]  __writeback_inodes_wb+0x87/0xe0
   [134243.842091]  wb_writeback+0x382/0x590
   [134243.842574]  ? wb_workfn+0x4a2/0x6c0
   [134243.843030]  wb_workfn+0x4a2/0x6c0
   [134243.843468]  process_one_work+0x26d/0x6a0
   [134243.843978]  worker_thread+0x4f/0x3e0
   [134243.844452]  ? process_one_work+0x6a0/0x6a0
   [134243.844981]  kthread+0x103/0x140
   [134243.845400]  ? kthread_create_worker_on_cpu+0x70/0x70
   [134243.846030]  ret_from_fork+0x3a/0x50
   [134243.846494] irq event stamp: 0
   [134243.846892] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
   [134243.847682] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134243.848687] softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134243.849913] softirqs last disabled at (0): [<0000000000000000>] 0x0
   [134243.850698] ---[ end trace bd7c03622e0b0a96 ]---
   [134243.851335] ------------[ cut here ]------------

When relocating a data block group, for each extent allocated in the
block group we preallocate another extent with the same size for the
data relocation inode (we do it at prealloc_file_extent_cluster()).
We reserve space by calling btrfs_check_data_free_space(), which ends
up incrementing the data space_info's bytes_may_use counter, and
then call btrfs_prealloc_file_range() to allocate the extent, which
always decrements the bytes_may_use counter by the same amount.

The expectation is that writeback of the data relocation inode always
follows a NOCOW path, by writing into the preallocated extents. However,
when starting writeback we might end up falling back into the COW path,
because the block group that contains the preallocated extent was turned
into RO mode by a scrub running in parallel. The COW path then calls the
extent allocator which ends up calling btrfs_add_reserved_bytes(), and
this function decrements the bytes_may_use counter of the data space_info
object by an amount corresponding to the size of the allocated extent,
despite we haven't previously incremented it. When the counter currently
has a value smaller then the allocated extent we reset the counter to 0
and emit a warning, otherwise we just decrement it and slowly mess up
with this counter which is crucial for space reservation, the end result
can be granting reserved space to tasks when there isn't really enough
free space, and having the tasks fail later in critical places where
error handling consists of a transaction abort or hitting a BUG_ON().

Fix this by making sure that if we fallback to the COW path for a data
relocation inode, we increment the bytes_may_use counter of the data
space_info object. The COW path will then decrement it at
btrfs_add_reserved_bytes() on success or through its error handling part
by a call to extent_clear_unlock_delalloc() (which ends up calling
btrfs_clear_delalloc_extent() that does the decrement operation) in case
of an error.

Test case btrfs/061 from fstests could sporadically trigger this.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:21:31 +02:00
Filipe Manana
432cd2a10f btrfs: fix data block group relocation failure due to concurrent scrub
When running relocation of a data block group while scrub is running in
parallel, it is possible that the relocation will fail and abort the
current transaction with an -EINVAL error:

   [134243.988595] BTRFS info (device sdc): found 14 extents, stage: move data extents
   [134243.999871] ------------[ cut here ]------------
   [134244.000741] BTRFS: Transaction aborted (error -22)
   [134244.001692] WARNING: CPU: 0 PID: 26954 at fs/btrfs/ctree.c:1071 __btrfs_cow_block+0x6a7/0x790 [btrfs]
   [134244.003380] Modules linked in: btrfs blake2b_generic xor raid6_pq (...)
   [134244.012577] CPU: 0 PID: 26954 Comm: btrfs Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
   [134244.014162] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
   [134244.016184] RIP: 0010:__btrfs_cow_block+0x6a7/0x790 [btrfs]
   [134244.017151] Code: 48 c7 c7 (...)
   [134244.020549] RSP: 0018:ffffa41607863888 EFLAGS: 00010286
   [134244.021515] RAX: 0000000000000000 RBX: ffff9614bdfe09c8 RCX: 0000000000000000
   [134244.022822] RDX: 0000000000000001 RSI: ffffffffb3d63980 RDI: 0000000000000001
   [134244.024124] RBP: ffff961589e8c000 R08: 0000000000000000 R09: 0000000000000001
   [134244.025424] R10: ffffffffc0ae5955 R11: 0000000000000000 R12: ffff9614bd530d08
   [134244.026725] R13: ffff9614ced41b88 R14: ffff9614bdfe2a48 R15: 0000000000000000
   [134244.028024] FS:  00007f29b63c08c0(0000) GS:ffff9615ba600000(0000) knlGS:0000000000000000
   [134244.029491] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   [134244.030560] CR2: 00007f4eb339b000 CR3: 0000000130d6e006 CR4: 00000000003606f0
   [134244.031997] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
   [134244.033153] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
   [134244.034484] Call Trace:
   [134244.034984]  btrfs_cow_block+0x12b/0x2b0 [btrfs]
   [134244.035859]  do_relocation+0x30b/0x790 [btrfs]
   [134244.036681]  ? do_raw_spin_unlock+0x49/0xc0
   [134244.037460]  ? _raw_spin_unlock+0x29/0x40
   [134244.038235]  relocate_tree_blocks+0x37b/0x730 [btrfs]
   [134244.039245]  relocate_block_group+0x388/0x770 [btrfs]
   [134244.040228]  btrfs_relocate_block_group+0x161/0x2e0 [btrfs]
   [134244.041323]  btrfs_relocate_chunk+0x36/0x110 [btrfs]
   [134244.041345]  btrfs_balance+0xc06/0x1860 [btrfs]
   [134244.043382]  ? btrfs_ioctl_balance+0x27c/0x310 [btrfs]
   [134244.045586]  btrfs_ioctl_balance+0x1ed/0x310 [btrfs]
   [134244.045611]  btrfs_ioctl+0x1880/0x3760 [btrfs]
   [134244.049043]  ? do_raw_spin_unlock+0x49/0xc0
   [134244.049838]  ? _raw_spin_unlock+0x29/0x40
   [134244.050587]  ? __handle_mm_fault+0x11b3/0x14b0
   [134244.051417]  ? ksys_ioctl+0x92/0xb0
   [134244.052070]  ksys_ioctl+0x92/0xb0
   [134244.052701]  ? trace_hardirqs_off_thunk+0x1a/0x1c
   [134244.053511]  __x64_sys_ioctl+0x16/0x20
   [134244.054206]  do_syscall_64+0x5c/0x280
   [134244.054891]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
   [134244.055819] RIP: 0033:0x7f29b51c9dd7
   [134244.056491] Code: 00 00 00 (...)
   [134244.059767] RSP: 002b:00007ffcccc1dd08 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
   [134244.061168] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f29b51c9dd7
   [134244.062474] RDX: 00007ffcccc1dda0 RSI: 00000000c4009420 RDI: 0000000000000003
   [134244.063771] RBP: 0000000000000003 R08: 00005565cea4b000 R09: 0000000000000000
   [134244.065032] R10: 0000000000000541 R11: 0000000000000202 R12: 00007ffcccc2060a
   [134244.066327] R13: 00007ffcccc1dda0 R14: 0000000000000002 R15: 00007ffcccc1dec0
   [134244.067626] irq event stamp: 0
   [134244.068202] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
   [134244.069351] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134244.070909] softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134244.072392] softirqs last disabled at (0): [<0000000000000000>] 0x0
   [134244.073432] ---[ end trace bd7c03622e0b0a99 ]---

The -EINVAL error comes from the following chain of function calls:

  __btrfs_cow_block() <-- aborts the transaction
    btrfs_reloc_cow_block()
      replace_file_extents()
        get_new_location() <-- returns -EINVAL

When relocating a data block group, for each allocated extent of the block
group, we preallocate another extent (at prealloc_file_extent_cluster()),
associated with the data relocation inode, and then dirty all its pages.
These preallocated extents have, and must have, the same size that extents
from the data block group being relocated have.

Later before we start the relocation stage that updates pointers (bytenr
field of file extent items) to point to the the new extents, we trigger
writeback for the data relocation inode. The expectation is that writeback
will write the pages to the previously preallocated extents, that it
follows the NOCOW path. That is generally the case, however, if a scrub
is running it may have turned the block group that contains those extents
into RO mode, in which case writeback falls back to the COW path.

However in the COW path instead of allocating exactly one extent with the
expected size, the allocator may end up allocating several smaller extents
due to free space fragmentation - because we tell it at cow_file_range()
that the minimum allocation size can match the filesystem's sector size.
This later breaks the relocation's expectation that an extent associated
to a file extent item in the data relocation inode has the same size as
the respective extent pointed by a file extent item in another tree - in
this case the extent to which the relocation inode poins to is smaller,
causing relocation.c:get_new_location() to return -EINVAL.

For example, if we are relocating a data block group X that has a logical
address of X and the block group has an extent allocated at the logical
address X + 128KiB with a size of 64KiB:

1) At prealloc_file_extent_cluster() we allocate an extent for the data
   relocation inode with a size of 64KiB and associate it to the file
   offset 128KiB (X + 128KiB - X) of the data relocation inode. This
   preallocated extent was allocated at block group Z;

2) A scrub running in parallel turns block group Z into RO mode and
   starts scrubing its extents;

3) Relocation triggers writeback for the data relocation inode;

4) When running delalloc (btrfs_run_delalloc_range()), we try first the
   NOCOW path because the data relocation inode has BTRFS_INODE_PREALLOC
   set in its flags. However, because block group Z is in RO mode, the
   NOCOW path (run_delalloc_nocow()) falls back into the COW path, by
   calling cow_file_range();

5) At cow_file_range(), in the first iteration of the while loop we call
   btrfs_reserve_extent() to allocate a 64KiB extent and pass it a minimum
   allocation size of 4KiB (fs_info->sectorsize). Due to free space
   fragmentation, btrfs_reserve_extent() ends up allocating two extents
   of 32KiB each, each one on a different iteration of that while loop;

6) Writeback of the data relocation inode completes;

7) Relocation proceeds and ends up at relocation.c:replace_file_extents(),
   with a leaf which has a file extent item that points to the data extent
   from block group X, that has a logical address (bytenr) of X + 128KiB
   and a size of 64KiB. Then it calls get_new_location(), which does a
   lookup in the data relocation tree for a file extent item starting at
   offset 128KiB (X + 128KiB - X) and belonging to the data relocation
   inode. It finds a corresponding file extent item, however that item
   points to an extent that has a size of 32KiB, which doesn't match the
   expected size of 64KiB, resuling in -EINVAL being returned from this
   function and propagated up to __btrfs_cow_block(), which aborts the
   current transaction.

To fix this make sure that at cow_file_range() when we call the allocator
we pass it a minimum allocation size corresponding the desired extent size
if the inode belongs to the data relocation tree, otherwise pass it the
filesystem's sector size as the minimum allocation size.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:21:25 +02:00
Linus Torvalds
9d645db853 for-5.8-part2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7lZwgACgkQxWXV+ddt
 WDuj6g/9E2JtqeO8zRMLb+Do/n5YX0dFHt+dM1AGY+nw8hb3U9Vlgc8KJa7UpZFX
 opl1i9QL+cJLoZMZL5xZhDouMQlum5cGVV3hLwqEPYetRF/ytw/kunWAg5o8OW1R
 sJxGcjyiiKpZLVx6nMjGnYjsrbOJv0HlaWfY3NCon4oQ8yQTzTPMPBevPWRM7Iqw
 Ssi8pA8zXCc2QoLgyk6Pe/IGeox8+z9RA2akHkJIdMWiPHm43RDF4Yx3Yl9NHHZA
 M+pLVKjZoejqwVaai8osBqWVw4Ypax1+CJit6iHGwJDkQyFPcMXMsOc5ZYBnT5or
 k/ceVMCs+ejvCK1+L30u7FQRiDqf5Fwhf/SGfq7+y83KbEjMfWOya3Lyk47fbDD4
 776rSaS6ejqVklWppbaPhntSrBtPR1NaDOfi55bc9TOe+yW7Du+AsQMlEE0bTJaW
 eHl+A4AP/nDlo8Etn1jTWd023bzzO+iySMn3YZfK0vw3vkj3JfrCGXx6DEYipOou
 uEUj0jDo/rdiB5S3GdUCujjaPgm/f0wkPudTRB9lpxJas2qFU+qo2TLJhEleELwj
 m4laz7W7S+nUFP0LRl8O82AzBfjm+oHjWTpfdloT6JW9Da8/iuZ/x9VBWQ8mFJwX
 U0cR3zVqUuWcK78fZa/FFgGPBxlwUv2j+OhRGsS0/orDRlrwcXo=
 =5S0s
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "This reverts the direct io port to iomap infrastructure of btrfs
  merged in the first pull request. We found problems in invalidate page
  that don't seem to be fixable as regressions or without changing iomap
  code that would not affect other filesystems.

  There are four reverts in total, but three of them are followup
  cleanups needed to revert a43a67a2d7 cleanly. The result is the
  buffer head based implementation of direct io.

  Reverts are not great, but under current circumstances I don't see
  better options"

* tag 'for-5.8-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  Revert "btrfs: switch to iomap_dio_rw() for dio"
  Revert "fs: remove dio_end_io()"
  Revert "btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK"
  Revert "btrfs: split btrfs_direct_IO to read and write part"
2020-06-14 09:47:25 -07:00
David Sterba
55e20bd12a Revert "btrfs: switch to iomap_dio_rw() for dio"
This reverts commit a43a67a2d7.

This patch reverts the main part of switching direct io implementation
to iomap infrastructure. There's a problem in invalidate page that
couldn't be solved as regression in this development cycle.

The problem occurs when buffered and direct io are mixed, and the ranges
overlap. Although this is not recommended, filesystems implement
measures or fallbacks to make it somehow work. In this case, fallback to
buffered IO would be an option for btrfs (this already happens when
direct io is done on compressed data), but the change would be needed in
the iomap code, bringing new semantics to other filesystems.

Another problem arises when again the buffered and direct ios are mixed,
invalidation fails, then -EIO is set on the mapping and fsync will fail,
though there's no real error.

There have been discussions how to fix that, but revert seems to be the
least intrusive option.

Link: https://lore.kernel.org/linux-btrfs/20200528192103.xm45qoxqmkw7i5yl@fiona/
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-14 01:19:02 +02:00
David Sterba
8e0fa5d7b3 Revert "btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK"
This reverts commit 5f008163a5.

The patch is a simplification after direct IO port to iomap
infrastructure, which gets reverted.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-09 19:21:48 +02:00
David Sterba
f4c48b4408 Revert "btrfs: split btrfs_direct_IO to read and write part"
This reverts commit d8f3e73587.

The patch is a cleanup of direct IO port to iomap infrastructure,
which gets reverted.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-09 19:19:27 +02:00
Linus Torvalds
0b166a57e6 A lot of bug fixes and cleanups for ext4, including:
* Fix performance problems found in dioread_nolock now that it is the
   default, caused by transaction leaks.
 * Clean up fiemap handling in ext4
 * Clean up and refactor multiple block allocator (mballoc) code
 * Fix a problem with mballoc with a smaller file systems running out
   of blocks because they couldn't properly use blocks that had been
   reserved by inode preallocation.
 * Fixed a race in ext4_sync_parent() versus rename()
 * Simplify the error handling in the extent manipulation code
 * Make sure all metadata I/O errors are felected to ext4_ext_dirty()'s and
   ext4_make_inode_dirty()'s callers.
 * Avoid passing an error pointer to brelse in ext4_xattr_set()
 * Fix race which could result to freeing an inode on the dirty last
   in data=journal mode.
 * Fix refcount handling if ext4_iget() fails
 * Fix a crash in generic/019 caused by a corrupted extent node
 -----BEGIN PGP SIGNATURE-----
 
 iQEyBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAl7Ze8kACgkQ8vlZVpUN
 gaNChAf4xn0ytFSrweI/S2Sp05G/2L/ocZ2TZZk2ZdGeN1E+ABdSIv/zIF9zuFgZ
 /pY/C+fyEZWt4E3FlNO8gJzoEedkzMCMnUhSIfI+wZbcclyTOSNMJtnrnJKAEtVH
 HOvGZJmg357jy407RCGhZpJ773nwU2xhBTr5OFxvSf9mt/vzebxIOnw5D7HPlC1V
 Fgm6Du8q+tRrPsyjv1Yu4pUEVXMJ7qUcvt326AXVM3kCZO1Aa5GrURX0w3J4mzW1
 tc1tKmtbLcVVYTo9CwHXhk/edbxrhAydSP2iACand3tK6IJuI6j9x+bBJnxXitnr
 vsxsfTYMG18+2SxrJ9LwmagqmrRq
 =HMTs
 -----END PGP SIGNATURE-----

Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4

Pull ext4 updates from Ted Ts'o:
 "A lot of bug fixes and cleanups for ext4, including:

   - Fix performance problems found in dioread_nolock now that it is the
     default, caused by transaction leaks.

   - Clean up fiemap handling in ext4

   - Clean up and refactor multiple block allocator (mballoc) code

   - Fix a problem with mballoc with a smaller file systems running out
     of blocks because they couldn't properly use blocks that had been
     reserved by inode preallocation.

   - Fixed a race in ext4_sync_parent() versus rename()

   - Simplify the error handling in the extent manipulation code

   - Make sure all metadata I/O errors are felected to
     ext4_ext_dirty()'s and ext4_make_inode_dirty()'s callers.

   - Avoid passing an error pointer to brelse in ext4_xattr_set()

   - Fix race which could result to freeing an inode on the dirty last
     in data=journal mode.

   - Fix refcount handling if ext4_iget() fails

   - Fix a crash in generic/019 caused by a corrupted extent node"

* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
  ext4: avoid unnecessary transaction starts during writeback
  ext4: don't block for O_DIRECT if IOCB_NOWAIT is set
  ext4: remove the access_ok() check in ext4_ioctl_get_es_cache
  fs: remove the access_ok() check in ioctl_fiemap
  fs: handle FIEMAP_FLAG_SYNC in fiemap_prep
  fs: move fiemap range validation into the file systems instances
  iomap: fix the iomap_fiemap prototype
  fs: move the fiemap definitions out of fs.h
  fs: mark __generic_block_fiemap static
  ext4: remove the call to fiemap_check_flags in ext4_fiemap
  ext4: split _ext4_fiemap
  ext4: fix fiemap size checks for bitmap files
  ext4: fix EXT4_MAX_LOGICAL_BLOCK macro
  add comment for ext4_dir_entry_2 file_type member
  jbd2: avoid leaking transaction credits when unreserving handle
  ext4: drop ext4_journal_free_reserved()
  ext4: mballoc: use lock for checking free blocks while retrying
  ext4: mballoc: refactor ext4_mb_good_group()
  ext4: mballoc: introduce pcpu seqcnt for freeing PA to improve ENOSPC handling
  ext4: mballoc: refactor ext4_mb_discard_preallocations()
  ...
2020-06-05 16:19:28 -07:00
Christoph Hellwig
45dd052e67 fs: handle FIEMAP_FLAG_SYNC in fiemap_prep
By moving FIEMAP_FLAG_SYNC handling to fiemap_prep we ensure it is
handled once instead of duplicated, but can still be done under fs locks,
like xfs/iomap intended with its duplicate handling.  Also make sure the
error value of filemap_write_and_wait is propagated to user space.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-8-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-06-03 23:16:55 -04:00
Christoph Hellwig
cddf8a2c4a fs: move fiemap range validation into the file systems instances
Replace fiemap_check_flags with a fiemap_prep helper that also takes the
inode and mapped range, and performs the sanity check and truncation
previously done in fiemap_check_range.  This way the validation is inside
the file system itself and thus properly works for the stacked overlayfs
case as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-7-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-06-03 23:16:55 -04:00
Linus Torvalds
f3cdc8ae11 for-5.8-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
 WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
 ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
 V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
 o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
 ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
 NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
 UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
 ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
 miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
 VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
 eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
 =qTt8
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "Highlights:

   - speedup dead root detection during orphan cleanup, eg. when there
     are many deleted subvolumes waiting to be cleaned, the trees are
     now looked up in radix tree instead of a O(N^2) search

   - snapshot creation with inherited qgroup will mark the qgroup
     inconsistent, requires a rescan

   - send will emit file capabilities after chown, this produces a
     stream that does not need postprocessing to set the capabilities
     again

   - direct io ported to iomap infrastructure, cleaned up and simplified
     code, notably removing last use of struct buffer_head in btrfs code

  Core changes:

   - factor out backreference iteration, to be used by ordinary
     backreferences and relocation code

   - improved global block reserve utilization
      * better logic to serialize requests
      * increased maximum available for unlink
      * improved handling on large pages (64K)

   - direct io cleanups and fixes
      * simplify layering, where cloned bios were unnecessarily created
        for some cases
      * error handling fixes (submit, endio)
      * remove repair worker thread, used to avoid deadlocks during
        repair

   - refactored block group reading code, preparatory work for new type
     of block group storage that should improve mount time on large
     filesystems

  Cleanups:

   - cleaned up (and slightly sped up) set/get helpers for metadata data
     structure members

   - root bit REF_COWS got renamed to SHAREABLE to reflect the that the
     blocks of the tree get shared either among subvolumes or with the
     relocation trees

  Fixes:

   - when subvolume deletion fails due to ENOSPC, the filesystem is not
     turned read-only

   - device scan deals with devices from other filesystems that changed
     ownership due to overwrite (mkfs)

   - fix a race between scrub and block group removal/allocation

   - fix long standing bug of a runaway balance operation, printing the
     same line to the syslog, caused by a stale status bit on a reloc
     tree that prevented progress

   - fix corrupt log due to concurrent fsync of inodes with shared
     extents

   - fix space underflow for NODATACOW and buffered writes when it for
     some reason needs to fallback to COW mode"

* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
  btrfs: fix space_info bytes_may_use underflow during space cache writeout
  btrfs: fix space_info bytes_may_use underflow after nocow buffered write
  btrfs: fix wrong file range cleanup after an error filling dealloc range
  btrfs: remove redundant local variable in read_block_for_search
  btrfs: open code key_search
  btrfs: split btrfs_direct_IO to read and write part
  btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
  fs: remove dio_end_io()
  btrfs: switch to iomap_dio_rw() for dio
  iomap: remove lockdep_assert_held()
  iomap: add a filesystem hook for direct I/O bio submission
  fs: export generic_file_buffered_read()
  btrfs: turn space cache writeout failure messages into debug messages
  btrfs: include error on messages about failure to write space/inode caches
  btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
  btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
  btrfs: make checksum item extension more efficient
  btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
  btrfs: unexport btrfs_compress_set_level()
  btrfs: simplify iget helpers
  ...
2020-06-02 19:59:25 -07:00
Guoqing Jiang
d1b89bc042 btrfs: use attach/detach_page_private
Since the new pair function is introduced, we can call them to clean the
code in btrfs.

Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Link: http://lkml.kernel.org/r/20200517214718.468-4-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:07 -07:00
Matthew Wilcox (Oracle)
ba206a026f btrfs: convert from readpages to readahead
Implement the new readahead method in btrfs using the new
readahead_page_batch() function.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-18-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:07 -07:00
Filipe Manana
2166e5edce btrfs: fix space_info bytes_may_use underflow during space cache writeout
We always preallocate a data extent for writing a free space cache, which
causes writeback to always try the nocow path first, since the free space
inode has the prealloc bit set in its flags.

However if the block group that contains the data extent for the space
cache has been turned to RO mode due to a running scrub or balance for
example, we have to fallback to the cow path. In that case once a new data
extent is allocated we end up calling btrfs_add_reserved_bytes(), which
decrements the counter named bytes_may_use from the data space_info object
with the expection that this counter was previously incremented with the
same amount (the size of the data extent).

However when we started writeout of the space cache at cache_save_setup(),
we incremented the value of the bytes_may_use counter through a call to
btrfs_check_data_free_space() and then decremented it through a call to
btrfs_prealloc_file_range_trans() immediately after. So when starting the
writeback if we fallback to cow mode we have to increment the counter
bytes_may_use of the data space_info again to compensate for the extent
allocation done by the cow path.

When this issue happens we are incorrectly decrementing the bytes_may_use
counter and when its current value is smaller then the amount we try to
subtract we end up with the following warning:

 ------------[ cut here ]------------
 WARNING: CPU: 3 PID: 657 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
 CPU: 3 PID: 657 Comm: kworker/u8:7 Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 Workqueue: writeback wb_workfn (flush-btrfs-1591)
 RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Code: ff ff 48 (...)
 RSP: 0000:ffffa41608f13660 EFLAGS: 00010287
 RAX: 0000000000001000 RBX: ffff9615b93ae400 RCX: 0000000000000000
 RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9615b96ab410
 RBP: fffffffffffee000 R08: 0000000000000001 R09: 0000000000000000
 R10: ffff961585e62a40 R11: 0000000000000000 R12: ffff9615b96ab400
 R13: ffff9615a1a2a000 R14: 0000000000012000 R15: ffff9615b93ae400
 FS:  0000000000000000(0000) GS:ffff9615bb200000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 000055cbbc2ae178 CR3: 0000000115794006 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  find_free_extent+0x4a0/0x16c0 [btrfs]
  btrfs_reserve_extent+0x91/0x180 [btrfs]
  cow_file_range+0x12d/0x490 [btrfs]
  btrfs_run_delalloc_range+0x9f/0x6d0 [btrfs]
  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
  writepage_delalloc+0xe8/0x150 [btrfs]
  __extent_writepage+0xe8/0x4c0 [btrfs]
  extent_write_cache_pages+0x237/0x530 [btrfs]
  extent_writepages+0x44/0xa0 [btrfs]
  do_writepages+0x23/0x80
  __writeback_single_inode+0x59/0x700
  writeback_sb_inodes+0x267/0x5f0
  __writeback_inodes_wb+0x87/0xe0
  wb_writeback+0x382/0x590
  ? wb_workfn+0x4a2/0x6c0
  wb_workfn+0x4a2/0x6c0
  process_one_work+0x26d/0x6a0
  worker_thread+0x4f/0x3e0
  ? process_one_work+0x6a0/0x6a0
  kthread+0x103/0x140
  ? kthread_create_worker_on_cpu+0x70/0x70
  ret_from_fork+0x3a/0x50
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
 softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace bd7c03622e0b0a52 ]---
 ------------[ cut here ]------------

So fix this by incrementing the bytes_may_use counter of the data
space_info when we fallback to the cow path. If the cow path is successful
the counter is decremented after extent allocation (by
btrfs_add_reserved_bytes()), if it fails it ends up being decremented as
well when clearing the delalloc range (extent_clear_unlock_delalloc()).

This could be triggered sporadically by the test case btrfs/061 from
fstests.

Fixes: 82d5902d9c ("Btrfs: Support reading/writing on disk free ino cache")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:53 +02:00
Filipe Manana
467dc47ea9 btrfs: fix space_info bytes_may_use underflow after nocow buffered write
When doing a buffered write we always try to reserve data space for it,
even when the file has the NOCOW bit set or the write falls into a file
range covered by a prealloc extent. This is done both because it is
expensive to check if we can do a nocow write (checking if an extent is
shared through reflinks or if there's a hole in the range for example),
and because when writeback starts we might actually need to fallback to
COW mode (for example the block group containing the target extents was
turned into RO mode due to a scrub or balance).

When we are unable to reserve data space we check if we can do a nocow
write, and if we can, we proceed with dirtying the pages and setting up
the range for delalloc. In this case the bytes_may_use counter of the
data space_info object is not incremented, unlike in the case where we
are able to reserve data space (done through btrfs_check_data_free_space()
which calls btrfs_alloc_data_chunk_ondemand()).

Later when running delalloc we attempt to start writeback in nocow mode
but we might revert back to cow mode, for example because in the meanwhile
a block group was turned into RO mode by a scrub or relocation. The cow
path after successfully allocating an extent ends up calling
btrfs_add_reserved_bytes(), which expects the bytes_may_use counter of
the data space_info object to have been incremented before - but we did
not do it when the buffered write started, since there was not enough
available data space. So btrfs_add_reserved_bytes() ends up decrementing
the bytes_may_use counter anyway, and when the counter's current value
is smaller then the size of the allocated extent we get a stack trace
like the following:

 ------------[ cut here ]------------
 WARNING: CPU: 0 PID: 20138 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
 CPU: 0 PID: 20138 Comm: kworker/u8:15 Not tainted 5.6.0-rc7-btrfs-next-58 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 Workqueue: writeback wb_workfn (flush-btrfs-1754)
 RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Code: ff ff 48 (...)
 RSP: 0018:ffffbda18a4b3568 EFLAGS: 00010287
 RAX: 0000000000000000 RBX: ffff9ca076f5d800 RCX: 0000000000000000
 RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9ca068470410
 RBP: fffffffffffff000 R08: 0000000000000001 R09: 0000000000000000
 R10: ffff9ca079d58040 R11: 0000000000000000 R12: ffff9ca068470400
 R13: ffff9ca0408b2000 R14: 0000000000001000 R15: ffff9ca076f5d800
 FS:  0000000000000000(0000) GS:ffff9ca07a600000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00005605dbfe7048 CR3: 0000000138570006 CR4: 00000000003606f0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  find_free_extent+0x4a0/0x16c0 [btrfs]
  btrfs_reserve_extent+0x91/0x180 [btrfs]
  cow_file_range+0x12d/0x490 [btrfs]
  run_delalloc_nocow+0x341/0xa40 [btrfs]
  btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
  writepage_delalloc+0xe8/0x150 [btrfs]
  __extent_writepage+0xe8/0x4c0 [btrfs]
  extent_write_cache_pages+0x237/0x530 [btrfs]
  ? btrfs_wq_submit_bio+0x9f/0xc0 [btrfs]
  extent_writepages+0x44/0xa0 [btrfs]
  do_writepages+0x23/0x80
  __writeback_single_inode+0x59/0x700
  writeback_sb_inodes+0x267/0x5f0
  __writeback_inodes_wb+0x87/0xe0
  wb_writeback+0x382/0x590
  ? wb_workfn+0x4a2/0x6c0
  wb_workfn+0x4a2/0x6c0
  process_one_work+0x26d/0x6a0
  worker_thread+0x4f/0x3e0
  ? process_one_work+0x6a0/0x6a0
  kthread+0x103/0x140
  ? kthread_create_worker_on_cpu+0x70/0x70
  ret_from_fork+0x3a/0x50
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
 softirqs last  enabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace f9f6ef8ec4cd8ec9 ]---

So to fix this, when falling back into cow mode check if space was not
reserved, by testing for the bit EXTENT_NORESERVE in the respective file
range, and if not, increment the bytes_may_use counter for the data
space_info object. Also clear the EXTENT_NORESERVE bit from the range, so
that if the cow path fails it decrements the bytes_may_use counter when
clearing the delalloc range (through the btrfs_clear_delalloc_extent()
callback).

Fixes: 7ee9e4405f ("Btrfs: check if we can nocow if we don't have data space")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:53 +02:00
Filipe Manana
e2c8e92d11 btrfs: fix wrong file range cleanup after an error filling dealloc range
If an error happens while running dellaloc in COW mode for a range, we can
end up calling extent_clear_unlock_delalloc() for a range that goes beyond
our range's end offset by 1 byte, which affects 1 extra page. This results
in clearing bits and doing page operations (such as a page unlock) outside
our target range.

Fix that by calling extent_clear_unlock_delalloc() with an inclusive end
offset, instead of an exclusive end offset, at cow_file_range().

Fixes: a315e68f6e ("Btrfs: fix invalid attempt to free reserved space on failure to cow range")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:53 +02:00
Christoph Hellwig
d8f3e73587 btrfs: split btrfs_direct_IO to read and write part
The read and write versions don't have anything in common except for the
call to iomap_dio_rw.  So split this function, and merge each half into
its only caller.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:52 +02:00
Goldwyn Rodrigues
5f008163a5 btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
Since we now perform direct reads using i_rwsem, we can remove this
inode flag used to co-ordinate unlocked reads.

The truncate call takes i_rwsem. This means it is correctly synchronized
with concurrent direct reads.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jth@kernel.org>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:52 +02:00
Goldwyn Rodrigues
a43a67a2d7 btrfs: switch to iomap_dio_rw() for dio
Switch from __blockdev_direct_IO() to iomap_dio_rw().
Rename btrfs_get_blocks_direct() to btrfs_dio_iomap_begin() and use it
as iomap_begin() for iomap direct I/O functions. This function
allocates and locks all the blocks required for the I/O.
btrfs_submit_direct() is used as the submit_io() hook for direct I/O
ops.

Since we need direct I/O reads to go through iomap_dio_rw(), we change
file_operations.read_iter() to a btrfs_file_read_iter() which calls
btrfs_direct_IO() for direct reads and falls back to
generic_file_buffered_read() for incomplete reads and buffered reads.

We don't need address_space.direct_IO() anymore so set it to noop.
Similarly, we don't need flags used in __blockdev_direct_IO(). iomap is
capable of direct I/O reads from a hole, so we don't need to return
-ENOENT.

BTRFS direct I/O is now done under i_rwsem, shared in case of reads and
exclusive in case of writes. This guards against simultaneous truncates.

Use iomap->iomap_end() to check for failed or incomplete direct I/O:
 - for writes, call __endio_write_update_ordered()
 - for reads, unlock extents

btrfs_dio_data is now hooked in iomap->private and not
current->journal_info. It carries the reservation variable and the
amount of data submitted, so we can calculate the amount of data to call
__endio_write_update_ordered in case of an error.

This patch removes last use of struct buffer_head from btrfs.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:02 +02:00
David Sterba
0202e83fda btrfs: simplify iget helpers
The inode lookup starting at btrfs_iget takes the full location key,
while only the objectid is used to match the inode, because the lookup
happens inside the given root thus the inode number is unique.
The entire location key is properly set up in btrfs_init_locked_inode.

Simplify the helpers and pass only inode number, renaming it to 'ino'
instead of 'objectid'. This allows to remove temporary variables key,
saving some stack space.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
David Sterba
56e9357a1e btrfs: simplify root lookup by id
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.

Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
Qu Wenruo
82028e0a2a btrfs: inode: cleanup the log-tree exceptions in btrfs_truncate_inode_items()
There are a lot of root owner checks in btrfs_truncate_inode_items()
like:

	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
	    root == fs_info->tree_root)

But considering that, only these trees can have INODE_ITEMs:

- tree root (for v1 space cache)
- subvolume trees
- tree reloc trees
- data reloc tree
- log trees

And since subvolume/tree reloc/data reloc trees all have SHAREABLE bit,
and we're checking tree root manually, so above check is just excluding
log trees.

This patch will replace two of such checks to a simpler one:

	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)

This would merge btrfs_drop_extent_cache() and lock_extent_bits() call
into the same if branch.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
Qu Wenruo
92a7cc4252 btrfs: rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.

In fact, that bit can only be set to those trees:

- Subvolume roots
- Data reloc root
- Reloc roots for above roots

All other trees won't get this bit set.  So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees.  Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).

This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
David Sterba
cc4c13d55c btrfs: drop eb parameter from set/get token helpers
Now that all set/get helpers use the eb from the token, we don't need to
pass it to many btrfs_token_*/btrfs_set_token_* helpers, saving some
stack space.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:32 +02:00
Robbie Ko
a619b3c7ab btrfs: speedup dead root detection during orphan cleanup
When mounting, we handle deleted subvolume and orphan items.  First,
find add orphan roots, then add them to fs_root radix tree.  Second, in
tree-root, process each orphan item, skip if it is dead root.

The original algorithm is based on the list of dead_roots, one by one to
visit and check whether the objectid is consistent, the time complexity
is O (n ^ 2).  When processing 50000 deleted subvols, it takes about
120s.

Because btrfs_find_orphan_roots has already ran before us, and added
deleted subvol to fs_roots radix tree.

The fs root will only be removed from the fs_roots radix tree after the
cleaner process is started, and the cleaner will only start execution
after the mount is complete.

btrfs_orphan_cleanup can be called during the whole filesystem mount
lifetime, but only "tree root" will be used in this section of code, and
only mount time will be brought into tree root.

So we can quickly check whether the orphan item is dead root through the
fs_roots radix tree.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:29 +02:00
Eric Biggers
fd08001f17 btrfs: use crypto_shash_digest() instead of open coding
Use crypto_shash_digest() instead of crypto_shash_init() +
crypto_shash_update() + crypto_shash_final().  This is more efficient.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:27 +02:00
Omar Sandoval
77d5d68931 btrfs: unify buffered and direct I/O read repair
Currently, direct I/O has its own versions of bio_readpage_error() and
btrfs_check_repairable() (dio_read_error() and
btrfs_check_dio_repairable(), respectively). The main difference is that
the direct I/O version doesn't do read validation. The rework of direct
I/O repair makes it possible to do validation, so we can get rid of
btrfs_check_dio_repairable() and combine bio_readpage_error() and
dio_read_error() into a new helper, btrfs_submit_read_repair().

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:27 +02:00
Omar Sandoval
5c047a699a btrfs: get rid of endio_repair_workers
This was originally added in commit 8b110e393c ("Btrfs: implement
repair function when direct read fails") to avoid a deadlock. In that
commit, the direct I/O read endio executes on the endio_workers
workqueue, submits a repair bio, and waits for it to complete. The
repair bio endio must execute on a different workqueue, otherwise it
could block on the endio_workers workqueue becoming available, which
won't happen because the original endio is blocked on the repair bio.

As of the previous commit, the original endio doesn't wait for the
repair bio, so this separate workqueue is unnecessary.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:27 +02:00
Omar Sandoval
fd9d6670ed btrfs: simplify direct I/O read repair
Direct I/O read repair was originally implemented in commit 8b110e393c
("Btrfs: implement repair function when direct read fails"). This
implementation is unnecessarily complicated. There is major code
duplication between __btrfs_subio_endio_read() (checks checksums and
handles I/O errors for files with checksums),
__btrfs_correct_data_nocsum() (handles I/O errors for files without
checksums), btrfs_retry_endio() (checks checksums and handles I/O errors
for retries of files with checksums), and btrfs_retry_endio_nocsum()
(handles I/O errors for retries of files without checksum). If it sounds
like these should be one function, that's because they should.
Additionally, these functions are very hard to follow due to their
excessive use of goto.

This commit replaces the original implementation. After the previous
commit getting rid of orig_bio, we can reuse the same endio callback for
repair I/O and the original I/O, we just need to track the file offset
and original iterator in the repair bio. We can also unify the handling
of files with and without checksums and simplify the control flow. We
also no longer have to wait for each repair I/O to complete one by one.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:26 +02:00
Omar Sandoval
769b4f2497 btrfs: get rid of one layer of bios in direct I/O
In the worst case, there are _4_ layers of bios in the Btrfs direct I/O
path:

1. The bio created by the generic direct I/O code (dio_bio).
2. A clone of dio_bio we create in btrfs_submit_direct() to represent
   the entire direct I/O range (orig_bio).
3. A partial clone of orig_bio limited to the size of a RAID stripe that
   we create in btrfs_submit_direct_hook().
4. Clones of each of those split bios for each RAID stripe that we
   create in btrfs_map_bio().

As of the previous commit, the second layer (orig_bio) is no longer
needed for anything: we can split dio_bio instead, and complete dio_bio
directly when all of the cloned bios complete. This lets us clean up a
bunch of cruft, including dip->subio_endio and dip->errors (we can use
dio_bio->bi_status instead). It also enables the next big cleanup of
direct I/O read repair.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:26 +02:00
Omar Sandoval
85879573fc btrfs: put direct I/O checksums in btrfs_dio_private instead of bio
The next commit will get rid of btrfs_dio_private->orig_bio. The only
thing we really need it for is containing all of the checksums, but we
can easily put the checksum array in btrfs_dio_private and have the
submitted bios reference the array. We can also look the checksums up
while we're setting up instead of the current awkward logic that looks
them up for orig_bio when the first split bio is submitted.

(Interestingly, btrfs_dio_private did contain the
checksums before commit 23ea8e5a07 ("Btrfs: load checksum data once
when submitting a direct read io"), but it didn't look them up up
front.)

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:26 +02:00
Omar Sandoval
e3b318d14d btrfs: convert btrfs_dio_private->pending_bios to refcount_t
This is really a reference count now, so convert it to refcount_t and
rename it to refs.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:26 +02:00
Omar Sandoval
2390a6daf9 btrfs: remove unused btrfs_dio_private::private
We haven't used this since commit 9be3395bcd ("Btrfs: use a btrfs
bioset instead of abusing bio internals").

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:26 +02:00
Omar Sandoval
47df7765a8 btrfs: rename __readpage_endio_check to check_data_csum
__readpage_endio_check() is also used from the direct I/O read code, so
give it a more descriptive name.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:25 +02:00
Omar Sandoval
c36cac28cb btrfs: fix double __endio_write_update_ordered in direct I/O
In btrfs_submit_direct(), if we fail to allocate the btrfs_dio_private,
we complete the ordered extent range. However, we don't mark that the
range doesn't need to be cleaned up from btrfs_direct_IO() until later.
Therefore, if we fail to allocate the btrfs_dio_private, we complete the
ordered extent range twice. We could fix this by updating
unsubmitted_oe_range earlier, but it's cleaner to reorganize the code so
that creating the btrfs_dio_private and submitting the bios are
separate, and once the btrfs_dio_private is created, cleanup always
happens through the btrfs_dio_private.

The logic around unsubmitted_oe_range_end and unsubmitted_oe_range_start
is really subtle. We have the following:

  1. btrfs_direct_IO sets those two to the same value.

  2. When we call __blockdev_direct_IO unless
     btrfs_get_blocks_direct->btrfs_get_blocks_direct_write is called to
     modify unsubmitted_oe_range_start so that start < end. Cleanup
     won't happen.

  3. We come into btrfs_submit_direct - if it dip allocation fails we'd
     return with oe_range_end now modified so cleanup will happen.

  4. If we manage to allocate the dip we reset the unsubmitted range
     members to be equal so that cleanup happens from
     btrfs_endio_direct_write.

This 4-step logic is not really obvious, especially given it's scattered
across 3 functions.

Fixes: f28a492878 ("Btrfs: fix leaking of ordered extents after direct IO write error")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
[ add range start/end logic explanation from Nikolay ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:25 +02:00
Omar Sandoval
6d3113a193 btrfs: fix error handling when submitting direct I/O bio
In btrfs_submit_direct_hook(), if a direct I/O write doesn't span a RAID
stripe or chunk, we submit orig_bio without cloning it. In this case, we
don't increment pending_bios. Then, if btrfs_submit_dio_bio() fails, we
decrement pending_bios to -1, and we never complete orig_bio. Fix it by
initializing pending_bios to 1 instead of incrementing later.

Fixing this exposes another bug: we put orig_bio prematurely and then
put it again from end_io. Fix it by not putting orig_bio.

After this change, pending_bios is really more of a reference count, but
I'll leave that cleanup separate to keep the fix small.

Fixes: e65e153554 ("btrfs: fix panic caused by direct IO")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:24 +02:00
Josef Bacik
7f9fe61440 btrfs: improve global reserve stealing logic
For unlink transactions and block group removal
btrfs_start_transaction_fallback_global_rsv will first try to start an
ordinary transaction and if it fails it will fall back to reserving the
required amount by stealing from the global reserve. This is problematic
because of all the same reasons we had with previous iterations of the
ENOSPC handling, thundering herd.  We get a bunch of failures all at
once, everybody tries to allocate from the global reserve, some win and
some lose, we get an ENSOPC.

Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's
used to mark unlink reservation. To fix this we need to integrate this
logic into the normal ENOSPC infrastructure.  We still go through all of
the normal flushing work, and at the moment we begin to fail all the
tickets we try to satisfy any tickets that are allowed to steal by
stealing from the global reserve.  If this works we start the flushing
system over again just like we would with a normal ticket satisfaction.
This serializes our global reserve stealing, so we don't have the
thundering herd problem.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:22 +02:00
Josef Bacik
c75e839414 btrfs: kill the subvol_srcu
Now that we have proper root ref counting everywhere we can kill the
subvol_srcu.

* removal of fs_info::subvol_srcu reduces size of fs_info by 1176 bytes

* the refcount_t used for the references checks for accidental 0->1
  in cases where the root lifetime would not be properly protected

* there's a leak detector for roots to catch unfreed roots at umount
  time

* SRCU served us well over the years but is was not a proper
  synchronization mechanism for some cases

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:02:00 +01:00
Josef Bacik
5c8fd99fec btrfs: make inodes hold a ref on their roots
If we make sure all the inodes have refs on their root we don't have to
worry about the root disappearing while we have open inodes.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:59 +01:00
Filipe Manana
a5eeb3d17b btrfs: add helper to get the end offset of a file extent item
Getting the end offset for a file extent item requires a bit of code since
the extent can be either inline or regular/prealloc. There are some places
all over the code base that open code this logic and in another patch
later in this series it will be needed again. Therefore encapsulate this
logic in a helper function and use it.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:56 +01:00
Roman Gushchin
f8e6608180 btrfs: implement migratepage callback for data pages
Currently btrfs doesn't provide a migratepage callback for data pages.
It means that fallback_migrate_page() is used to migrate btrfs pages.

fallback_migrate_page() cannot move dirty pages, instead it tries to
flush them (in sync mode) or just fails (in async mode).

In the sync mode pages which are scheduled to be processed by
btrfs_writepage_fixup_worker() can't be effectively flushed by the
migration code, because there is no established way to wait for the
completion of the delayed work.

It all leads to page migration failures.

To fix it the patch implements a btrs-specific migratepage callback,
which is similar to iomap_migrate_page() used by some other fs, except
it does take care of the PagePrivate2 flag which is used for data
ordering purposes.

Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:55 +01:00
Nikolay Borisov
63f018be57 btrfs: Remove __ prefix from btrfs_block_rsv_release
Currently the non-prefixed version is a simple wrapper used to hide
the 4th argument of the prefixed version. This doesn't bring much value
in practice and only makes the code harder to follow by adding another
level of indirection. Rectify this by removing the __ prefix and
have only one public function to release bytes from a block reservation.
No semantic changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:55 +01:00
Nikolay Borisov
dcc3eb9638 btrfs: convert snapshot/nocow exlcusion to drew lock
This patch removes all haphazard code implementing nocow writers
exclusion from pending snapshot creation and switches to using the drew
lock to ensure this invariant still holds.

'Readers' are snapshot creators from create_snapshot and 'writers' are
nocow writers from buffered write path or btrfs_setsize. This locking
scheme allows for multiple snapshots to happen while any nocow writers
are blocked, since writes to page cache in the nocow path will make
snapshots inconsistent.

So for performance reasons we'd like to have the ability to run multiple
concurrent snapshots and also favors readers in this case. And in case
there aren't pending snapshots (which will be the majority of the cases)
we rely on the percpu's writers counter to avoid cacheline contention.

The main gain from using the drew lock is it's now a lot easier to
reason about the guarantees of the locking scheme and whether there is
some silent breakage lurking.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:44 +01:00
David Sterba
71ad38b44e btrfs: sink argument tree to extent_read_full_page
The tree pointer can be safely read from the page's inode, use it and
drop the redundant argument.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:35 +01:00
David Sterba
b272ae22ac btrfs: drop argument tree from btrfs_lock_and_flush_ordered_range
The tree pointer can be safely read from the inode so we can drop the
redundant argument from btrfs_lock_and_flush_ordered_range.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:34 +01:00
Josef Bacik
0024652895 btrfs: rename btrfs_put_fs_root and btrfs_grab_fs_root
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:33 +01:00
Josef Bacik
bc44d7c4b2 btrfs: push btrfs_grab_fs_root into btrfs_get_fs_root
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:32 +01:00
Josef Bacik
8727002f79 btrfs: hold a ref on the root in fixup_tree_root_location
Looking up the inode from an arbitrary tree means we need to hold a ref
on that root.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:28 +01:00
Josef Bacik
3619c94f07 btrfs: open code btrfs_read_fs_root_no_name
All this does is call btrfs_get_fs_root() with check_ref == true.  Just
use btrfs_get_fs_root() so we don't have a bunch of different helpers
that do the same thing.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:26 +01:00
Josef Bacik
d923afe96d btrfs: replace all uses of btrfs_ordered_update_i_size
Now that we have a safe way to update the i_size, replace all uses of
btrfs_ordered_update_i_size with btrfs_inode_safe_disk_i_size_write.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:24 +01:00
Josef Bacik
9ddc959e80 btrfs: use the file extent tree infrastructure
We want to use this everywhere we modify the file extent items
permanently.  These include:

  1) Inserting new file extents for writes and prealloc extents.
  2) Truncating inode items.
  3) btrfs_cont_expand().
  4) Insert inline extents.
  5) Insert new extents from log replay.
  6) Insert a new extent for clone, as it could be past i_size.
  7) Hole punching

For hole punching in particular it might seem it's not necessary because
anybody extending would use btrfs_cont_expand, however there is a corner
that still can give us trouble.  Start with an empty file and

fallocate KEEP_SIZE 1M-2M

We now have a 0 length file, and a hole file extent from 0-1M, and a
prealloc extent from 1M-2M.  Now

punch 1M-1.5M

Because this is past i_size we have

[HOLE EXTENT][ NOTHING ][PREALLOC]
[0        1M][1M   1.5M][1.5M  2M]

with an i_size of 0.  Now if we pwrite 0-1.5M we'll increas our i_size
to 1.5M, but our disk_i_size is still 0 until the ordered extent
completes.

However if we now immediately truncate 2M on the file we'll just call
btrfs_cont_expand(inode, 1.5M, 2M), since our old i_size is 1.5M.  If we
commit the transaction here and crash we'll expose the gap.

To fix this we need to clear the file extent mapping for the range that
we punched but didn't insert a corresponding file extent for.  This will
mean the truncate will only get an disk_i_size set to 1M if we crash
before the finish ordered io happens.

I've written an xfstest to reproduce the problem and validate this fix.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:24 +01:00
Josef Bacik
41a2ee75aa btrfs: introduce per-inode file extent tree
In order to keep track of where we have file extents on disk, and thus
where it is safe to adjust the i_size to, we need to have a tree in
place to keep track of the contiguous areas we have file extents for.

Add helpers to use this tree, as it's not required for NO_HOLES file
systems.  We will use this by setting DIRTY for areas we know we have
file extent item's set, and clearing it when we remove file extent items
for truncation.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:24 +01:00
Filipe Manana
236ebc20d9 btrfs: fix log context list corruption after rename whiteout error
During a rename whiteout, if btrfs_whiteout_for_rename() returns an error
we can end up returning from btrfs_rename() with the log context object
still in the root's log context list - this happens if 'sync_log' was
set to true before we called btrfs_whiteout_for_rename() and it is
dangerous because we end up with a corrupt linked list (root->log_ctxs)
as the log context object was allocated on the stack.

After btrfs_rename() returns, any task that is running btrfs_sync_log()
concurrently can end up crashing because that linked list is traversed by
btrfs_sync_log() (through btrfs_remove_all_log_ctxs()). That results in
the same issue that commit e6c617102c ("Btrfs: fix log context list
corruption after rename exchange operation") fixed.

Fixes: d4682ba03e ("Btrfs: sync log after logging new name")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-13 22:15:09 +01:00
Omar Sandoval
e7a04894c7 btrfs: fix RAID direct I/O reads with alternate csums
btrfs_lookup_and_bind_dio_csum() does pointer arithmetic which assumes
32-bit checksums. If using a larger checksum, this leads to spurious
failures when a direct I/O read crosses a stripe. This is easy
to reproduce:

  # mkfs.btrfs -f --checksum blake2 -d raid0 /dev/vdc /dev/vdd
  ...
  # mount /dev/vdc /mnt
  # cd /mnt
  # dd if=/dev/urandom of=foo bs=1M count=1 status=none
  # dd if=foo of=/dev/null bs=1M iflag=direct status=none
  dd: error reading 'foo': Input/output error
  # dmesg | tail -1
  [  135.821568] BTRFS warning (device vdc): csum failed root 5 ino 257 off 421888 ...

Fix it by using the actual checksum size.

Fixes: 1e25a2e3ca ("btrfs: don't assume ordered sums to be 4 bytes")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-03 15:26:08 +01:00
Filipe Manana
a5ae50dea9 Btrfs: fix deadlock during fast fsync when logging prealloc extents beyond eof
While logging the prealloc extents of an inode during a fast fsync we call
btrfs_truncate_inode_items(), through btrfs_log_prealloc_extents(), while
holding a read lock on a leaf of the inode's root (not the log root, the
fs/subvol root), and then that function locks the file range in the inode's
iotree. This can lead to a deadlock when:

* the fsync is ranged

* the file has prealloc extents beyond eof

* writeback for a range different from the fsync range starts
  during the fsync

* the size of the file is not sector size aligned

Because when finishing an ordered extent we lock first a file range and
then try to COW the fs/subvol tree to insert an extent item.

The following diagram shows how the deadlock can happen.

           CPU 1                                        CPU 2

  btrfs_sync_file()
    --> for range [0, 1MiB)

    --> inode has a size of
        1MiB and has 1 prealloc
        extent beyond the
        i_size, starting at offset
        4MiB

    flushes all delalloc for the
    range [0MiB, 1MiB) and waits
    for the respective ordered
    extents to complete

                                              --> before task at CPU 1 locks the
                                                  inode, a write into file range
                                                  [1MiB, 2MiB + 1KiB) is made

                                              --> i_size is updated to 2MiB + 1KiB

                                              --> writeback is started for that
                                                  range, [1MiB, 2MiB + 4KiB)
                                                  --> end offset rounded up to
                                                      be sector size aligned

    btrfs_log_dentry_safe()
      btrfs_log_inode_parent()
        btrfs_log_inode()

          btrfs_log_changed_extents()
            btrfs_log_prealloc_extents()
              --> does a search on the
                  inode's root
              --> holds a read lock on
                  leaf X

                                              btrfs_finish_ordered_io()
                                                --> locks range [1MiB, 2MiB + 4KiB)
                                                    --> end offset rounded up
                                                        to be sector size aligned

                                                --> tries to cow leaf X, through
                                                    insert_reserved_file_extent()
                                                    --> already locked by the
                                                        task at CPU 1

              btrfs_truncate_inode_items()

                --> gets an i_size of
                    2MiB + 1KiB, which is
                    not sector size
                    aligned

                --> tries to lock file
                    range [2MiB, (u64)-1)
                    --> the start range
                        is rounded down
                        from 2MiB + 1K
                        to 2MiB to be sector
                        size aligned

                    --> but the subrange
                        [2MiB, 2MiB + 4KiB) is
                        already locked by
                        task at CPU 2 which
                        is waiting to get a
                        write lock on leaf X
                        for which we are
                        holding a read lock

                                *** deadlock ***

This results in a stack trace like the following, triggered by test case
generic/561 from fstests:

  [ 2779.973608] INFO: task kworker/u8:6:247 blocked for more than 120 seconds.
  [ 2779.979536]       Not tainted 5.6.0-rc2-btrfs-next-53 #1
  [ 2779.984503] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [ 2779.990136] kworker/u8:6    D    0   247      2 0x80004000
  [ 2779.990457] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
  [ 2779.990466] Call Trace:
  [ 2779.990491]  ? __schedule+0x384/0xa30
  [ 2779.990521]  schedule+0x33/0xe0
  [ 2779.990616]  btrfs_tree_read_lock+0x19e/0x2e0 [btrfs]
  [ 2779.990632]  ? remove_wait_queue+0x60/0x60
  [ 2779.990730]  btrfs_read_lock_root_node+0x2f/0x40 [btrfs]
  [ 2779.990782]  btrfs_search_slot+0x510/0x1000 [btrfs]
  [ 2779.990869]  btrfs_lookup_file_extent+0x4a/0x70 [btrfs]
  [ 2779.990944]  __btrfs_drop_extents+0x161/0x1060 [btrfs]
  [ 2779.990987]  ? mark_held_locks+0x6d/0xc0
  [ 2779.990994]  ? __slab_alloc.isra.49+0x99/0x100
  [ 2779.991060]  ? insert_reserved_file_extent.constprop.19+0x64/0x300 [btrfs]
  [ 2779.991145]  insert_reserved_file_extent.constprop.19+0x97/0x300 [btrfs]
  [ 2779.991222]  ? start_transaction+0xdd/0x5c0 [btrfs]
  [ 2779.991291]  btrfs_finish_ordered_io+0x4f4/0x840 [btrfs]
  [ 2779.991405]  btrfs_work_helper+0xaa/0x720 [btrfs]
  [ 2779.991432]  process_one_work+0x26d/0x6a0
  [ 2779.991460]  worker_thread+0x4f/0x3e0
  [ 2779.991481]  ? process_one_work+0x6a0/0x6a0
  [ 2779.991489]  kthread+0x103/0x140
  [ 2779.991499]  ? kthread_create_worker_on_cpu+0x70/0x70
  [ 2779.991515]  ret_from_fork+0x3a/0x50
  (...)
  [ 2780.026211] INFO: task fsstress:17375 blocked for more than 120 seconds.
  [ 2780.027480]       Not tainted 5.6.0-rc2-btrfs-next-53 #1
  [ 2780.028482] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [ 2780.030035] fsstress        D    0 17375  17373 0x00004000
  [ 2780.030038] Call Trace:
  [ 2780.030044]  ? __schedule+0x384/0xa30
  [ 2780.030052]  schedule+0x33/0xe0
  [ 2780.030075]  lock_extent_bits+0x20c/0x320 [btrfs]
  [ 2780.030094]  ? btrfs_truncate_inode_items+0xf4/0x1150 [btrfs]
  [ 2780.030098]  ? rcu_read_lock_sched_held+0x59/0xa0
  [ 2780.030102]  ? remove_wait_queue+0x60/0x60
  [ 2780.030122]  btrfs_truncate_inode_items+0x133/0x1150 [btrfs]
  [ 2780.030151]  ? btrfs_set_path_blocking+0xb2/0x160 [btrfs]
  [ 2780.030165]  ? btrfs_search_slot+0x379/0x1000 [btrfs]
  [ 2780.030195]  btrfs_log_changed_extents.isra.8+0x841/0x93e [btrfs]
  [ 2780.030202]  ? do_raw_spin_unlock+0x49/0xc0
  [ 2780.030215]  ? btrfs_get_num_csums+0x10/0x10 [btrfs]
  [ 2780.030239]  btrfs_log_inode+0xf83/0x1124 [btrfs]
  [ 2780.030251]  ? __mutex_unlock_slowpath+0x45/0x2a0
  [ 2780.030275]  btrfs_log_inode_parent+0x2a0/0xe40 [btrfs]
  [ 2780.030282]  ? dget_parent+0xa1/0x370
  [ 2780.030309]  btrfs_log_dentry_safe+0x4a/0x70 [btrfs]
  [ 2780.030329]  btrfs_sync_file+0x3f3/0x490 [btrfs]
  [ 2780.030339]  do_fsync+0x38/0x60
  [ 2780.030343]  __x64_sys_fdatasync+0x13/0x20
  [ 2780.030345]  do_syscall_64+0x5c/0x280
  [ 2780.030348]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [ 2780.030356] RIP: 0033:0x7f2d80f6d5f0
  [ 2780.030361] Code: Bad RIP value.
  [ 2780.030362] RSP: 002b:00007ffdba3c8548 EFLAGS: 00000246 ORIG_RAX: 000000000000004b
  [ 2780.030364] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f2d80f6d5f0
  [ 2780.030365] RDX: 00007ffdba3c84b0 RSI: 00007ffdba3c84b0 RDI: 0000000000000003
  [ 2780.030367] RBP: 000000000000004a R08: 0000000000000001 R09: 00007ffdba3c855c
  [ 2780.030368] R10: 0000000000000078 R11: 0000000000000246 R12: 00000000000001f4
  [ 2780.030369] R13: 0000000051eb851f R14: 00007ffdba3c85f0 R15: 0000557a49220d90

So fix this by making btrfs_truncate_inode_items() not lock the range in
the inode's iotree when the target root is a log root, since it's not
needed to lock the range for log roots as the protection from the inode's
lock and log_mutex are all that's needed.

Fixes: 28553fa992 ("Btrfs: fix race between shrinking truncate and fiemap")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-21 16:21:19 +01:00
Josef Bacik
b778cf962d btrfs: fix bytes_may_use underflow in prealloc error condtition
I hit the following warning while running my error injection stress
testing:

  WARNING: CPU: 3 PID: 1453 at fs/btrfs/space-info.h:108 btrfs_free_reserved_data_space_noquota+0xfd/0x160 [btrfs]
  RIP: 0010:btrfs_free_reserved_data_space_noquota+0xfd/0x160 [btrfs]
  Call Trace:
  btrfs_free_reserved_data_space+0x4f/0x70 [btrfs]
  __btrfs_prealloc_file_range+0x378/0x470 [btrfs]
  elfcorehdr_read+0x40/0x40
  ? elfcorehdr_read+0x40/0x40
  ? btrfs_commit_transaction+0xca/0xa50 [btrfs]
  ? dput+0xb4/0x2a0
  ? btrfs_log_dentry_safe+0x55/0x70 [btrfs]
  ? btrfs_sync_file+0x30e/0x420 [btrfs]
  ? do_fsync+0x38/0x70
  ? __x64_sys_fdatasync+0x13/0x20
  ? do_syscall_64+0x5b/0x1b0
  ? entry_SYSCALL_64_after_hwframe+0x44/0xa9

This happens if we fail to insert our reserved file extent.  At this
point we've already converted our reservation from ->bytes_may_use to
->bytes_reserved.  However once we break we will attempt to free
everything from [cur_offset, end] from ->bytes_may_use, but our extent
reservation will overlap part of this.

Fix this problem by adding ins.offset (our extent allocation size) to
cur_offset so we remove the actual remaining part from ->bytes_may_use.

I validated this fix using my inject-error.py script

python inject-error.py -o should_fail_bio -t cache_save_setup -t \
	__btrfs_prealloc_file_range \
	-t insert_reserved_file_extent.constprop.0 \
	-r "-5" ./run-fsstress.sh

where run-fsstress.sh simply mounts and runs fsstress on a disk.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-19 00:39:08 +01:00
Josef Bacik
52e29e3310 btrfs: don't set path->leave_spinning for truncate
The only time we actually leave the path spinning is if we're truncating
a small amount and don't actually free an extent, which is not a common
occurrence.  We have to set the path blocking in order to add the
delayed ref anyway, so the first extent we find we set the path to
blocking and stay blocking for the duration of the operation.  With the
upcoming file extent map stuff there will be another case that we have
to have the path blocking, so just swap to blocking always.

Note: this patch also fixes a warning after 28553fa992 ("Btrfs: fix
race between shrinking truncate and fiemap") got merged that inserts
extent locks around truncation so the path must not leave spinning locks
after btrfs_search_slot.

  [70.794783] BUG: sleeping function called from invalid context at mm/slab.h:565
  [70.794834] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1141, name: rsync
  [70.794863] 5 locks held by rsync/1141:
  [70.794876]  #0: ffff888417b9c408 (sb_writers#17){.+.+}, at: mnt_want_write+0x20/0x50
  [70.795030]  #1: ffff888428de28e8 (&type->i_mutex_dir_key#13/1){+.+.}, at: lock_rename+0xf1/0x100
  [70.795051]  #2: ffff888417b9c608 (sb_internal#2){.+.+}, at: start_transaction+0x394/0x560
  [70.795124]  #3: ffff888403081768 (btrfs-fs-01){++++}, at: btrfs_try_tree_write_lock+0x2f/0x160
  [70.795203]  #4: ffff888403086568 (btrfs-fs-00){++++}, at: btrfs_try_tree_write_lock+0x2f/0x160
  [70.795222] CPU: 5 PID: 1141 Comm: rsync Not tainted 5.6.0-rc2-backup+ #2
  [70.795362] Call Trace:
  [70.795374]  dump_stack+0x71/0xa0
  [70.795445]  ___might_sleep.part.96.cold.106+0xa6/0xb6
  [70.795459]  kmem_cache_alloc+0x1d3/0x290
  [70.795471]  alloc_extent_state+0x22/0x1c0
  [70.795544]  __clear_extent_bit+0x3ba/0x580
  [70.795557]  ? _raw_spin_unlock_irq+0x24/0x30
  [70.795569]  btrfs_truncate_inode_items+0x339/0xe50
  [70.795647]  btrfs_evict_inode+0x269/0x540
  [70.795659]  ? dput.part.38+0x29/0x460
  [70.795671]  evict+0xcd/0x190
  [70.795682]  __dentry_kill+0xd6/0x180
  [70.795754]  dput.part.38+0x2ad/0x460
  [70.795765]  do_renameat2+0x3cb/0x540
  [70.795777]  __x64_sys_rename+0x1c/0x20

Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 28553fa992 ("Btrfs: fix race between shrinking truncate and fiemap")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-17 16:23:06 +01:00
Filipe Manana
28553fa992 Btrfs: fix race between shrinking truncate and fiemap
When there is a fiemap executing in parallel with a shrinking truncate
we can end up in a situation where we have extent maps for which we no
longer have corresponding file extent items. This is generally harmless
and at the moment the only consequences are missing file extent items
representing holes after we expand the file size again after the
truncate operation removed the prealloc extent items, and stale
information for future fiemap calls (reporting extents that no longer
exist or may have been reallocated to other files for example).

Consider the following example:

1) Our inode has a size of 128KiB, one 128KiB extent at file offset 0
   and a 1MiB prealloc extent at file offset 128KiB;

2) Task A starts doing a shrinking truncate of our inode to reduce it to
   a size of 64KiB. Before it searches the subvolume tree for file
   extent items to delete, it drops all the extent maps in the range
   from 64KiB to (u64)-1 by calling btrfs_drop_extent_cache();

3) Task B starts doing a fiemap against our inode. When looking up for
   the inode's extent maps in the range from 128KiB to (u64)-1, it
   doesn't find any in the inode's extent map tree, since they were
   removed by task A.  Because it didn't find any in the extent map
   tree, it scans the inode's subvolume tree for file extent items, and
   it finds the 1MiB prealloc extent at file offset 128KiB, then it
   creates an extent map based on that file extent item and adds it to
   inode's extent map tree (this ends up being done by
   btrfs_get_extent() <- btrfs_get_extent_fiemap() <-
   get_extent_skip_holes());

4) Task A then drops the prealloc extent at file offset 128KiB and
   shrinks the 128KiB extent file offset 0 to a length of 64KiB. The
   truncation operation finishes and we end up with an extent map
   representing a 1MiB prealloc extent at file offset 128KiB, despite we
   don't have any more that extent;

After this the two types of problems we have are:

1) Future calls to fiemap always report that a 1MiB prealloc extent
   exists at file offset 128KiB. This is stale information, no longer
   correct;

2) If the size of the file is increased, by a truncate operation that
   increases the file size or by a write into a file offset > 64KiB for
   example, we end up not inserting file extent items to represent holes
   for any range between 128KiB and 128KiB + 1MiB, since the hole
   expansion function, btrfs_cont_expand() will skip hole insertion for
   any range for which an extent map exists that represents a prealloc
   extent. This causes fsck to complain about missing file extent items
   when not using the NO_HOLES feature.

The second issue could be often triggered by test case generic/561 from
fstests, which runs fsstress and duperemove in parallel, and duperemove
does frequent fiemap calls.

Essentially the problems happens because fiemap does not acquire the
inode's lock while truncate does, and fiemap locks the file range in the
inode's iotree while truncate does not. So fix the issue by making
btrfs_truncate_inode_items() lock the file range from the new file size
to (u64)-1, so that it serializes with fiemap.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-12 17:17:10 +01:00