Commit Graph

1316 Commits

Author SHA1 Message Date
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Linus Torvalds
e71c3978d6 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner:
 "This is the final round of converting the notifier mess to the state
  machine. The removal of the notifiers and the related infrastructure
  will happen around rc1, as there are conversions outstanding in other
  trees.

  The whole exercise removed about 2000 lines of code in total and in
  course of the conversion several dozen bugs got fixed. The new
  mechanism allows to test almost every hotplug step standalone, so
  usage sites can exercise all transitions extensively.

  There is more room for improvement, like integrating all the
  pointlessly different architecture mechanisms of synchronizing,
  setting cpus online etc into the core code"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  tracing/rb: Init the CPU mask on allocation
  soc/fsl/qbman: Convert to hotplug state machine
  soc/fsl/qbman: Convert to hotplug state machine
  zram: Convert to hotplug state machine
  KVM/PPC/Book3S HV: Convert to hotplug state machine
  arm64/cpuinfo: Convert to hotplug state machine
  arm64/cpuinfo: Make hotplug notifier symmetric
  mm/compaction: Convert to hotplug state machine
  iommu/vt-d: Convert to hotplug state machine
  mm/zswap: Convert pool to hotplug state machine
  mm/zswap: Convert dst-mem to hotplug state machine
  mm/zsmalloc: Convert to hotplug state machine
  mm/vmstat: Convert to hotplug state machine
  mm/vmstat: Avoid on each online CPU loops
  mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
  tracing/rb: Convert to hotplug state machine
  oprofile/nmi timer: Convert to hotplug state machine
  net/iucv: Use explicit clean up labels in iucv_init()
  x86/pci/amd-bus: Convert to hotplug state machine
  x86/oprofile/nmi: Convert to hotplug state machine
  ...
2016-12-12 19:25:04 -08:00
Mel Gorman
a6de734bc0 mm, page_alloc: keep pcp count and list contents in sync if struct page is corrupted
Vlastimil Babka pointed out that commit 479f854a20 ("mm, page_alloc:
defer debugging checks of pages allocated from the PCP") will allow the
per-cpu list counter to be out of sync with the per-cpu list contents if
a struct page is corrupted.

The consequence is an infinite loop if the per-cpu lists get fully
drained by free_pcppages_bulk because all the lists are empty but the
count is positive.  The infinite loop occurs here

                do {
                        batch_free++;
                        if (++migratetype == MIGRATE_PCPTYPES)
                                migratetype = 0;
                        list = &pcp->lists[migratetype];
                } while (list_empty(list));

What the user sees is a bad page warning followed by a soft lockup with
interrupts disabled in free_pcppages_bulk().

This patch keeps the accounting in sync.

Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20161202112951.23346-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>	[4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Minchan Kim
29fac03bef mm: make unreserve highatomic functions reliable
Currently, unreserve_highatomic_pageblock bails out if it found
highatomic pageblock regardless of really moving free pages from the one
so that it could mitigate unreserve logic's goal which saves OOM of a
process.

This patch makes unreserve functions bail out only if it moves some
pages out of !highatomic free list to avoid such false positive.

Another potential problem is that by race between page freeing and
reserve highatomic function, pages could be in highatomic free list even
though the pageblock is !high atomic migratetype.  In that case,
unreserve_highatomic_pageblock can be void if count of highatomic
reserve is less than pageblock_nr_pages.  We could solve it simply via
draining all of reserved pages before the OOM.  It would have a
safeguard role to exhuast reserved pages before converging to OOM.

Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
04c8716f7b mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel.  It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill.  It occured during QA process which launches
several apps, switching and so on.  It happned rarely.  IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen.  If we manage to
pass the phase, the system can go working well.

I could reproduce it with my test(memory spike easily.  Look at below.

The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.

  balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
  balloon cpuset=/ mems_allowed=0
  CPU: 1 PID: 8473 Comm: balloon Tainted: G        W  OE   4.8.0-rc7-00219-g3f74c9559583-dirty #3161
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    dump_header+0x5c/0x1ce
    oom_kill_process+0x22e/0x400
    out_of_memory+0x1ac/0x210
    __alloc_pages_nodemask+0x101e/0x1040
    handle_mm_fault+0xa0a/0xbf0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:383949 inactive_anon:106724 isolated_anon:0
   active_file:15 inactive_file:44 isolated_file:0
   unevictable:0 dirty:0 writeback:24 unstable:0
   slab_reclaimable:2483 slab_unreclaimable:3326
   mapped:0 shmem:0 pagetables:1906 bounce:0
   free:6898 free_pcp:291 free_cma:0
  Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
  DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
  DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
  51131 total pagecache pages
  50795 pages in swap cache
  Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
  Free swap  = 8kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12658 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

Another example exceeded the limit by the race is

  in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
  CPU: 0 PID: 476 Comm: in:imklog Tainted: G            E   4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    warn_alloc_failed+0xdb/0x130
    __alloc_pages_nodemask+0x4d6/0xdb0
    new_slab+0x339/0x490
    ___slab_alloc.constprop.74+0x367/0x480
    __slab_alloc.constprop.73+0x20/0x40
    __kmalloc+0x1a4/0x1e0
    alloc_indirect.isra.14+0x1d/0x50
    virtqueue_add_sgs+0x1c4/0x470
    __virtblk_add_req+0xae/0x1f0
    virtio_queue_rq+0x12d/0x290
    __blk_mq_run_hw_queue+0x239/0x370
    blk_mq_run_hw_queue+0x8f/0xb0
    blk_mq_insert_requests+0x18c/0x1a0
    blk_mq_flush_plug_list+0x125/0x140
    blk_flush_plug_list+0xc7/0x220
    blk_finish_plug+0x2c/0x40
    __do_page_cache_readahead+0x196/0x230
    filemap_fault+0x448/0x4f0
    ext4_filemap_fault+0x36/0x50
    __do_fault+0x75/0x140
    handle_mm_fault+0x84d/0xbe0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:363826 inactive_anon:121283 isolated_anon:32
   active_file:65 inactive_file:152 isolated_file:0
   unevictable:0 dirty:0 writeback:46 unstable:0
   slab_reclaimable:2778 slab_unreclaimable:3070
   mapped:112 shmem:0 pagetables:1822 bounce:0
   free:9469 free_pcp:231 free_cma:0
  Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
  DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
  DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
  2775 total pagecache pages
  2536 pages in swap cache
  Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
  Free swap  = 108744kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12648 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages.  As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.

Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
4855e4a7f2 mm: prevent double decrease of nr_reserved_highatomic
There is race between page freeing and unreserved highatomic.

 CPU 0				    CPU 1

    free_hot_cold_page
      mt = get_pfnblock_migratetype
      set_pcppage_migratetype(page, mt)
    				    unreserve_highatomic_pageblock
    				    spin_lock_irqsave(&zone->lock)
    				    move_freepages_block
    				    set_pageblock_migratetype(page)
    				    spin_unlock_irqrestore(&zone->lock)
      free_pcppages_bulk
        __free_one_page(mt) <- mt is stale

By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed.  By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.

So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.

Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
88ed365ea2 mm: don't steal highatomic pageblock
Patch series "use up highorder free pages before OOM", v3.

I got OOM report from production team with v4.4 kernel.  It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill.  It occured during QA process which launches
several apps, switching and so on.  It happned rarely.  IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen.  If we manage to
pass the phase, the system can go working well.

I could reproduce it with my test(memory spike easily.  Look at below.

The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.

  balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
  balloon cpuset=/ mems_allowed=0
  CPU: 1 PID: 8473 Comm: balloon Tainted: G        W  OE   4.8.0-rc7-00219-g3f74c9559583-dirty #3161
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    dump_header+0x5c/0x1ce
    oom_kill_process+0x22e/0x400
    out_of_memory+0x1ac/0x210
    __alloc_pages_nodemask+0x101e/0x1040
    handle_mm_fault+0xa0a/0xbf0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:383949 inactive_anon:106724 isolated_anon:0
   active_file:15 inactive_file:44 isolated_file:0
   unevictable:0 dirty:0 writeback:24 unstable:0
   slab_reclaimable:2483 slab_unreclaimable:3326
   mapped:0 shmem:0 pagetables:1906 bounce:0
   free:6898 free_pcp:291 free_cma:0
  Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
  DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
  DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
  51131 total pagecache pages
  50795 pages in swap cache
  Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
  Free swap  = 8kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12658 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

Another example exceeded the limit by the race is

  in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
  CPU: 0 PID: 476 Comm: in:imklog Tainted: G            E   4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    warn_alloc_failed+0xdb/0x130
    __alloc_pages_nodemask+0x4d6/0xdb0
    new_slab+0x339/0x490
    ___slab_alloc.constprop.74+0x367/0x480
    __slab_alloc.constprop.73+0x20/0x40
    __kmalloc+0x1a4/0x1e0
    alloc_indirect.isra.14+0x1d/0x50
    virtqueue_add_sgs+0x1c4/0x470
    __virtblk_add_req+0xae/0x1f0
    virtio_queue_rq+0x12d/0x290
    __blk_mq_run_hw_queue+0x239/0x370
    blk_mq_run_hw_queue+0x8f/0xb0
    blk_mq_insert_requests+0x18c/0x1a0
    blk_mq_flush_plug_list+0x125/0x140
    blk_flush_plug_list+0xc7/0x220
    blk_finish_plug+0x2c/0x40
    __do_page_cache_readahead+0x196/0x230
    filemap_fault+0x448/0x4f0
    ext4_filemap_fault+0x36/0x50
    __do_fault+0x75/0x140
    handle_mm_fault+0x84d/0xbe0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:363826 inactive_anon:121283 isolated_anon:32
   active_file:65 inactive_file:152 isolated_file:0
   unevictable:0 dirty:0 writeback:46 unstable:0
   slab_reclaimable:2778 slab_unreclaimable:3070
   mapped:112 shmem:0 pagetables:1822 bounce:0
   free:9469 free_pcp:231 free_cma:0
  Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
  DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
  DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
  2775 total pagecache pages
  2536 pages in swap cache
  Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
  Free swap  = 108744kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12648 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

During the investigation, I found some problems with highatomic so this
patch aims to solve the problems and the final goal is to unreserve
every highatomic free pages before the OOM kill.

This patch (of 4):

In page freeing path, migratetype is racy so that a highorderatomic page
could free into non-highorderatomic free list.  If that page is
allocated, VM can change the pageblock from higorderatomic to something.
In that case, highatomic pageblock accounting is broken so it doesn't
work(e.g., VM cannot reserve highorderatomic pageblocks any more
although it doesn't reach 1% limit).

So, this patch prohibits the changing from highatomic to other type.
It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback
array so stealing will only happen due to unexpected races which is
really rare.  Also, such prohibiting keeps highatomic pageblock more
longer so it would be better for highorderatomic page allocation.

Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Ingo Molnar
89a01c51cb Merge branch 'x86/cpufeature' into x86/asm, to pick up dependency
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-17 08:30:54 +01:00
Tetsuo Handa
9e80c719a8 mm: remove extra newline from allocation stall warning
Commit 63f53dea0c ("mm: warn about allocations which stall for too
long") by error embedded "\n" in the format string, resulting in strange
output.

  [  722.876655] kworker/0:1: page alloction stalls for 160001ms, order:0
  [  722.876656] , mode:0x2400000(GFP_NOIO)
  [  722.876657] CPU: 0 PID: 6966 Comm: kworker/0:1 Not tainted 4.8.0+ #69

Link: http://lkml.kernel.org/r/1476026219-7974-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:12:37 -08:00
Sebastian Andrzej Siewior
005fd4bbef mm/page_alloc: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20161103145021.28528-7-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-09 23:45:27 +01:00
Linus Torvalds
577f12c07e - make sure required exports from gcc plugins are visible to gcc
- switch latent_entropy to unsigned long to avoid stack frame bloat
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJYGNL6AAoJEIly9N/cbcAm9kkP/3kx3vKAv9lidmylMppvsT/u
 IyLe+SgT7NmouYKaYcXfLF3rJsGar5+RBpMmBhm+8rsrBdDKru9L30jacXkHPuMd
 /6stf84thUu5VJHrHHOehaI5s5PDaEohdV2CQJfYR0U3x+uIP4RTPBLJOVog/l1g
 sDh9tx3Pp5VTtEV7N9utuqrbH8fDDcHdjhidlbf7AoVXvQf1tBxCPmgiayIufan7
 NAoH4m6KhtRAPsNG9JQwfstB2OKFvnMwcHEOOv4w8R+whXEWXUkC3s+0ILivtmQA
 p677ZCLydA9N75fRT5iuaxWTorT7iHwwjh4hZvwLTNvizG4QKtU28eAl6Nip4zH9
 +zL0/RONvBH0kjOrh9m/hFFvoPWyvAVKbztiF7CMWaG8poqgQfGQCUecfGLUCBu+
 zj0FluBJInWBRAlMsc0F40ztVmjZGDga4l2a0Ip8SdqH796aC+0UTgGSF+HmabCR
 K3vKhEUJsYpy97+EwX51bWXB1nMBlxp1jVp1hmZUFm4kP7CMr4kiQL3Rn03duKEG
 emg0KXhza0Iu8PxAdO413TX/zUJNuBFlUKeIxHSXuoQsUJIUlw18TznxmrA2qSyD
 88tnTQlGy37SMWwDK96GKYARKW2u1VGnEKGH0glud1sLNWj7p2hDY5Mg/gZmDD3g
 uyrM66DG3IWdOFTcFcHE
 =EQJ9
 -----END PGP SIGNATURE-----

Merge tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull gcc plugin fixes from Kees Cook:
 - make sure required exports from gcc plugins are visible to gcc
 - switch latent_entropy to unsigned long to avoid stack frame bloat

* tag 'gcc-plugins-v4.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  latent_entropy: Fix wrong gcc code generation with 64 bit variables
  gcc-plugins: Export symbols needed by gcc
2016-11-01 17:48:46 -06:00
Ingo Molnar
05b93c19d5 Merge branch 'linus' into x86/asm, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-01 07:41:06 +01:00
Kees Cook
58bea4144d latent_entropy: Fix wrong gcc code generation with 64 bit variables
The stack frame size could grow too large when the plugin used long long
on 32-bit architectures when the given function had too many basic blocks.

The gcc warning was:

drivers/pci/hotplug/ibmphp_ebda.c: In function 'ibmphp_access_ebda':
drivers/pci/hotplug/ibmphp_ebda.c:409:1: warning: the frame size of 1108 bytes is larger than 1024 bytes [-Wframe-larger-than=]

This switches latent_entropy from u64 to unsigned long.

Thanks to PaX Team and Emese Revfy for the patch.

Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-31 11:30:41 -07:00
Joe Perches
1f84a18fc0 mm: page_alloc: use KERN_CONT where appropriate
Recent changes to printk require KERN_CONT uses to continue logging
messages.  So add KERN_CONT where necessary.

[akpm@linux-foundation.org: coding-style fixes]
Fixes: 4bcc595ccd ("printk: reinstate KERN_CONT for printing continuation lines")
Link: http://lkml.kernel.org/r/c7df37c8665134654a17aaeb8b9f6ace1d6db58b.1476239034.git.joe@perches.com
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 18:43:43 -07:00
Linus Torvalds
9dcb8b685f mm: remove per-zone hashtable of bitlock waitqueues
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:

     wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)

where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().

The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).

It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.

As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.

Peter Zijlstra already has a patch for that, but let's see if anybody
even notices.  In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.

Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 09:27:57 -07:00
Josh Poimboeuf
adb1fe9ae2 mm/page_alloc: Remove kernel address exposure in free_reserved_area()
Linus suggested we try to remove some of the low-hanging fruit related
to kernel address exposure in dmesg.  The only leaks I see on my local
system are:

  Freeing SMP alternatives memory: 32K (ffffffff9e309000 - ffffffff9e311000)
  Freeing initrd memory: 10588K (ffffa0b736b42000 - ffffa0b737599000)
  Freeing unused kernel memory: 3592K (ffffffff9df87000 - ffffffff9e309000)
  Freeing unused kernel memory: 1352K (ffffa0b7288ae000 - ffffa0b728a00000)
  Freeing unused kernel memory: 632K (ffffa0b728d62000 - ffffa0b728e00000)

Linus says:

  "I suspect we should just remove [the addresses in the 'Freeing'
   messages]. I'm sure they are useful in theory, but I suspect they
   were more useful back when the whole "free init memory" was
   originally done.

   These days, if we have a use-after-free, I suspect the init-mem
   situation is the easiest situation by far. Compared to all the dynamic
   allocations which are much more likely to show it anyway. So having
   debug output for that case is likely not all that productive."

With this patch the freeing messages now look like this:

  Freeing SMP alternatives memory: 32K
  Freeing initrd memory: 10588K
  Freeing unused kernel memory: 3592K
  Freeing unused kernel memory: 1352K
  Freeing unused kernel memory: 632K

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6836ff90c45b71d38e5d4405aec56fa9e5d1d4b2.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 18:40:37 +02:00
Linus Torvalds
9ffc66941d This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
 possible, hoping to capitalize on any possible variation in CPU operation
 (due to runtime data differences, hardware differences, SMP ordering,
 thermal timing variation, cache behavior, etc).
 
 At the very least, this plugin is a much more comprehensive example for
 how to manipulate kernel code using the gcc plugin internals.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
 1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
 Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
 iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
 B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
 MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
 SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
 8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
 e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
 afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
 cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
 pa/A7CNQwibIV6YD8+/p
 =1dUK
 -----END PGP SIGNATURE-----

Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull gcc plugins update from Kees Cook:
 "This adds a new gcc plugin named "latent_entropy". It is designed to
  extract as much possible uncertainty from a running system at boot
  time as possible, hoping to capitalize on any possible variation in
  CPU operation (due to runtime data differences, hardware differences,
  SMP ordering, thermal timing variation, cache behavior, etc).

  At the very least, this plugin is a much more comprehensive example
  for how to manipulate kernel code using the gcc plugin internals"

* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  latent_entropy: Mark functions with __latent_entropy
  gcc-plugins: Add latent_entropy plugin
2016-10-15 10:03:15 -07:00
Emese Revfy
0766f788eb latent_entropy: Mark functions with __latent_entropy
The __latent_entropy gcc attribute can be used only on functions and
variables.  If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents.  The variable must
be an integer, an integer array type or a structure with integer fields.

These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.

Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-10 14:51:45 -07:00
Emese Revfy
38addce8b6 gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).

At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.

The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).

To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).

Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.

Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.

Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-10 14:51:44 -07:00
Michal Hocko
63f53dea0c mm: warn about allocations which stall for too long
Currently we do warn only about allocation failures but small
allocations are basically nofail and they might loop in the page
allocator for a long time.  Especially when the reclaim cannot make any
progress - e.g.  GFP_NOFS cannot invoke the oom killer and rely on a
different context to make a forward progress in case there is a lot
memory used by filesystems.

Give us at least a clue when something like this happens and warn about
allocations which take more than 10s.  Print the basic allocation
context information along with the cumulative time spent in the
allocation as well as the allocation stack.  Repeat the warning after
every 10 seconds so that we know that the problem is permanent rather
than ephemeral.

Link: http://lkml.kernel.org/r/20160929084407.7004-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Michal Hocko
7877cdcc38 mm: consolidate warn_alloc_failed users
warn_alloc_failed is currently used from the page and vmalloc
allocators.  This is a good reuse of the code except that vmalloc would
appreciate a slightly different warning message.  This is already
handled by the fmt parameter except that

  "%s: page allocation failure: order:%u, mode:%#x(%pGg)"

is printed anyway.  This might be quite misleading because it might be a
vmalloc failure which leads to the warning while the page allocator is
not the culprit here.  Fix this by always using the fmt string and only
print the context that makes sense for the particular context (e.g.
order makes only very little sense for the vmalloc context).

Rename the function to not miss any user and also because a later patch
will reuse it also for !failure cases.

Link: http://lkml.kernel.org/r/20160929084407.7004-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Vlastimil Babka
423b452e15 mm, page_alloc: pull no_progress_loops update to should_reclaim_retry()
The should_reclaim_retry() makes decisions based on no_progress_loops,
so it makes sense to also update the counter there.  It will be also
consistent with should_compact_retry() and compaction_retries.  No
functional change.

[hillf.zj@alibaba-inc.com: fix missing pointer dereferences]
Link: http://lkml.kernel.org/r/20160926162025.21555-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Vlastimil Babka
c2033b00db mm, compaction: restrict full priority to non-costly orders
The new ultimate compaction priority disables some heuristics, which may
result in excessive cost.  This is fine for non-costly orders where we
want to try hard before resulting for OOM, but might be disruptive for
costly orders which do not trigger OOM and should generally have some
fallback.  Thus, we disable the full priority for costly orders.

Suggested-by: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20160906135258.18335-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Vlastimil Babka
d943649831 mm, compaction: more reliably increase direct compaction priority
During reclaim/compaction loop, compaction priority can be increased by
the should_compact_retry() function, but the current code is not
optimal.  Priority is only increased when compaction_failed() is true,
which means that compaction has scanned the whole zone.  This may not
happen even after multiple attempts with a lower priority due to
parallel activity, so we might needlessly struggle on the lower
priorities and possibly run out of compaction retry attempts in the
process.

After this patch we are guaranteed at least one attempt at the highest
compaction priority even if we exhaust all retries at the lower
priorities.

Link: http://lkml.kernel.org/r/20160906135258.18335-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Vlastimil Babka
3250845d05 Revert "mm, oom: prevent premature OOM killer invocation for high order request"
Patch series "reintroduce compaction feedback for OOM decisions".

After several people reported OOM's for order-2 allocations in 4.7 due
to Michal Hocko's OOM rework, he reverted the part that considered
compaction feedback [1] in the decisions to retry reclaim/compaction.
This was to provide a fix quickly for 4.8 rc and 4.7 stable series,
while mmotm had an almost complete solution that instead improved
compaction reliability.

This series completes the mmotm solution and reintroduces the compaction
feedback into OOM decisions.  The first two patches restore the state of
mmotm before the temporary solution was merged, the last patch should be
the missing piece for reliability.  The third patch restricts the
hardened compaction to non-costly orders, since costly orders don't
result in OOMs in the first place.

[1] http://marc.info/?i=20160822093249.GA14916%40dhcp22.suse.cz%3E

This patch (of 4):

Commit 6b4e3181d7 ("mm, oom: prevent premature OOM killer invocation
for high order request") was intended as a quick fix of OOM regressions
for 4.8 and stable 4.7.x kernels.  For a better long-term solution, we
still want to consider compaction feedback, which should be possible
after some more improvements in the following patches.

This reverts commit 6b4e3181d7.

Link: http://lkml.kernel.org/r/20160906135258.18335-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Srikar Dronamraju
f6f34b4387 mm: introduce arch_reserved_kernel_pages()
Currently arch specific code can reserve memory blocks but
alloc_large_system_hash() may not take it into consideration when sizing
the hashes.  This can lead to bigger hash than required and lead to no
available memory for other purposes.  This is specifically true for
systems with CONFIG_DEFERRED_STRUCT_PAGE_INIT enabled.

One approach to solve this problem would be to walk through the memblock
regions and calculate the available memory and base the size of hash
system on the available memory.

The other approach would be to depend on the architecture to provide the
number of pages that are reserved.  This change provides hooks to allow
the architecture to provide the required info.

Link: http://lkml.kernel.org/r/1472476010-4709-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Aneesh Kumar K.V
c9634cf012 mm: use zonelist name instead of using hardcoded index
Use the existing enums instead of hardcoded index when looking at the
zonelist.  This makes it more readable.  No functionality change by this
patch.

Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Joonsoo Kim
980ac1672e mm/page_ext: support extra space allocation by page_ext user
Until now, if some page_ext users want to use it's own field on
page_ext, it should be defined in struct page_ext by hard-coding.  It
has a problem that wastes memory in following situation.

  struct page_ext {
   #ifdef CONFIG_A
  	int a;
   #endif
   #ifdef CONFIG_B
  	int b;
   #endif
  };

Assume that kernel is built with both CONFIG_A and CONFIG_B.  Even if we
enable feature A and doesn't enable feature B at runtime, each entry of
struct page_ext takes two int rather than one int.  It's undesirable
result so this patch tries to fix it.

To solve above problem, this patch implements to support extra space
allocation at runtime.  When need() callback returns true, it's extra
memory requirement is summed to entry size of page_ext.  Also, offset
for each user's extra memory space is returned.  With this offset, user
can use this extra space and there is no need to define needed field on
page_ext by hard-coding.

This patch only implements an infrastructure.  Following patch will use
it for page_owner which is only user having it's own fields on page_ext.

Link: http://lkml.kernel.org/r/1471315879-32294-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Joonsoo Kim
f1c1e9f7b5 mm/debug_pagealloc.c: don't allocate page_ext if we don't use guard page
What debug_pagealloc does is just mapping/unmapping page table.
Basically, it doesn't need additional memory space to memorize
something.  But, with guard page feature, it requires additional memory
to distinguish if the page is for guard or not.  Guard page is only used
when debug_guardpage_minorder is non-zero so this patch removes
additional memory allocation (page_ext) if debug_guardpage_minorder is
zero.

It saves memory if we just use debug_pagealloc and not guard page.

Link: http://lkml.kernel.org/r/1471315879-32294-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Joonsoo Kim
acbc15a4b3 mm/debug_pagealloc.c: clean-up guard page handling code
Patch series "Reduce memory waste by page extension user".

This patchset tries to reduce memory waste by page extension user.

First case is architecture supported debug_pagealloc.  It doesn't
requires additional memory if guard page isn't used.  8 bytes per page
will be saved in this case.

Second case is related to page owner feature.  Until now, if page_ext
users want to use it's own fields on page_ext, fields should be defined
in struct page_ext by hard-coding.  It has a following problem.

  struct page_ext {
   #ifdef CONFIG_A
  	int a;
   #endif
   #ifdef CONFIG_B
	int b;
   #endif
  };

Assume that kernel is built with both CONFIG_A and CONFIG_B.  Even if we
enable feature A and doesn't enable feature B at runtime, each entry of
struct page_ext takes two int rather than one int.  It's undesirable
waste so this patch tries to reduce it.  By this patchset, we can save
20 bytes per page dedicated for page owner feature in some
configurations.

This patch (of 6):

We can make code clean by moving decision condition for set_page_guard()
into set_page_guard() itself.  It will help code readability.  There is
no functional change.

Link: http://lkml.kernel.org/r/1471315879-32294-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Xishi Qiu
e780149bcd mm: fix set pageblock migratetype in deferred struct page init
On x86_64 MAX_ORDER_NR_PAGES is usually 4M, and a pageblock is usually
2M, so we only set one pageblock's migratetype in deferred_free_range()
if pfn is aligned to MAX_ORDER_NR_PAGES.  That means it causes
uninitialized migratetype blocks, you can see from "cat
/proc/pagetypeinfo", almost half blocks are Unmovable.

Also we missed freeing the last block in deferred_init_memmap(), it
causes memory leak.

Fixes: ac5d2539b2 ("mm: meminit: reduce number of times pageblocks are set during struct page init")
Link: http://lkml.kernel.org/r/57A3260F.4050709@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Xishi Qiu
e506b99696 mem-hotplug: fix node spanned pages when we have a movable node
Commit 342332e6a9 ("mm/page_alloc.c: introduce kernelcore=mirror
option") rewrote the calculation of node spanned pages.  But when we
have a movable node, the size of node spanned pages is double added.
That's because we have an empty normal zone, the present pages is zero,
but its spanned pages is not zero.

e.g.
    Zone ranges:
      DMA      [mem 0x0000000000001000-0x0000000000ffffff]
      DMA32    [mem 0x0000000001000000-0x00000000ffffffff]
      Normal   [mem 0x0000000100000000-0x0000007c7fffffff]
    Movable zone start for each node
      Node 1: 0x0000001080000000
      Node 2: 0x0000002080000000
      Node 3: 0x0000003080000000
      Node 4: 0x0000003c80000000
      Node 5: 0x0000004c80000000
      Node 6: 0x0000005c80000000
    Early memory node ranges
      node   0: [mem 0x0000000000001000-0x000000000009ffff]
      node   0: [mem 0x0000000000100000-0x000000007552afff]
      node   0: [mem 0x000000007bd46000-0x000000007bd46fff]
      node   0: [mem 0x000000007bdcd000-0x000000007bffffff]
      node   0: [mem 0x0000000100000000-0x000000107fffffff]
      node   1: [mem 0x0000001080000000-0x000000207fffffff]
      node   2: [mem 0x0000002080000000-0x000000307fffffff]
      node   3: [mem 0x0000003080000000-0x0000003c7fffffff]
      node   4: [mem 0x0000003c80000000-0x0000004c7fffffff]
      node   5: [mem 0x0000004c80000000-0x0000005c7fffffff]
      node   6: [mem 0x0000005c80000000-0x0000006c7fffffff]
      node   7: [mem 0x0000006c80000000-0x0000007c7fffffff]

  node1:
    Normal, start=0x1080000, present=0x0, spanned=0x1000000
    Movable, start=0x1080000, present=0x1000000, spanned=0x1000000
    pgdat, start=0x1080000, present=0x1000000, spanned=0x2000000

After this patch, the problem is fixed.

  node1:
    Normal, start=0x0, present=0x0, spanned=0x0
    Movable, start=0x1080000, present=0x1000000, spanned=0x1000000
    pgdat, start=0x1080000, present=0x1000000, spanned=0x1000000

Link: http://lkml.kernel.org/r/57A325E8.6070100@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
8348faf91f mm, compaction: require only min watermarks for non-costly orders
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction.  Then __isolate_free_page uses low watermark check to decide
if particular free page can be isolated.  In the latter case, using low
watermark is needlessly pessimistic, as the free page isolations are
only temporary.  For __compaction_suitable() the higher watermark makes
sense for high-order allocations where more freepages increase the
chance of success, and we can typically fail with some order-0 fallback
when the system is struggling to reach that watermark.  But for
low-order allocation, forming the page should not be that hard.  So
using low watermark here might just prevent compaction from even trying,
and eventually lead to OOM killer even if we are above min watermarks.

So after this patch, we use min watermark for non-costly orders in
__compaction_suitable(), and for all orders in __isolate_free_page().

[vbabka@suse.cz: clarify __isolate_free_page() comment]
 Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
984fdba6a3 mm, compaction: use proper alloc_flags in __compaction_suitable()
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction.  This check uses direct compactor's alloc_flags, but that's
wrong, since these flags are not applicable for freepage isolation.

For example, alloc_flags may indicate access to memory reserves, making
compaction proceed, and then fail watermark check during the isolation.

A similar problem exists for ALLOC_CMA, which may be part of
alloc_flags, but not during freepage isolation.  In this case however it
makes sense to use ALLOC_CMA both in __compaction_suitable() and
__isolate_free_page(), since there's actually nothing preventing the
freepage scanner to isolate from CMA pageblocks, with the assumption
that a page that could be migrated once by compaction can be migrated
also later by CMA allocation.  Thus we should count pages in CMA
pageblocks when considering compaction suitability and when isolating
freepages.

To sum up, this patch should remove some false positives from
__compaction_suitable(), and allow compaction to proceed when free pages
required for compaction reside in the CMA pageblocks.

Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Mel Gorman
6aa303defb mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel.  Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().

Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") was reported to cause kswapd to spin at 100% CPU usage when
fadump was enabled.  The old code happened to deal with the situation of
a populated node with zero free pages by co-incidence but the current
code tries to reclaim populated zones without realising that is
impossible.

We cannot just convert populated_zone() as many existing users really
need to check for present_pages.  This patch introduces a managed_zone()
helper and uses it in the few cases where it is critical that the check
is made for managed pages -- zonelist construction and page reclaim.

Link: http://lkml.kernel.org/r/20160831195104.GB8119@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-01 17:52:01 -07:00
Michal Hocko
6b4e3181d7 mm, oom: prevent premature OOM killer invocation for high order request
There have been several reports about pre-mature OOM killer invocation
in 4.7 kernel when order-2 allocation request (for the kernel stack)
invoked OOM killer even during basic workloads (light IO or even kernel
compile on some filesystems).  In all reported cases the memory is
fragmented and there are no order-2+ pages available.  There is usually
a large amount of slab memory (usually dentries/inodes) and further
debugging has shown that there are way too many unmovable blocks which
are skipped during the compaction.  Multiple reporters have confirmed
that the current linux-next which includes [1] and [2] helped and OOMs
are not reproducible anymore.

A simpler fix for the late rc and stable is to simply ignore the
compaction feedback and retry as long as there is a reclaim progress and
we are not getting OOM for order-0 pages.  We already do that for
CONFING_COMPACTION=n so let's reuse the same code when compaction is
enabled as well.

[1] http://lkml.kernel.org/r/20160810091226.6709-1-vbabka@suse.cz
[2] http://lkml.kernel.org/r/f7a9ea9d-bb88-bfd6-e340-3a933559305a@suse.cz

Fixes: 0a0337e0d1 ("mm, oom: rework oom detection")
Link: http://lkml.kernel.org/r/20160823074339.GB23577@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Olaf Hering <olaf@aepfle.de>
Tested-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Cc: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[4.7.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-01 17:52:01 -07:00
Mel Gorman
2f95ff90b9 proc, meminfo: use correct helpers for calculating LRU sizes in meminfo
meminfo_proc_show() and si_mem_available() are using the wrong helpers
for calculating the size of the LRUs.  The user-visible impact is that
there appears to be an abnormally high number of unevictable pages.

Link: http://lkml.kernel.org/r/20160805105805.GR2799@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:13 -07:00
Joonsoo Kim
6423aa8192 mm/page_alloc.c: recalculate some of node threshold when on/offline memory
Some of node threshold depends on number of managed pages in the node.
When memory is going on/offline, it can be changed and we need to adjust
them.

Add recalculation to appropriate places and clean-up related functions
for better maintenance.

Link: http://lkml.kernel.org/r/1470724248-26780-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-10 16:40:56 -07:00
Joonsoo Kim
81cbcbc2d8 mm/page_alloc.c: fix wrong initialization when sysctl_min_unmapped_ratio changes
Before resetting min_unmapped_pages, we need to initialize
min_unmapped_pages rather than min_slab_pages.

Fixes: a5f5f91da6 (mm: convert zone_reclaim to node_reclaim)
Link: http://lkml.kernel.org/r/1470724248-26780-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-10 16:40:56 -07:00
Vladimir Davydov
c4159a75b6 mm: memcontrol: only mark charged pages with PageKmemcg
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512.  Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context.  To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true.  The latter is set iff there are kmem-enabled memory cgroups
(online or offline).  The root cgroup is not considered kmem-enabled.

As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.

  # no memory cgroups has been created yet, create one
  mkdir /sys/fs/cgroup/memory/test
  # run something allocating pages with __GFP_ACCOUNT, e.g.
  # a program using pipe
  dmesg | tail
  # remove the memory cgroup
  rmdir /sys/fs/cgroup/memory/test

we'll get bad page state bug complaining about page->_mapcount != -1:

  BUG: Bad page state in process swapper/0  pfn:1fd945c
  page:ffffea007f651700 count:0 mapcount:-511 mapping:          (null) index:0x0
  flags: 0x1000000000000000()

To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.

Fixes: 4949148ad4 ("mm: charge/uncharge kmemcg from generic page allocator paths")
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-09 10:14:10 -07:00
Mel Gorman
b4911ea2bc mm: initialise per_cpu_nodestats for all online pgdats at boot
Paul Mackerras and Reza Arbab reported that machines with memoryless
nodes fail when vmstats are refreshed.  Paul reported an oops as follows

  Unable to handle kernel paging request for data at address 0xff7a10000
  Faulting instruction address: 0xc000000000270cd0
  Oops: Kernel access of bad area, sig: 11 [#1]
  SMP NR_CPUS=2048 NUMA PowerNV
  Modules linked in:
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.7.0-kvm+ #118
  task: c000000ff0680010 task.stack: c000000ff0704000
  NIP: c000000000270cd0 LR: c000000000270ce8 CTR: 0000000000000000
  REGS: c000000ff0707900 TRAP: 0300   Not tainted  (4.7.0-kvm+)
  MSR: 9000000102009033 <SF,HV,VEC,EE,ME,IR,DR,RI,LE,TM[E]>  CR: 846b6824  XER: 20000000
  CFAR: c000000000008768 DAR: 0000000ff7a10000 DSISR: 42000000 SOFTE: 1
  NIP refresh_zone_stat_thresholds+0x80/0x240
  LR refresh_zone_stat_thresholds+0x98/0x240
  Call Trace:
    refresh_zone_stat_thresholds+0xb8/0x240 (unreliable)

Both supplied potential fixes but one potentially misses checks and
another had redundant initialisations.  This version initialises
per_cpu_nodestats on a per-pgdat basis instead of on a per-zone basis.

Link: http://lkml.kernel.org/r/20160804092404.GI2799@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Paul Mackerras <paulus@ozlabs.org>
Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-04 20:02:09 -04:00
Fabian Frederick
bd721ea73e treewide: replace obsolete _refok by __ref
There was only one use of __initdata_refok and __exit_refok

__init_refok was used 46 times against 82 for __ref.

Those definitions are obsolete since commit 312b1485fb ("Introduce new
section reference annotations tags: __ref, __refdata, __refconst")

This patch removes the following compatibility definitions and replaces
them treewide.

/* compatibility defines */
#define __init_refok     __ref
#define __initdata_refok __refdata
#define __exit_refok     __ref

I can also provide separate patches if necessary.
(One patch per tree and check in 1 month or 2 to remove old definitions)

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466796271-3043-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Vlastimil Babka
c3486f5376 mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched().  Since 1f9efdef4f ("mm,
compaction: khugepaged should not give up due to need_resched()") the
code got quite complicated to distinguish these two up to the
__alloc_pages_slowpath() level, so different decisions could be taken
for khugepaged allocations.

After the recent changes, khugepaged allocations don't check for
contended compaction anymore, so we again don't need to distinguish lock
and sched contention, and simplify the current convoluted code a lot.

However, I believe it's also possible to simplify even more and
completely remove the check for contended compaction after the initial
async compaction for costly orders, which was originally aimed at THP
page fault allocations.  There are several reasons why this can be done
now:

- with the new defaults, THP page faults no longer do reclaim/compaction at
  all, unless the system admin has overridden the default, or application has
  indicated via madvise that it can benefit from THP's. In both cases, it
  means that the potential extra latency is expected and worth the benefits.
- even if reclaim/compaction proceeds after this patch where it previously
  wouldn't, the second compaction attempt is still async and will detect the
  contention and back off, if the contention persists
- there are still heuristics like deferred compaction and pageblock skip bits
  in place that prevent excessive THP page fault latencies

Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
a5508cd83f mm, compaction: introduce direct compaction priority
In the context of direct compaction, for some types of allocations we
would like the compaction to either succeed or definitely fail while
trying as hard as possible.  Current async/sync_light migration mode is
insufficient, as there are heuristics such as caching scanner positions,
marking pageblocks as unsuitable or deferring compaction for a zone.  At
least the final compaction attempt should be able to override these
heuristics.

To communicate how hard compaction should try, we replace migration mode
with a new enum compact_priority and change the relevant function
signatures.  In compact_zone_order() where struct compact_control is
constructed, the priority is mapped to suitable control flags.  This
patch itself has no functional change, as the current priority levels
are mapped back to the same migration modes as before.  Expanding them
will be done next.

Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is
removed, as the only caller exists under CONFIG_COMPACTION.

Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
2516035499 mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
After the previous patch, we can distinguish costly allocations that
should be really lightweight, such as THP page faults, with
__GFP_NORETRY.  This means we don't need to recognize khugepaged
allocations via PF_KTHREAD anymore.  We can also change THP page faults
in areas where madvise(MADV_HUGEPAGE) was used to try as hard as
khugepaged, as the process has indicated that it benefits from THP's and
is willing to pay some initial latency costs.

We can also make the flags handling less cryptic by distinguishing
GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from
GFP_TRANSHUGE (only direct reclaim, khugepaged default).  Adding
__GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed.

The patch effectively changes the current GFP_TRANSHUGE users as
follows:

* get_huge_zero_page() - the zero page lifetime should be relatively
  long and it's shared by multiple users, so it's worth spending some
  effort on it.  We use GFP_TRANSHUGE, and __GFP_NORETRY is not added.
  This also restores direct reclaim to this allocation, which was
  unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag
  by default to madvise and add a stall-free defrag option")

* alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency
  is not an issue.  So if khugepaged "defrag" is enabled (the default), do
  reclaim via GFP_TRANSHUGE without __GFP_NORETRY.  We can remove the
  PF_KTHREAD check from page alloc.

  As a side-effect, khugepaged will now no longer check if the initial
  compaction was deferred or contended.  This is OK, as khugepaged sleep
  times between collapsion attempts are long enough to prevent noticeable
  disruption, so we should allow it to spend some effort.

* migrate_misplaced_transhuge_page() - already was masking out
  __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is
  equivalent.

* alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise)
  are now allocating without __GFP_NORETRY.  Other vma's keep using
  __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default
  it's allowed only for madvised vma's).  The rest is conversion to
  GFP_TRANSHUGE(_LIGHT).

[mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT]
Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
3eb2771b06 mm, page_alloc: make THP-specific decisions more generic
Since THP allocations during page faults can be costly, extra decisions
are employed for them to avoid excessive reclaim and compaction, if the
initial compaction doesn't look promising.  The detection has never been
perfect as there is no gfp flag specific to THP allocations.  At this
moment it checks the whole combination of flags that makes up
GFP_TRANSHUGE, and hopes that no other users of such combination exist,
or would mind being treated the same way.  Extra care is also taken to
separate allocations from khugepaged, where latency doesn't matter that
much.

It is however possible to distinguish these allocations in a simpler and
more reliable way.  The key observation is that after the initial
compaction followed by the first iteration of "standard"
reclaim/compaction, both __GFP_NORETRY allocations and costly
allocations without __GFP_REPEAT are declared as failures:

        /* Do not loop if specifically requested */
        if (gfp_mask & __GFP_NORETRY)
                goto nopage;

        /*
         * Do not retry costly high order allocations unless they are
         * __GFP_REPEAT
         */
        if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
                goto nopage;

This means we can further distinguish allocations that are costly order
*and* additionally include the __GFP_NORETRY flag.  As it happens,
GFP_TRANSHUGE allocations do already fall into this category.  This will
also allow other costly allocations with similar high-order benefit vs
latency considerations to use this semantic.  Furthermore, we can
distinguish THP allocations that should try a bit harder (such as from
khugepageed) by removing __GFP_NORETRY, as will be done in the next
patch.

Link: http://lkml.kernel.org/r/20160721073614.24395-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
a8161d1ed6 mm, page_alloc: restructure direct compaction handling in slowpath
The retry loop in __alloc_pages_slowpath is supposed to keep trying
reclaim and compaction (and OOM), until either the allocation succeeds,
or returns with failure.  Success here is more probable when reclaim
precedes compaction, as certain watermarks have to be met for compaction
to even try, and more free pages increase the probability of compaction
success.  On the other hand, starting with light async compaction (if
the watermarks allow it), can be more efficient, especially for smaller
orders, if there's enough free memory which is just fragmented.

Thus, the current code starts with compaction before reclaim, and to
make sure that the last reclaim is always followed by a final
compaction, there's another direct compaction call at the end of the
loop.  This makes the code hard to follow and adds some duplicated
handling of migration_mode decisions.  It's also somewhat inefficient
that even if reclaim or compaction decides not to retry, the final
compaction is still attempted.  Some gfp flags combination also shortcut
these retry decisions by "goto noretry;", making it even harder to
follow.

This patch attempts to restructure the code with only minimal functional
changes.  The call to the first compaction and THP-specific checks are
now placed above the retry loop, and the "noretry" direct compaction is
removed.

The initial compaction is additionally restricted only to costly orders,
as we can expect smaller orders to be held back by watermarks, and only
larger orders to suffer primarily from fragmentation.  This better
matches the checks in reclaim's shrink_zones().

There are two other smaller functional changes.  One is that the upgrade
from async migration to light sync migration will always occur after the
initial compaction.  This is how it has been until recent patch "mm,
oom: protect !costly allocations some more", which introduced upgrading
the mode based on COMPACT_COMPLETE result, but kept the final compaction
always upgraded, which made it even more special.  It's better to return
to the simpler handling for now, as migration modes will be further
modified later in the series.

The second change is that once both reclaim and compaction declare it's
not worth to retry the reclaim/compact loop, there is no final
compaction attempt.  As argued above, this is intentional.  If that
final compaction were to succeed, it would be due to a wrong retry
decision, or simply a race with somebody else freeing memory for us.

The main outcome of this patch should be simpler code.  Logically, the
initial compaction without reclaim is the exceptional case to the
reclaim/compaction scheme, but prior to the patch, it was the last loop
iteration that was exceptional.  Now the code matches the logic better.
The change also enable the following patches.

Link: http://lkml.kernel.org/r/20160721073614.24395-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
23771235bb mm, page_alloc: don't retry initial attempt in slowpath
After __alloc_pages_slowpath() sets up new alloc_flags and wakes up
kswapd, it first tries get_page_from_freelist() with the new
alloc_flags, as it may succeed e.g. due to using min watermark instead
of low watermark.  It makes sense to to do this attempt before adjusting
zonelist based on alloc_flags/gfp_mask, as it's still relatively a fast
path if we just wake up kswapd and successfully allocate.

This patch therefore moves the initial attempt above the retry label and
reorganizes a bit the part below the retry label.  We still have to
attempt get_page_from_freelist() on each retry, as some allocations
cannot do that as part of direct reclaim or compaction, and yet are not
allowed to fail (even though they do a WARN_ON_ONCE() and thus should
not exist).  We can reuse the call meant for ALLOC_NO_WATERMARKS attempt
and just set alloc_flags to ALLOC_NO_WATERMARKS if the context allows
it.  As a side-effect, the attempts from direct reclaim/compaction will
also no longer obey watermarks once this is set, but there's little harm
in that.

Kswapd wakeups are also done on each retry to be safe from potential
races resulting in kswapd going to sleep while a process (that may not
be able to reclaim by itself) is still looping.

Link: http://lkml.kernel.org/r/20160721073614.24395-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
31a6c1909f mm, page_alloc: set alloc_flags only once in slowpath
In __alloc_pages_slowpath(), alloc_flags doesn't change after it's
initialized, so move the initialization above the retry: label.  Also
make the comment above the initialization more descriptive.

The only exception in the alloc_flags being constant is
ALLOC_NO_WATERMARKS, which may change due to TIF_MEMDIE being set on the
allocating thread.  We can fix this, and make the code simpler and a bit
more effective at the same time, by moving the part that determines
ALLOC_NO_WATERMARKS from gfp_to_alloc_flags() to gfp_pfmemalloc_allowed().

This means we don't have to mask out ALLOC_NO_WATERMARKS in numerous
places in __alloc_pages_slowpath() anymore.  The only two tests for the
flag can instead call gfp_pfmemalloc_allowed().

Link: http://lkml.kernel.org/r/20160721073614.24395-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Andy Lutomirski
d30dd8be06 mm: track NR_KERNEL_STACK in KiB instead of number of stacks
Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone.
This only makes sense if each kernel stack exists entirely in one zone,
and allowing vmapped stacks could break this assumption.

Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack
allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all
architectures.  Keep it simple and use KiB.

Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
5a1c84b404 mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point
approximating whether reclaim and compaction should retry based on pgdat
statistics.  This is effectively a revert of "mm, vmstat: remove zone
and node double accounting by approximating retries" with the difference
that inactive/active stats are still available.  This preserves the
history of why the approximation was retried and why it had to be
reverted to handle OOM kills on 32-bit systems.

Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Minchan Kim
71c799f498 mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently
which didn't ever happen in zone-lru.

  gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
  ..
  ..
   __alloc_pages_nodemask+0xe52/0xe60
   ? new_slab+0x39c/0x3b0
   new_slab+0x39c/0x3b0
   ___slab_alloc.constprop.87+0x6da/0x840
   ? __alloc_skb+0x3c/0x260
   ? _raw_spin_unlock_irq+0x27/0x60
   ? trace_hardirqs_on_caller+0xec/0x1b0
   ? finish_task_switch+0xa6/0x220
   ? poll_select_copy_remaining+0x140/0x140
   __slab_alloc.isra.81.constprop.86+0x40/0x6d
   ? __alloc_skb+0x3c/0x260
   kmem_cache_alloc+0x22c/0x260
   ? __alloc_skb+0x3c/0x260
   __alloc_skb+0x3c/0x260
   alloc_skb_with_frags+0x4e/0x1a0
   sock_alloc_send_pskb+0x16a/0x1b0
   ? wait_for_unix_gc+0x31/0x90
   ? alloc_set_pte+0x2ad/0x310
   unix_stream_sendmsg+0x28d/0x340
   sock_sendmsg+0x2d/0x40
   sock_write_iter+0x6c/0xc0
   __vfs_write+0xc0/0x120
   vfs_write+0x9b/0x1a0
   ? __might_fault+0x49/0xa0
   SyS_write+0x44/0x90
   do_fast_syscall_32+0xa6/0x1e0
   sysenter_past_esp+0x45/0x74

  Mem-Info:
  active_anon:104698 inactive_anon:105791 isolated_anon:192
   active_file:433 inactive_file:283 isolated_file:22
   unevictable:0 dirty:0 writeback:296 unstable:0
   slab_reclaimable:6389 slab_unreclaimable:78927
   mapped:474 shmem:0 pagetables:101426 bounce:0
   free:10518 free_pcp:334 free_cma:0
  Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes
  DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 809 1965 1965
  Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB
  lowmem_reserve[]: 0 0 9247 9247
  HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB
  Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB
  HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB
  Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
  25121 total pagecache pages
  24160 pages in swap cache
  Swap cache stats: add 86371, delete 62211, find 42865/60187
  Free swap  = 4015560kB
  Total swap = 4192252kB
  524186 pages RAM
  295934 pages HighMem/MovableOnly
  9658 pages reserved
  0 pages cma reserved

The order-0 allocation for normal zone failed while there are a lot of
reclaimable memory(i.e., anonymous memory with free swap).  I wanted to
analyze the problem but it was hard because we removed per-zone lru stat
so I couldn't know how many of anonymous memory there are in normal/dma
zone.

When we investigate OOM problem, reclaimable memory count is crucial
stat to find a problem.  Without it, it's hard to parse the OOM message
so I believe we should keep it.

With per-zone lru stat,

  gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
  Mem-Info:
  active_anon:101103 inactive_anon:102219 isolated_anon:0
   active_file:503 inactive_file:544 isolated_file:0
   unevictable:0 dirty:0 writeback:34 unstable:0
   slab_reclaimable:6298 slab_unreclaimable:74669
   mapped:863 shmem:0 pagetables:100998 bounce:0
   free:23573 free_pcp:1861 free_cma:0
  Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
  DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 809 1965 1965
  Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
  lowmem_reserve[]: 0 0 9247 9247
  HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
  Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
  HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
  Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
  54409 total pagecache pages
  53215 pages in swap cache
  Swap cache stats: add 300982, delete 247765, find 157978/226539
  Free swap  = 3803244kB
  Total swap = 4192252kB
  524186 pages RAM
  295934 pages HighMem/MovableOnly
  9642 pages reserved
  0 pages cma reserved

With that, we can see normal zone has a 86M reclaimable memory so we can
know something goes wrong(I will fix the problem in next patch) in
reclaim.

[mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat]
 Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net
Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Minchan Kim
33e077bd60 mm: show node_pages_scanned per node, not zone
The node_pages_scanned represents the number of scanned pages of node
for reclaim so it's pointless to show it as kilobytes.

As well, node_pages_scanned is per-node value, not per-zone.

This patch changes node_pages_scanned per-zone-killobytes with
per-node-count.

[minchan@kernel.org: fix node_pages_scanned]
  Link: http://lkml.kernel.org/r/20160716101431.GA10305@bbox
Link: http://lkml.kernel.org/r/1468588165-12461-5-git-send-email-mgorman@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
bca6759258 mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.

Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
03668b3ceb ("oom: avoid oom killer for lowmem allocations").  The
exception is costly high-order allocations or allocations that cannot
fail.  If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem
allocations then it would fall through to __alloc_pages_direct_compact.

This patch will blindly retry reclaim for zone-constrained allocations
in should_reclaim_retry up to MAX_RECLAIM_RETRIES.  This is not ideal
but without per-zone stats there are not many alternatives.  The impact
it that zone-constrained allocations may delay before considering the
OOM killer.

As there is no guarantee enough memory can ever be freed to satisfy
compaction, this patch avoids retrying compaction for zone-contrained
allocations.

In combination, that means that the per-node stats can be used when
deciding whether to continue reclaim using a rough approximation.  While
it is possible this will make the wrong decision on occasion, it will
not infinite loop as the number of reclaim attempts is capped by
MAX_RECLAIM_RETRIES.

The final step is calculating the number of dirtyable highmem pages.  As
those calculations only care about the global count of file pages in
highmem.  This patch uses a global counter used instead of per-zone
stats as it is sufficient.

In combination, this allows the per-zone LRU and dirty state counters to
be removed.

[mgorman@techsingularity.net: fix acct_highmem_file_pages()]
  Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested by: Michal Hocko <mhocko@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
16709d1de1 mm: vmstat: replace __count_zone_vm_events with a zone id equivalent
This is partially a preparation patch for more vmstat work but it also
has the slight advantage that __count_zid_vm_events is cheaper to
calculate than __count_zone_vm_events().

Link: http://lkml.kernel.org/r/1467970510-21195-32-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
3b8c0be43c mm: page_alloc: cache the last node whose dirty limit is reached
If a page is about to be dirtied then the page allocator attempts to
limit the total number of dirty pages that exists in any given zone.
The call to node_dirty_ok is expensive so this patch records if the last
pgdat examined hit the dirty limits.  In some cases, this reduces the
number of calls to node_dirty_ok().

Link: http://lkml.kernel.org/r/1467970510-21195-31-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
e6cbd7f2ef mm, page_alloc: remove fair zone allocation policy
The fair zone allocation policy interleaves allocation requests between
zones to avoid an age inversion problem whereby new pages are reclaimed
to balance a zone.  Reclaim is now node-based so this should no longer
be an issue and the fair zone allocation policy is not free.  This patch
removes it.

Link: http://lkml.kernel.org/r/1467970510-21195-30-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a5f5f91da6 mm: convert zone_reclaim to node_reclaim
As reclaim is now per-node based, convert zone_reclaim to be
node_reclaim.  It is possible that a node will be reclaimed multiple
times if it has multiple zones but this is unavoidable without caching
all nodes traversed so far.  The documentation and interface to
userspace is the same from a configuration perspective and will will be
similar in behaviour unless the node-local allocation requests were also
limited to lower zones.

Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
52e9f87ae8 mm, page_alloc: wake kswapd based on the highest eligible zone
The ac_classzone_idx is used as the basis for waking kswapd and that is
based on the preferred zoneref.  If the preferred zoneref's first zone
is lower than what is available on other nodes, it's possible that
kswapd is woken on a zone with only higher, but still eligible, zones.
As classzone_idx is strictly adhered to now, it causes a problem because
eligible pages are skipped.

For example, node 0 has only DMA32 and node 1 has only NORMAL.  An
allocating context running on node 0 may wake kswapd on node 1 telling
it to skip all NORMAL pages.

Link: http://lkml.kernel.org/r/1467970510-21195-23-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
e1a556374a mm, vmscan: only wakeup kswapd once per node for the requested classzone
kswapd is woken when zones are below the low watermark but the wakeup
decision is not taking the classzone into account.  Now that reclaim is
node-based, it is only required to wake kswapd once per node and only if
all zones are unbalanced for the requested classzone.

Note that one node might be checked multiple times if the zonelist is
ordered by node because there is no cheap way of tracking what nodes
have already been visited.  For zone-ordering, each node should be
checked only once.

Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
11fb998986 mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone.  This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted.  Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.

[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
  Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
50658e2e04 mm: move page mapped accounting to the node
Reclaim makes decisions based on the number of pages that are mapped but
it's mixing node and zone information.  Account NR_FILE_MAPPED and
NR_ANON_PAGES pages on the node.

Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
281e37265f mm, page_alloc: consider dirtyable memory in terms of nodes
Historically dirty pages were spread among zones but now that LRUs are
per-node it is more appropriate to consider dirty pages in a node.

Link: http://lkml.kernel.org/r/1467970510-21195-17-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a9dd0a8310 mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data
that is node-centric for reclaiming but shrink_node() itself still uses
too much zone information.  This patch removes unnecessary zone-based
information with the most important decision being whether to continue
reclaim or not.  Some memcg APIs are adjusted as a result even though
memcg itself still uses some zone information.

[mgorman@techsingularity.net: optimization]
  Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
38087d9b03 mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order.  It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat().  What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order.  This patch irons out the logic to check just that and the end
result is less headache inducing.

Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a52633d8e9 mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking.  This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review.  It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.

Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
75ef718405 mm, vmstat: add infrastructure for per-node vmstats
Patchset: "Move LRU page reclaim from zones to nodes v9"

This series moves LRUs from the zones to the node.  While this is a
current rebase, the test results were based on mmotm as of June 23rd.
Conceptually, this series is simple but there are a lot of details.
Some of the broad motivations for this are;

1. The residency of a page partially depends on what zone the page was
   allocated from.  This is partially combatted by the fair zone allocation
   policy but that is a partial solution that introduces overhead in the
   page allocator paths.

2. Currently, reclaim on node 0 behaves slightly different to node 1. For
   example, direct reclaim scans in zonelist order and reclaims even if
   the zone is over the high watermark regardless of the age of pages
   in that LRU. Kswapd on the other hand starts reclaim on the highest
   unbalanced zone. A difference in distribution of file/anon pages due
   to when they were allocated results can result in a difference in
   again. While the fair zone allocation policy mitigates some of the
   problems here, the page reclaim results on a multi-zone node will
   always be different to a single-zone node.
   it was scheduled on as a result.

3. kswapd and the page allocator scan zones in the opposite order to
   avoid interfering with each other but it's sensitive to timing.  This
   mitigates the page allocator using pages that were allocated very recently
   in the ideal case but it's sensitive to timing. When kswapd is allocating
   from lower zones then it's great but during the rebalancing of the highest
   zone, the page allocator and kswapd interfere with each other. It's worse
   if the highest zone is small and difficult to balance.

4. slab shrinkers are node-based which makes it harder to identify the exact
   relationship between slab reclaim and LRU reclaim.

The reason we have zone-based reclaim is that we used to have
large highmem zones in common configurations and it was necessary
to quickly find ZONE_NORMAL pages for reclaim. Today, this is much
less of a concern as machines with lots of memory will (or should) use
64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are
rare. Machines that do use highmem should have relatively low highmem:lowmem
ratios than we worried about in the past.

Conceptually, moving to node LRUs should be easier to understand. The
page allocator plays fewer tricks to game reclaim and reclaim behaves
similarly on all nodes.

The series has been tested on a 16 core UMA machine and a 2-socket 48
core NUMA machine. The UMA results are presented in most cases as the NUMA
machine behaved similarly.

pagealloc
---------

This is a microbenchmark that shows the benefit of removing the fair zone
allocation policy. It was tested uip to order-4 but only orders 0 and 1 are
shown as the other orders were comparable.

                                           4.7.0-rc4                  4.7.0-rc4
                                      mmotm-20160623                 nodelru-v9
Min      total-odr0-1               490.00 (  0.00%)           457.00 (  6.73%)
Min      total-odr0-2               347.00 (  0.00%)           329.00 (  5.19%)
Min      total-odr0-4               288.00 (  0.00%)           273.00 (  5.21%)
Min      total-odr0-8               251.00 (  0.00%)           239.00 (  4.78%)
Min      total-odr0-16              234.00 (  0.00%)           222.00 (  5.13%)
Min      total-odr0-32              223.00 (  0.00%)           211.00 (  5.38%)
Min      total-odr0-64              217.00 (  0.00%)           208.00 (  4.15%)
Min      total-odr0-128             214.00 (  0.00%)           204.00 (  4.67%)
Min      total-odr0-256             250.00 (  0.00%)           230.00 (  8.00%)
Min      total-odr0-512             271.00 (  0.00%)           269.00 (  0.74%)
Min      total-odr0-1024            291.00 (  0.00%)           282.00 (  3.09%)
Min      total-odr0-2048            303.00 (  0.00%)           296.00 (  2.31%)
Min      total-odr0-4096            311.00 (  0.00%)           309.00 (  0.64%)
Min      total-odr0-8192            316.00 (  0.00%)           314.00 (  0.63%)
Min      total-odr0-16384           317.00 (  0.00%)           315.00 (  0.63%)
Min      total-odr1-1               742.00 (  0.00%)           712.00 (  4.04%)
Min      total-odr1-2               562.00 (  0.00%)           530.00 (  5.69%)
Min      total-odr1-4               457.00 (  0.00%)           433.00 (  5.25%)
Min      total-odr1-8               411.00 (  0.00%)           381.00 (  7.30%)
Min      total-odr1-16              381.00 (  0.00%)           356.00 (  6.56%)
Min      total-odr1-32              372.00 (  0.00%)           346.00 (  6.99%)
Min      total-odr1-64              372.00 (  0.00%)           343.00 (  7.80%)
Min      total-odr1-128             375.00 (  0.00%)           351.00 (  6.40%)
Min      total-odr1-256             379.00 (  0.00%)           351.00 (  7.39%)
Min      total-odr1-512             385.00 (  0.00%)           355.00 (  7.79%)
Min      total-odr1-1024            386.00 (  0.00%)           358.00 (  7.25%)
Min      total-odr1-2048            390.00 (  0.00%)           362.00 (  7.18%)
Min      total-odr1-4096            390.00 (  0.00%)           362.00 (  7.18%)
Min      total-odr1-8192            388.00 (  0.00%)           363.00 (  6.44%)

This shows a steady improvement throughout. The primary benefit is from
reduced system CPU usage which is obvious from the overall times;

           4.7.0-rc4   4.7.0-rc4
        mmotm-20160623nodelru-v8
User          189.19      191.80
System       2604.45     2533.56
Elapsed      2855.30     2786.39

The vmstats also showed that the fair zone allocation policy was definitely
removed as can be seen here;

                             4.7.0-rc3   4.7.0-rc3
                         mmotm-20160623 nodelru-v8
DMA32 allocs               28794729769           0
Normal allocs              48432501431 77227309877
Movable allocs                       0           0

tiobench on ext4
----------------

tiobench is a benchmark that artifically benefits if old pages remain resident
while new pages get reclaimed. The fair zone allocation policy mitigates this
problem so pages age fairly. While the benchmark has problems, it is important
that tiobench performance remains constant as it implies that page aging
problems that the fair zone allocation policy fixes are not re-introduced.

                                         4.7.0-rc4             4.7.0-rc4
                                    mmotm-20160623            nodelru-v9
Min      PotentialReadSpeed        89.65 (  0.00%)       90.21 (  0.62%)
Min      SeqRead-MB/sec-1          82.68 (  0.00%)       82.01 ( -0.81%)
Min      SeqRead-MB/sec-2          72.76 (  0.00%)       72.07 ( -0.95%)
Min      SeqRead-MB/sec-4          75.13 (  0.00%)       74.92 ( -0.28%)
Min      SeqRead-MB/sec-8          64.91 (  0.00%)       65.19 (  0.43%)
Min      SeqRead-MB/sec-16         62.24 (  0.00%)       62.22 ( -0.03%)
Min      RandRead-MB/sec-1          0.88 (  0.00%)        0.88 (  0.00%)
Min      RandRead-MB/sec-2          0.95 (  0.00%)        0.92 ( -3.16%)
Min      RandRead-MB/sec-4          1.43 (  0.00%)        1.34 ( -6.29%)
Min      RandRead-MB/sec-8          1.61 (  0.00%)        1.60 ( -0.62%)
Min      RandRead-MB/sec-16         1.80 (  0.00%)        1.90 (  5.56%)
Min      SeqWrite-MB/sec-1         76.41 (  0.00%)       76.85 (  0.58%)
Min      SeqWrite-MB/sec-2         74.11 (  0.00%)       73.54 ( -0.77%)
Min      SeqWrite-MB/sec-4         80.05 (  0.00%)       80.13 (  0.10%)
Min      SeqWrite-MB/sec-8         72.88 (  0.00%)       73.20 (  0.44%)
Min      SeqWrite-MB/sec-16        75.91 (  0.00%)       76.44 (  0.70%)
Min      RandWrite-MB/sec-1         1.18 (  0.00%)        1.14 ( -3.39%)
Min      RandWrite-MB/sec-2         1.02 (  0.00%)        1.03 (  0.98%)
Min      RandWrite-MB/sec-4         1.05 (  0.00%)        0.98 ( -6.67%)
Min      RandWrite-MB/sec-8         0.89 (  0.00%)        0.92 (  3.37%)
Min      RandWrite-MB/sec-16        0.92 (  0.00%)        0.93 (  1.09%)

           4.7.0-rc4   4.7.0-rc4
        mmotm-20160623 approx-v9
User          645.72      525.90
System        403.85      331.75
Elapsed      6795.36     6783.67

This shows that the series has little or not impact on tiobench which is
desirable and a reduction in system CPU usage. It indicates that the fair
zone allocation policy was removed in a manner that didn't reintroduce
one class of page aging bug. There were only minor differences in overall
reclaim activity

                             4.7.0-rc4   4.7.0-rc4
                          mmotm-20160623nodelru-v8
Minor Faults                    645838      647465
Major Faults                       573         640
Swap Ins                             0           0
Swap Outs                            0           0
DMA allocs                           0           0
DMA32 allocs                  46041453    44190646
Normal allocs                 78053072    79887245
Movable allocs                       0           0
Allocation stalls                   24          67
Stall zone DMA                       0           0
Stall zone DMA32                     0           0
Stall zone Normal                    0           2
Stall zone HighMem                   0           0
Stall zone Movable                   0          65
Direct pages scanned             10969       30609
Kswapd pages scanned          93375144    93492094
Kswapd pages reclaimed        93372243    93489370
Direct pages reclaimed           10969       30609
Kswapd efficiency                  99%         99%
Kswapd velocity              13741.015   13781.934
Direct efficiency                 100%        100%
Direct velocity                  1.614       4.512
Percentage direct scans             0%          0%

kswapd activity was roughly comparable. There were differences in direct
reclaim activity but negligible in the context of the overall workload
(velocity of 4 pages per second with the patches applied, 1.6 pages per
second in the baseline kernel).

pgbench read-only large configuration on ext4
---------------------------------------------

pgbench is a database benchmark that can be sensitive to page reclaim
decisions. This also checks if removing the fair zone allocation policy
is safe

pgbench Transactions
                        4.7.0-rc4             4.7.0-rc4
                   mmotm-20160623            nodelru-v8
Hmean    1       188.26 (  0.00%)      189.78 (  0.81%)
Hmean    5       330.66 (  0.00%)      328.69 ( -0.59%)
Hmean    12      370.32 (  0.00%)      380.72 (  2.81%)
Hmean    21      368.89 (  0.00%)      369.00 (  0.03%)
Hmean    30      382.14 (  0.00%)      360.89 ( -5.56%)
Hmean    32      428.87 (  0.00%)      432.96 (  0.95%)

Negligible differences again. As with tiobench, overall reclaim activity
was comparable.

bonnie++ on ext4
----------------

No interesting performance difference, negligible differences on reclaim
stats.

paralleldd on ext4
------------------

This workload uses varying numbers of dd instances to read large amounts of
data from disk.

                               4.7.0-rc3             4.7.0-rc3
                          mmotm-20160623            nodelru-v9
Amean    Elapsd-1       186.04 (  0.00%)      189.41 ( -1.82%)
Amean    Elapsd-3       192.27 (  0.00%)      191.38 (  0.46%)
Amean    Elapsd-5       185.21 (  0.00%)      182.75 (  1.33%)
Amean    Elapsd-7       183.71 (  0.00%)      182.11 (  0.87%)
Amean    Elapsd-12      180.96 (  0.00%)      181.58 ( -0.35%)
Amean    Elapsd-16      181.36 (  0.00%)      183.72 ( -1.30%)

           4.7.0-rc4   4.7.0-rc4
        mmotm-20160623 nodelru-v9
User         1548.01     1552.44
System       8609.71     8515.08
Elapsed      3587.10     3594.54

There is little or no change in performance but some drop in system CPU usage.

                             4.7.0-rc3   4.7.0-rc3
                        mmotm-20160623  nodelru-v9
Minor Faults                    362662      367360
Major Faults                      1204        1143
Swap Ins                            22           0
Swap Outs                         2855        1029
DMA allocs                           0           0
DMA32 allocs                  31409797    28837521
Normal allocs                 46611853    49231282
Movable allocs                       0           0
Direct pages scanned                 0           0
Kswapd pages scanned          40845270    40869088
Kswapd pages reclaimed        40830976    40855294
Direct pages reclaimed               0           0
Kswapd efficiency                  99%         99%
Kswapd velocity              11386.711   11369.769
Direct efficiency                 100%        100%
Direct velocity                  0.000       0.000
Percentage direct scans             0%          0%
Page writes by reclaim            2855        1029
Page writes file                     0           0
Page writes anon                  2855        1029
Page reclaim immediate             771        1628
Sector Reads                 293312636   293536360
Sector Writes                 18213568    18186480
Page rescued immediate               0           0
Slabs scanned                   128257      132747
Direct inode steals                181          56
Kswapd inode steals                 59        1131

It basically shows that kswapd was active at roughly the same rate in
both kernels. There was also comparable slab scanning activity and direct
reclaim was avoided in both cases. There appears to be a large difference
in numbers of inodes reclaimed but the workload has few active inodes and
is likely a timing artifact.

stutter
-------

stutter simulates a simple workload. One part uses a lot of anonymous
memory, a second measures mmap latency and a third copies a large file.
The primary metric is checking for mmap latency.

stutter
                             4.7.0-rc4             4.7.0-rc4
                        mmotm-20160623            nodelru-v8
Min         mmap     16.6283 (  0.00%)     13.4258 ( 19.26%)
1st-qrtle   mmap     54.7570 (  0.00%)     34.9121 ( 36.24%)
2nd-qrtle   mmap     57.3163 (  0.00%)     46.1147 ( 19.54%)
3rd-qrtle   mmap     58.9976 (  0.00%)     47.1882 ( 20.02%)
Max-90%     mmap     59.7433 (  0.00%)     47.4453 ( 20.58%)
Max-93%     mmap     60.1298 (  0.00%)     47.6037 ( 20.83%)
Max-95%     mmap     73.4112 (  0.00%)     82.8719 (-12.89%)
Max-99%     mmap     92.8542 (  0.00%)     88.8870 (  4.27%)
Max         mmap   1440.6569 (  0.00%)    121.4201 ( 91.57%)
Mean        mmap     59.3493 (  0.00%)     42.2991 ( 28.73%)
Best99%Mean mmap     57.2121 (  0.00%)     41.8207 ( 26.90%)
Best95%Mean mmap     55.9113 (  0.00%)     39.9620 ( 28.53%)
Best90%Mean mmap     55.6199 (  0.00%)     39.3124 ( 29.32%)
Best50%Mean mmap     53.2183 (  0.00%)     33.1307 ( 37.75%)
Best10%Mean mmap     45.9842 (  0.00%)     20.4040 ( 55.63%)
Best5%Mean  mmap     43.2256 (  0.00%)     17.9654 ( 58.44%)
Best1%Mean  mmap     32.9388 (  0.00%)     16.6875 ( 49.34%)

This shows a number of improvements with the worst-case outlier greatly
improved.

Some of the vmstats are interesting

                             4.7.0-rc4   4.7.0-rc4
                          mmotm-20160623nodelru-v8
Swap Ins                           163         502
Swap Outs                            0           0
DMA allocs                           0           0
DMA32 allocs                 618719206  1381662383
Normal allocs                891235743   564138421
Movable allocs                       0           0
Allocation stalls                 2603           1
Direct pages scanned            216787           2
Kswapd pages scanned          50719775    41778378
Kswapd pages reclaimed        41541765    41777639
Direct pages reclaimed          209159           0
Kswapd efficiency                  81%         99%
Kswapd velocity              16859.554   14329.059
Direct efficiency                  96%          0%
Direct velocity                 72.061       0.001
Percentage direct scans             0%          0%
Page writes by reclaim         6215049           0
Page writes file               6215049           0
Page writes anon                     0           0
Page reclaim immediate           70673          90
Sector Reads                  81940800    81680456
Sector Writes                100158984    98816036
Page rescued immediate               0           0
Slabs scanned                  1366954       22683

While this is not guaranteed in all cases, this particular test showed
a large reduction in direct reclaim activity. It's also worth noting
that no page writes were issued from reclaim context.

This series is not without its hazards. There are at least three areas
that I'm concerned with even though I could not reproduce any problems in
that area.

1. Reclaim/compaction is going to be affected because the amount of reclaim is
   no longer targetted at a specific zone. Compaction works on a per-zone basis
   so there is no guarantee that reclaiming a few THP's worth page pages will
   have a positive impact on compaction success rates.

2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers
   are called is now different. This may or may not be a problem but if it
   is, it'll be because shrinkers are not called enough and some balancing
   is required.

3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are
   distributed between zones and the fair zone allocation policy used to do
   something very similar for anon. The distribution is now different but not
   necessarily in any way that matters but it's still worth bearing in mind.

VM statistic counters for reclaim decisions are zone-based.  If the kernel
is to reclaim on a per-node basis then we need to track per-node
statistics but there is no infrastructure for that.  The most notable
change is that the old node_page_state is renamed to
sum_zone_node_page_state.  The new node_page_state takes a pglist_data and
uses per-node stats but none exist yet.  There is some renaming such as
vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming
of mod_state to mod_zone_state.  Otherwise, this is mostly a mechanical
patch with no functional change.  There is a lot of similarity between the
node and zone helpers which is unfortunate but there was no obvious way of
reusing the code and maintaining type safety.

Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a621184ac6 mm, meminit: remove early_page_nid_uninitialised
The helper early_page_nid_uninitialised() has been dead since commit
974a786e63 ("mm, page_alloc: remove MIGRATE_RESERVE") so remove the
dead code.

Link: http://lkml.kernel.org/r/1468008031-3848-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
zhong jiang
400bc7fd4f mm: update the comment in __isolate_free_page
We need to assure the comment is consistent with the code.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466171914-21027-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Kirill A. Shutemov
65c453778a mm, rmap: account shmem thp pages
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and
smaps.  It indicates how many times we allocate and map shmem THP.

NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS.

Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
9a73f61bdb thp, mlock: do not mlock PTE-mapped file huge pages
As with anon THP, we only mlock file huge pages if we can prove that the
page is not mapped with PTE.  This way we can avoid mlock leak into
non-mlocked vma on split.

We rely on PageDoubleMap() under lock_page() to check if the the page
may be PTE mapped.  PG_double_map is set by page_add_file_rmap() when
the page mapped with PTEs.

Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
4949148ad4 mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag.  A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.

This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e.  when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.

To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e.  to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers.  This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends.  A charged page will be
automatically uncharged on free.

To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages.  Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine.  There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.

In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths.  If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.

Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
452647784b mm: memcontrol: cleanup kmem charge functions
- Handle memcg_kmem_enabled check out to the caller. This reduces the
   number of function definitions making the code easier to follow. At
   the same time it doesn't result in code bloat, because all of these
   functions are used only in one or two places.

 - Move __GFP_ACCOUNT check to the caller as well so that one wouldn't
   have to dive deep into memcg implementation to see which allocations
   are charged and which are not.

 - Refresh comments.

Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Joonsoo Kim
46f24fd857 mm/page_alloc: introduce post allocation processing on page allocator
This patch is motivated from Hugh and Vlastimil's concern [1].

There are two ways to get freepage from the allocator.  One is using
normal memory allocation API and the other is __isolate_free_page()
which is internally used for compaction and pageblock isolation.  Later
usage is rather tricky since it doesn't do whole post allocation
processing done by normal API.

One problematic thing I already know is that poisoned page would not be
checked if it is allocated by __isolate_free_page().  Perhaps, there
would be more.

We could add more debug logic for allocated page in the future and this
separation would cause more problem.  I'd like to fix this situation at
this time.  Solution is simple.  This patch commonize some logic for
newly allocated page and uses it on all sites.  This will solve the
problem.

[1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E

[iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3]
  Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com
  Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Joonsoo Kim
a9627bc5e3 mm/page_owner: introduce split_page_owner and replace manual handling
split_page() calls set_page_owner() to set up page_owner to each pages.
But, it has a drawback that head page and the others have different
stacktrace because callsite of set_page_owner() is slightly differnt.
To avoid this problem, this patch copies head page's page_owner to the
others.  It needs to introduce new function, split_page_owner() but it
also remove the other function, get_page_owner_gfp() so looks good to
do.

Link: http://lkml.kernel.org/r/1464230275-25791-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Joonsoo Kim
83358ece26 mm/page_owner: initialize page owner without holding the zone lock
It's not necessary to initialized page_owner with holding the zone lock.
It would cause more contention on the zone lock although it's not a big
problem since it is just debug feature.  But, it is better than before
so do it.  This is also preparation step to use stackdepot in page owner
feature.  Stackdepot allocates new pages when there is no reserved space
and holding the zone lock in this case will cause deadlock.

Link: http://lkml.kernel.org/r/1464230275-25791-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Joonsoo Kim
66c64223ad mm/compaction: split freepages without holding the zone lock
We don't need to split freepages with holding the zone lock.  It will
cause more contention on zone lock so not desirable.

[rientjes@google.com: if __isolate_free_page() fails, avoid adding to freelist so we don't call map_pages() with it]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211447001.43430@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/1464230275-25791-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Minchan Kim
bda807d444 mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough
to make high-order pages.  But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,.  enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.

So, this patch is to support facility to change non-movable pages with
movable.  For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.

If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.

1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);

What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully.  On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation.  If a driver cannot isolate the page, it should
return *false*.

Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.

2. int (*migratepage) (struct address_space *mapping,
		struct page *newpage, struct page *oldpage, enum migrate_mode);

After isolation, VM calls migratepage of driver with isolated page.  The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage.  Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0.  If driver cannot migrate the page at the
moment, driver can return -EAGAIN.  On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure".  On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.

Driver shouldn't touch page.lru field VM using in the functions.

3. void (*putback_page)(struct page *);

If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page.  In this function, driver should put the isolated page back to the
own data structure.

4. non-lru movable page flags

There are two page flags for supporting non-lru movable page.

* PG_movable

Driver should use the below function to make page movable under
page_lock.

	void __SetPageMovable(struct page *page, struct address_space *mapping)

It needs argument of address_space for registering migration family
functions which will be called by VM.  Exactly speaking, PG_movable is
not a real flag of struct page.  Rather than, VM reuses page->mapping's
lower bits to represent it.

	#define PAGE_MAPPING_MOVABLE 0x2
	page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;

so driver shouldn't access page->mapping directly.  Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.

For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page.  As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable).  But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated.  Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping.  It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.

For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page.  The lock_page prevents
sudden destroying of page->mapping.

Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.

* PG_isolated

To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page.  So if a CPU encounters PG_isolated
non-lru movable page, it can skip it.  Driver doesn't need to manipulate
the flag because VM will set/clear it automatically.  Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field.  PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.

[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
  Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
2a966b77ae mm: oom: add memcg to oom_control
It's a part of oom context just like allocation order and nodemask, so
let's move it to oom_control instead of passing it in the argument list.

Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Oliver O'Halloran
90cae1fe1c mm/init: fix zone boundary creation
As a part of memory initialisation the architecture passes an array to
free_area_init_nodes() which specifies the max PFN of each memory zone.
This array is not necessarily monotonic (due to unused zones) so this
array is parsed to build monotonic lists of the min and max PFN for each
zone.  ZONE_MOVABLE is special cased here as its limits are managed by
the mm subsystem rather than the architecture.  Unfortunately, this
special casing is broken when ZONE_MOVABLE is the not the last zone in
the zone list.  The core of the issue is:

	if (i == ZONE_MOVABLE)
		continue;
	arch_zone_lowest_possible_pfn[i] =
		arch_zone_highest_possible_pfn[i-1];

As ZONE_MOVABLE is skipped the lowest_possible_pfn of the next zone will
be set to zero.  This patch fixes this bug by adding explicitly tracking
where the next zone should start rather than relying on the contents
arch_zone_highest_possible_pfn[].

Thie is low priority.  To get bitten by this you need to enable a zone
that appears after ZONE_MOVABLE in the zone_type enum.  As far as I can
tell this means running a kernel with ZONE_DEVICE or ZONE_CMA enabled,
so I can't see this affecting too many people.

I only noticed this because I've been fiddling with ZONE_DEVICE on
powerpc and 4.6 broke my test kernel.  This bug, in conjunction with the
changes in Taku Izumi's kernelcore=mirror patch (d91749c1dd) and
powerpc being the odd architecture which initialises max_zone_pfn[] to
~0ul instead of 0 caused all of system memory to be placed into
ZONE_DEVICE at boot, followed a panic since device memory cannot be used
for kernel allocations.  I've already submitted a patch to fix the
powerpc specific bits, but I figured this should be fixed too.

Link: http://lkml.kernel.org/r/1462435033-15601-1-git-send-email-oohall@gmail.com
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Mel Gorman
ef70b6f41c mm, meminit: ensure node is online before checking whether pages are uninitialised
early_page_uninitialised looks up an arbitrary PFN.  While a machine
without node 0 will boot with "mm, page_alloc: Always return a valid
node from early_pfn_to_nid", it works because it assumes that nodes are
always in PFN order.  This is not guaranteed so this patch adds
robustness by always checking if the node being checked is online.

Link: http://lkml.kernel.org/r/1468008031-3848-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Mel Gorman
e4568d3803 mm, meminit: always return a valid node from early_pfn_to_nid
early_pfn_to_nid can return node 0 if a PFN is invalid on machines that
has no node 0.  A machine with only node 1 was observed to crash with
the following message:

   BUG: unable to handle kernel paging request at 000000000002a3c8
   PGD 0
   Modules linked in:
   Hardware name: Supermicro H8DSP-8/H8DSP-8, BIOS 080011  06/30/2006
   task: ffffffff81c0d500 ti: ffffffff81c00000 task.ti: ffffffff81c00000
   RIP: reserve_bootmem_region+0x6a/0xef
   CR2: 000000000002a3c8 CR3: 0000000001c06000 CR4: 00000000000006b0
   Call Trace:
      free_all_bootmem+0x4b/0x12a
      mem_init+0x70/0xa3
      start_kernel+0x25b/0x49b

The problem is that early_page_uninitialised uses the early_pfn_to_nid
helper which returns node 0 for invalid PFNs.  No caller of
early_pfn_to_nid cares except early_page_uninitialised.  This patch has
early_pfn_to_nid always return a valid node.

Link: http://lkml.kernel.org/r/1468008031-3848-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Mel Gorman
e46e7b77c9 mm, page_alloc: recalculate the preferred zoneref if the context can ignore memory policies
The optimistic fast path may use cpuset_current_mems_allowed instead of
of a NULL nodemask supplied by the caller for cpuset allocations.  The
preferred zone is calculated on this basis for statistic purposes and as
a starting point in the zonelist iterator.

However, if the context can ignore memory policies due to being atomic
or being able to ignore watermarks then the starting point in the
zonelist iterator is no longer correct.  This patch resets the zonelist
iterator in the allocator slowpath if the context can ignore memory
policies.  This will alter the zone used for statistics but only after
it is known that it makes sense for that context.  Resetting it before
entering the slowpath would potentially allow an ALLOC_CPUSET allocation
to be accounted for against the wrong zone.  Note that while nodemask is
not explicitly set to the original nodemask, it would only have been
overwritten if cpuset_enabled() and it was reset before the slowpath was
entered.

Link: http://lkml.kernel.org/r/20160602103936.GU2527@techsingularity.net
Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-03 16:02:57 -07:00
Mel Gorman
0d0bd89435 mm, page_alloc: reset zonelist iterator after resetting fair zone allocation policy
Geert Uytterhoeven reported the following problem that bisected to
commit c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone
in a zonelist twice") on m68k/ARAnyM

    BUG: scheduling while atomic: cron/668/0x10c9a0c0
    Modules linked in:
    CPU: 0 PID: 668 Comm: cron Not tainted 4.6.0-atari-05133-gc33d6c06f60f710f #364
    Call Trace: [<0003d7d0>] __schedule_bug+0x40/0x54
      __schedule+0x312/0x388
      __schedule+0x0/0x388
      prepare_to_wait+0x0/0x52
      schedule+0x64/0x82
      schedule_timeout+0xda/0x104
      set_next_entity+0x18/0x40
      pick_next_task_fair+0x78/0xda
      io_schedule_timeout+0x36/0x4a
      bit_wait_io+0x0/0x40
      bit_wait_io+0x12/0x40
      __wait_on_bit+0x46/0x76
      wait_on_page_bit_killable+0x64/0x6c
      bit_wait_io+0x0/0x40
      wake_bit_function+0x0/0x4e
      __lock_page_or_retry+0xde/0x124
      do_scan_async+0x114/0x17c
      lookup_swap_cache+0x24/0x4e
      handle_mm_fault+0x626/0x7de
      find_vma+0x0/0x66
      down_read+0x0/0xe
      wait_on_page_bit_killable_timeout+0x77/0x7c
      find_vma+0x16/0x66
      do_page_fault+0xe6/0x23a
      res_func+0xa3c/0x141a
      buserr_c+0x190/0x6d4
      res_func+0xa3c/0x141a
      buserr+0x20/0x28
      res_func+0xa3c/0x141a
      buserr+0x20/0x28

The relationship is not obvious but it's due to a failure to rescan the
full zonelist after the fair zone allocation policy exhausts the batch
count.  While this is a functional problem, it's also a performance
issue.  A page allocator microbenchmark showed the following

                                   4.7.0-rc1                  4.7.0-rc1
                                     vanilla                 reset-v1r2
  Min      alloc-odr0-1     327.00 (  0.00%)           326.00 (  0.31%)
  Min      alloc-odr0-2     235.00 (  0.00%)           235.00 (  0.00%)
  Min      alloc-odr0-4     198.00 (  0.00%)           198.00 (  0.00%)
  Min      alloc-odr0-8     170.00 (  0.00%)           170.00 (  0.00%)
  Min      alloc-odr0-16    156.00 (  0.00%)           156.00 (  0.00%)
  Min      alloc-odr0-32    150.00 (  0.00%)           150.00 (  0.00%)
  Min      alloc-odr0-64    146.00 (  0.00%)           146.00 (  0.00%)
  Min      alloc-odr0-128   145.00 (  0.00%)           145.00 (  0.00%)
  Min      alloc-odr0-256   155.00 (  0.00%)           155.00 (  0.00%)
  Min      alloc-odr0-512   168.00 (  0.00%)           165.00 (  1.79%)
  Min      alloc-odr0-1024  175.00 (  0.00%)           174.00 (  0.57%)
  Min      alloc-odr0-2048  180.00 (  0.00%)           180.00 (  0.00%)
  Min      alloc-odr0-4096  187.00 (  0.00%)           186.00 (  0.53%)
  Min      alloc-odr0-8192  190.00 (  0.00%)           190.00 (  0.00%)
  Min      alloc-odr0-16384 191.00 (  0.00%)           191.00 (  0.00%)
  Min      alloc-odr1-1     736.00 (  0.00%)           445.00 ( 39.54%)
  Min      alloc-odr1-2     343.00 (  0.00%)           335.00 (  2.33%)
  Min      alloc-odr1-4     277.00 (  0.00%)           270.00 (  2.53%)
  Min      alloc-odr1-8     238.00 (  0.00%)           233.00 (  2.10%)
  Min      alloc-odr1-16    224.00 (  0.00%)           218.00 (  2.68%)
  Min      alloc-odr1-32    210.00 (  0.00%)           208.00 (  0.95%)
  Min      alloc-odr1-64    207.00 (  0.00%)           203.00 (  1.93%)
  Min      alloc-odr1-128   276.00 (  0.00%)           202.00 ( 26.81%)
  Min      alloc-odr1-256   206.00 (  0.00%)           202.00 (  1.94%)
  Min      alloc-odr1-512   207.00 (  0.00%)           202.00 (  2.42%)
  Min      alloc-odr1-1024  208.00 (  0.00%)           205.00 (  1.44%)
  Min      alloc-odr1-2048  213.00 (  0.00%)           212.00 (  0.47%)
  Min      alloc-odr1-4096  218.00 (  0.00%)           216.00 (  0.92%)
  Min      alloc-odr1-8192  341.00 (  0.00%)           219.00 ( 35.78%)

Note that order-0 allocations are unaffected but higher orders get a
small boost from this patch and a large reduction in system CPU usage
overall as can be seen here:

             4.7.0-rc1   4.7.0-rc1
               vanilla  reset-v1r2
  User           85.32       86.31
  System       2221.39     2053.36
  Elapsed      2368.89     2202.47

Fixes: c33d6c06f6 ("mm, page_alloc: avoid looking up the first zone in a zonelist twice")
Link: http://lkml.kernel.org/r/20160531100848.GR2527@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-03 16:02:56 -07:00
Vlastimil Babka
83b9355bf6 mm, page_alloc: prevent infinite loop in buffered_rmqueue()
In DEBUG_VM kernel, we can hit infinite loop for order == 0 in
buffered_rmqueue() when check_new_pcp() returns 1, because the bad page
is never removed from the pcp list.  Fix this by removing the page
before retrying.  Also we don't need to check if page is non-NULL,
because we simply grab it from the list which was just tested for being
non-empty.

Fixes: 479f854a20 ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20160530090154.GM2527@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-03 16:02:56 -07:00
Yang Shi
f86e427197 mm: check the return value of lookup_page_ext for all call sites
Per the discussion with Joonsoo Kim [1], we need check the return value
of lookup_page_ext() for all call sites since it might return NULL in
some cases, although it is unlikely, i.e.  memory hotplug.

Tested with ltp with "page_owner=0".

[1] http://lkml.kernel.org/r/20160519002809.GA10245@js1304-P5Q-DELUXE

[akpm@linux-foundation.org: fix build-breaking typos]
[arnd@arndb.de: fix build problems from lookup_page_ext]
  Link: http://lkml.kernel.org/r/6285269.2CksypHdYp@wuerfel
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1464023768-31025-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-03 15:06:22 -07:00
Naoya Horiguchi
e570f56ccc mm: check_new_page_bad() directly returns in __PG_HWPOISON case
Currently we check page->flags twice for "HWPoisoned" case of
check_new_page_bad(), which can cause a race with unpoisoning.

This race unnecessarily taints kernel with "BUG: Bad page state".
check_new_page_bad() is the only caller of bad_page() which is
interested in __PG_HWPOISON, so let's move the hwpoison related code in
bad_page() to it.

Link: http://lkml.kernel.org/r/20160518100949.GA17299@hori1.linux.bs1.fc.nec.co.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
seokhoon.yoon
29b52de182 mm, kasan: fix to call kasan_free_pages() after poisoning page
When CONFIG_PAGE_POISONING and CONFIG_KASAN is enabled,
free_pages_prepare()'s codeflow is below.

  1)kmemcheck_free_shadow()
  2)kasan_free_pages()
    - set shadow byte of page is freed
  3)kernel_poison_pages()
  3.1) check access to page is valid or not using kasan
    ---> error occur, kasan think it is invalid access
  3.2) poison page
  4)kernel_map_pages()

So kasan_free_pages() should be called after poisoning the page.

Link: http://lkml.kernel.org/r/1463220405-7455-1-git-send-email-iamyooon@gmail.com
Signed-off-by: seokhoon.yoon <iamyooon@gmail.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Stefan Bader
4b50bcc7ed mm: use phys_addr_t for reserve_bootmem_region() arguments
Since commit 92923ca3aa ("mm: meminit: only set page reserved in the
memblock region") the reserved bit is set on reserved memblock regions.
However start and end address are passed as unsigned long.  This is only
32bit on i386, so it can end up marking the wrong pages reserved for
ranges at 4GB and above.

This was observed on a 32bit Xen dom0 which was booted with initial
memory set to a value below 4G but allowing to balloon in memory
(dom0_mem=1024M for example).  This would define a reserved bootmem
region for the additional memory (for example on a 8GB system there was
a reverved region covering the 4GB-8GB range).  But since the addresses
were passed on as unsigned long, this was actually marking all pages
from 0 to 4GB as reserved.

Fixes: 92923ca3aa ("mm: meminit: only set page reserved in the memblock region")
Link: http://lkml.kernel.org/r/1463491221-10573-1-git-send-email-stefan.bader@canonical.com
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Cc: <stable@vger.kernel.org>	[4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Minfei Huang
2a138dc7e5 mm: use existing helper to convert "on"/"off" to boolean
It's more convenient to use existing function helper to convert string
"on/off" to boolean.

Link: http://lkml.kernel.org/r/1461908824-16129-1-git-send-email-mnghuan@gmail.com
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
31e49bfda1 mm, oom: protect !costly allocations some more for !CONFIG_COMPACTION
Joonsoo has reported that he is able to trigger OOM for !costly high
order requests (heavy fork() workload close the OOM) with the new oom
detection rework.  This is because we rely only on should_reclaim_retry
when the compaction is disabled and it only checks watermarks for the
requested order and so we might trigger OOM when there is a lot of free
memory.

It is not very clear what are the usual workloads when the compaction is
disabled.  Relying on high order allocations heavily without any
mechanism to create those orders except for unbound amount of reclaim is
certainly not a good idea.

To prevent from potential regressions let's help this configuration
some.  We have to sacrifice the determinsm though because there simply
is none here possible.  should_compact_retry implementation for
!CONFIG_COMPACTION, which was empty so far, will do watermark check for
order-0 on all eligible zones.  This will cause retrying until either
the reclaim cannot make any further progress or all the zones are
depleted even for order-0 pages.  This means that the number of retries
is basically unbounded for !costly orders but that was the case before
the rework as well so this shouldn't regress.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1463051677-29418-3-git-send-email-mhocko@kernel.org
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
86a294a81f mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders.  While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic.  The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap.  If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g.  hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark.  The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.

I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.

The reason why compaction requires being over low rather than min
watermark is not clear to me.  This check was there essentially since
56de7263fc ("mm: compaction: direct compact when a high-order
allocation fails").  It is clearly an implementation detail though and
we shouldn't pull it into the generic retry logic while we should be
able to cope with such eventuality.  The only place in
should_compact_retry where we retry without any upper bound is for
compaction_withdrawn() case.

Introduce compaction_zonelist_suitable function which checks the given
zonelist and returns true only if there is at least one zone which would
would unblock __compaction_suitable if more memory got reclaimed.  In
this implementation it checks __compaction_suitable with NR_FREE_PAGES
plus part of the reclaimable memory as the target for the watermark
check.  The reclaimable memory is reduced linearly by the allocation
order.  The idea is that we do not want to reclaim all the remaining
memory for a single allocation request just unblock
__compaction_suitable which doesn't guarantee we will make a further
progress.

The new helper is then used if compaction_withdrawn() feedback was
provided so we do not retry if there is no outlook for a further
progress.  !costly requests shouldn't be affected much - e.g.  order-2
pages would require to have at least 64kB on the reclaimable LRUs while
order-9 would need at least 32M which should be enough to not lock up.

[vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable]
[akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
7854ea6c28 mm: consider compaction feedback also for costly allocation
PAGE_ALLOC_COSTLY_ORDER retry logic is mostly handled inside
should_reclaim_retry currently where we decide to not retry after at
least order worth of pages were reclaimed or the watermark check for at
least one zone would succeed after reclaiming all pages if the reclaim
hasn't made any progress.  Compaction feedback is mostly ignored and we
just try to make sure that the compaction did at least something before
giving up.

The first condition was added by a41f24ea9f ("page allocator: smarter
retry of costly-order allocations) and it assumed that lumpy reclaim
could have created a page of the sufficient order.  Lumpy reclaim, has
been removed quite some time ago so the assumption doesn't hold anymore.
Remove the check for the number of reclaimed pages and rely on the
compaction feedback solely.  should_reclaim_retry now only makes sure
that we keep retrying reclaim for high order pages only if they are
hidden by watermaks so order-0 reclaim makes really sense.

should_compact_retry now keeps retrying even for the costly allocations.
The number of retries is reduced wrt.  !costly requests because they are
less important and harder to grant and so their pressure shouldn't cause
contention for other requests or cause an over reclaim.  We also do not
reset no_progress_loops for costly request to make sure we do not keep
reclaiming too agressively.

This has been tested by running a process which fragments memory:
	- compact memory
	- mmap large portion of the memory (1920M on 2GRAM machine with 2G
	  of swapspace)
	- MADV_DONTNEED single page in PAGE_SIZE*((1UL<<MAX_ORDER)-1)
	  steps until certain amount of memory is freed (250M in my test)
	  and reduce the step to (step / 2) + 1 after reaching the end of
	  the mapping
	- then run a script which populates the page cache 2G (MemTotal)
	  from /dev/zero to a new file
And then tries to allocate
nr_hugepages=$(awk '/MemAvailable/{printf "%d\n", $2/(2*1024)}' /proc/meminfo)
huge pages.

root@test1:~# echo 1 > /proc/sys/vm/overcommit_memory;echo 1 > /proc/sys/vm/compact_memory; ./fragment-mem-and-run /root/alloc_hugepages.sh 1920M 250M
Node 0, zone      DMA     31     28     31     10      2      0      2      1      2      3      1
Node 0, zone    DMA32    437    319    171     50     28     25     20     16     16     14    437

* This is the /proc/buddyinfo after the compaction

Done fragmenting. size=2013265920 freed=262144000
Node 0, zone      DMA    165     48      3      1      2      0      2      2      2      2      0
Node 0, zone    DMA32  35109  14575    185     51     41     12      6      0      0      0      0

* /proc/buddyinfo after memory got fragmented

Executing "/root/alloc_hugepages.sh"
Eating some pagecache
508623+0 records in
508623+0 records out
2083319808 bytes (2.1 GB) copied, 11.7292 s, 178 MB/s
Node 0, zone      DMA      3      5      3      1      2      0      2      2      2      2      0
Node 0, zone    DMA32    111    344    153     20     24     10      3      0      0      0      0

* /proc/buddyinfo after page cache got eaten

Trying to allocate 129
129

* 129 hugepages requested and all of them granted.

Node 0, zone      DMA      3      5      3      1      2      0      2      2      2      2      0
Node 0, zone    DMA32    127     97     30     99     11      6      2      1      4      0      0

* /proc/buddyinfo after hugetlb allocation.

10 runs will behave as follows:
Trying to allocate 130
130
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 132
132
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129

So basically 100% success for all 10 attempts.
Without the patch numbers looked much worse:
Trying to allocate 128
12
--
Trying to allocate 129
14
--
Trying to allocate 129
7
--
Trying to allocate 129
16
--
Trying to allocate 129
30
--
Trying to allocate 129
38
--
Trying to allocate 129
19
--
Trying to allocate 129
37
--
Trying to allocate 129
28
--
Trying to allocate 129
37

Just for completness the base kernel without oom detection rework looks
as follows:
Trying to allocate 127
30
--
Trying to allocate 129
12
--
Trying to allocate 129
52
--
Trying to allocate 128
32
--
Trying to allocate 129
12
--
Trying to allocate 129
10
--
Trying to allocate 129
32
--
Trying to allocate 128
14
--
Trying to allocate 128
16
--
Trying to allocate 129
8

As we can see the success rate is much more volatile and smaller without
this patch. So the patch not only makes the retry logic for costly
requests more sensible the success rate is even higher.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
33c2d21438 mm, oom: protect !costly allocations some more
should_reclaim_retry will give up retries for higher order allocations
if none of the eligible zones has any requested or higher order pages
available even if we pass the watermak check for order-0.  This is done
because there is no guarantee that the reclaimable and currently free
pages will form the required order.

This can, however, lead to situations where the high-order request (e.g.
order-2 required for the stack allocation during fork) will trigger OOM
too early - e.g.  after the first reclaim/compaction round.  Such a
system would have to be highly fragmented and there is no guarantee
further reclaim/compaction attempts would help but at least make sure
that the compaction was active before we go OOM and keep retrying even
if should_reclaim_retry tells us to oom if

	- the last compaction round backed off or
	- we haven't completed at least MAX_COMPACT_RETRIES active
	  compaction rounds.

The first rule ensures that the very last attempt for compaction was not
ignored while the second guarantees that the compaction has done some
work.  Multiple retries might be needed to prevent occasional pigggy
backing of other contexts to steal the compacted pages before the
current context manages to retry to allocate them.

compaction_failed() is taken as a final word from the compaction that
the retry doesn't make much sense.  We have to be careful though because
the first compaction round is MIGRATE_ASYNC which is rather weak as it
ignores pages under writeback and gives up too easily in other
situations.  We therefore have to make sure that MIGRATE_SYNC_LIGHT mode
has been used before we give up.  With this logic in place we do not
have to increase the migration mode unconditionally and rather do it
only if the compaction failed for the weaker mode.  A nice side effect
is that the stronger migration mode is used only when really needed so
this has a potential of smaller latencies in some cases.

Please note that the compaction doesn't tell us much about how
successful it was when returning compaction_made_progress so we just
have to blindly trust that another retry is worthwhile and cap the
number to something reasonable to guarantee a convergence.

If the given number of successful retries is not sufficient for a
reasonable workloads we should focus on the collected compaction
tracepoints data and try to address the issue in the compaction code.
If this is not feasible we can increase the retries limit.

[mhocko@suse.com: fix warning]
  Link: http://lkml.kernel.org/r/20160512061636.GA4200@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ede3771373 mm: throttle on IO only when there are too many dirty and writeback pages
wait_iff_congested has been used to throttle allocator before it retried
another round of direct reclaim to allow the writeback to make some
progress and prevent reclaim from looping over dirty/writeback pages
without making any progress.

We used to do congestion_wait before commit 0e093d9976 ("writeback: do
not sleep on the congestion queue if there are no congested BDIs or if
significant congestion is not being encountered in the current zone")
but that led to undesirable stalls and sleeping for the full timeout
even when the BDI wasn't congested.  Hence wait_iff_congested was used
instead.

But it seems that even wait_iff_congested doesn't work as expected.  We
might have a small file LRU list with all pages dirty/writeback and yet
the bdi is not congested so this is just a cond_resched in the end and
can end up triggering pre mature OOM.

This patch replaces the unconditional wait_iff_congested by
congestion_wait which is executed only if we _know_ that the last round
of direct reclaim didn't make any progress and dirty+writeback pages are
more than a half of the reclaimable pages on the zone which might be
usable for our target allocation.  This shouldn't reintroduce stalls
fixed by 0e093d9976 because congestion_wait is called only when we are
getting hopeless when sleeping is a better choice than OOM with many
pages under IO.

We have to preserve logic introduced by commit 373ccbe592 ("mm,
vmstat: allow WQ concurrency to discover memory reclaim doesn't make any
progress") into the __alloc_pages_slowpath now that wait_iff_congested
is not used anymore.  As the only remaining user of wait_iff_congested
is shrink_inactive_list we can remove the WQ specific short sleep from
wait_iff_congested because the sleep is needed to be done only once in
the allocation retry cycle.

[mhocko@suse.com: high_zoneidx->ac_classzone_idx to evaluate memory reserves properly]
 Link: http://lkml.kernel.org/r/1463051677-29418-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
0a0337e0d1 mm, oom: rework oom detection
__alloc_pages_slowpath has traditionally relied on the direct reclaim
and did_some_progress as an indicator that it makes sense to retry
allocation rather than declaring OOM.  shrink_zones had to rely on
zone_reclaimable if shrink_zone didn't make any progress to prevent from
a premature OOM killer invocation - the LRU might be full of dirty or
writeback pages and direct reclaim cannot clean those up.

zone_reclaimable allows to rescan the reclaimable lists several times
and restart if a page is freed.  This is really subtle behavior and it
might lead to a livelock when a single freed page keeps allocator
looping but the current task will not be able to allocate that single
page.  OOM killer would be more appropriate than looping without any
progress for unbounded amount of time.

This patch changes OOM detection logic and pulls it out from shrink_zone
which is too low to be appropriate for any high level decisions such as
OOM which is per zonelist property.  It is __alloc_pages_slowpath which
knows how many attempts have been done and what was the progress so far
therefore it is more appropriate to implement this logic.

The new heuristic is implemented in should_reclaim_retry helper called
from __alloc_pages_slowpath.  It tries to be more deterministic and
easier to follow.  It builds on an assumption that retrying makes sense
only if the currently reclaimable memory + free pages would allow the
current allocation request to succeed (as per __zone_watermark_ok) at
least for one zone in the usable zonelist.

This alone wouldn't be sufficient, though, because the writeback might
get stuck and reclaimable pages might be pinned for a really long time
or even depend on the current allocation context.  Therefore there is a
backoff mechanism implemented which reduces the reclaim target after
each reclaim round without any progress.  This means that we should
eventually converge to only NR_FREE_PAGES as the target and fail on the
wmark check and proceed to OOM.  The backoff is simple and linear with
1/16 of the reclaimable pages for each round without any progress.  We
are optimistic and reset counter for successful reclaim rounds.

Costly high order pages mostly preserve their semantic and those without
__GFP_REPEAT fail right away while those which have the flag set will
back off after the amount of reclaimable pages reaches equivalent of the
requested order.  The only difference is that if there was no progress
during the reclaim we rely on zone watermark check.  This is more
logical thing to do than previous 1<<order attempts which were a result
of zone_reclaimable faking the progress.

[vdavydov@virtuozzo.com: check classzone_idx for shrink_zone]
[hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry]
[rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES]
[rientjes@google.com: shrink_zones doesn't need to return anything]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
c5d01d0d18 mm, compaction: simplify __alloc_pages_direct_compact feedback interface
__alloc_pages_direct_compact communicates potential back off by two
variables:
	- deferred_compaction tells that the compaction returned
	  COMPACT_DEFERRED
	- contended_compaction is set when there is a contention on
	  zone->lock resp. zone->lru_lock locks

__alloc_pages_slowpath then backs of for THP allocation requests to
prevent from long stalls. This is rather messy and it would be much
cleaner to return a single compact result value and hide all the nasty
details into __alloc_pages_direct_compact.

This patch shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ea7ab982b6 mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int ->
unsigned long

But there doesn't seem to be any reason for that.  All functions which
return/use one of those constants are not expecting any other value so it
really makes sense to define an enum for them and make it clear that no
other values are expected.

This is a pure cleanup and shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Rik van Riel
59dc76b0d4 mm: vmscan: reduce size of inactive file list
The inactive file list should still be large enough to contain readahead
windows and freshly written file data, but it no longer is the only
source for detecting multiple accesses to file pages.  The workingset
refault measurement code causes recently evicted file pages that get
accessed again after a shorter interval to be promoted directly to the
active list.

With that mechanism in place, we can afford to (on a larger system)
dedicate more memory to the active file list, so we can actually cache
more of the frequently used file pages in memory, and not have them
pushed out by streaming writes, once-used streaming file reads, etc.

This can help things like database workloads, where only half the page
cache can currently be used to cache the database working set.  This
patch automatically increases that fraction on larger systems, using the
same ratio that has already been used for anonymous memory.

[hannes@cmpxchg.org: cgroup-awareness]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Mel Gorman
4741526b83 mm, page_alloc: restore the original nodemask if the fast path allocation failed
The page allocator fast path uses either the requested nodemask or
cpuset_current_mems_allowed if cpusets are enabled.  If the allocation
context allows watermarks to be ignored then it can also ignore memory
policies.  However, on entering the allocator slowpath the nodemask may
still be cpuset_current_mems_allowed and the policies are enforced.
This patch resets the nodemask appropriately before entering the
slowpath.

Link: http://lkml.kernel.org/r/20160504143628.GU2858@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
4e6118016e mm, page_alloc: uninline the bad page part of check_new_page()
Bad pages should be rare so the code handling them doesn't need to be
inline for performance reasons.  Put it to separate function which
returns void.  This also assumes that the initial page_expected_state()
result will match the result of the thorough check, i.e.  the page
doesn't become "good" in the meanwhile.  This matches the same
expectations already in place in free_pages_check().

!DEBUG_VM bloat-o-meter:

  add/remove: 1/0 grow/shrink: 0/1 up/down: 134/-274 (-140)
  function                                     old     new   delta
  check_new_page_bad                             -     134    +134
  get_page_from_freelist                      3468    3194    -274

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
e2769dbdc5 mm, page_alloc: don't duplicate code in free_pcp_prepare
The new free_pcp_prepare() function shares a lot of code with
free_pages_prepare(), which makes this a maintenance risk when some
future patch modifies only one of them.  We should be able to achieve
the same effect (skipping free_pages_check() from !DEBUG_VM configs) by
adding a parameter to free_pages_prepare() and making it inline, so the
checks (and the order != 0 parts) are eliminated from the call from
free_pcp_prepare().

!DEBUG_VM: bloat-o-meter reports no difference, as my gcc was already
inlining free_pages_prepare() and the elimination seems to work as
expected

DEBUG_VM bloat-o-meter:

  add/remove: 0/1 grow/shrink: 2/0 up/down: 1035/-778 (257)
  function                                     old     new   delta
  __free_pages_ok                              297    1060    +763
  free_hot_cold_page                           480     752    +272
  free_pages_prepare                           778       -    -778

Here inlining didn't occur before, and added some code, but it's ok for
a debug option.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
479f854a20 mm, page_alloc: defer debugging checks of pages allocated from the PCP
Every page allocated checks a number of page fields for validity.  This
catches corruption bugs of pages that are already freed but it is
expensive.  This patch weakens the debugging check by checking PCP pages
only when the PCP lists are being refilled.  All compound pages are
checked.  This potentially avoids debugging checks entirely if the PCP
lists are never emptied and refilled so some corruption issues may be
missed.  Full checking requires DEBUG_VM.

With the two deferred debugging patches applied, the impact to a page
allocator microbenchmark is

                                             4.6.0-rc3                  4.6.0-rc3
                                           inline-v3r6            deferalloc-v3r7
  Min      alloc-odr0-1               344.00 (  0.00%)           317.00 (  7.85%)
  Min      alloc-odr0-2               248.00 (  0.00%)           231.00 (  6.85%)
  Min      alloc-odr0-4               209.00 (  0.00%)           192.00 (  8.13%)
  Min      alloc-odr0-8               181.00 (  0.00%)           166.00 (  8.29%)
  Min      alloc-odr0-16              168.00 (  0.00%)           154.00 (  8.33%)
  Min      alloc-odr0-32              161.00 (  0.00%)           148.00 (  8.07%)
  Min      alloc-odr0-64              158.00 (  0.00%)           145.00 (  8.23%)
  Min      alloc-odr0-128             156.00 (  0.00%)           143.00 (  8.33%)
  Min      alloc-odr0-256             168.00 (  0.00%)           154.00 (  8.33%)
  Min      alloc-odr0-512             178.00 (  0.00%)           167.00 (  6.18%)
  Min      alloc-odr0-1024            186.00 (  0.00%)           174.00 (  6.45%)
  Min      alloc-odr0-2048            192.00 (  0.00%)           180.00 (  6.25%)
  Min      alloc-odr0-4096            198.00 (  0.00%)           184.00 (  7.07%)
  Min      alloc-odr0-8192            200.00 (  0.00%)           188.00 (  6.00%)
  Min      alloc-odr0-16384           201.00 (  0.00%)           188.00 (  6.47%)
  Min      free-odr0-1                189.00 (  0.00%)           180.00 (  4.76%)
  Min      free-odr0-2                132.00 (  0.00%)           126.00 (  4.55%)
  Min      free-odr0-4                104.00 (  0.00%)            99.00 (  4.81%)
  Min      free-odr0-8                 90.00 (  0.00%)            85.00 (  5.56%)
  Min      free-odr0-16                84.00 (  0.00%)            80.00 (  4.76%)
  Min      free-odr0-32                80.00 (  0.00%)            76.00 (  5.00%)
  Min      free-odr0-64                78.00 (  0.00%)            74.00 (  5.13%)
  Min      free-odr0-128               77.00 (  0.00%)            73.00 (  5.19%)
  Min      free-odr0-256               94.00 (  0.00%)            91.00 (  3.19%)
  Min      free-odr0-512              108.00 (  0.00%)           112.00 ( -3.70%)
  Min      free-odr0-1024             115.00 (  0.00%)           118.00 ( -2.61%)
  Min      free-odr0-2048             120.00 (  0.00%)           125.00 ( -4.17%)
  Min      free-odr0-4096             123.00 (  0.00%)           129.00 ( -4.88%)
  Min      free-odr0-8192             126.00 (  0.00%)           130.00 ( -3.17%)
  Min      free-odr0-16384            126.00 (  0.00%)           131.00 ( -3.97%)

Note that the free paths for large numbers of pages is impacted as the
debugging cost gets shifted into that path when the page data is no
longer necessarily cache-hot.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4db7548ccb mm, page_alloc: defer debugging checks of freed pages until a PCP drain
Every page free checks a number of page fields for validity.  This
catches premature frees and corruptions but it is also expensive.  This
patch weakens the debugging check by checking PCP pages at the time they
are drained from the PCP list.  This will trigger the bug but the site
that freed the corrupt page will be lost.  To get the full context, a
kernel rebuild with DEBUG_VM is necessary.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
002f290627 cpuset: use static key better and convert to new API
An important function for cpusets is cpuset_node_allowed(), which
optimizes on the fact if there's a single root CPU set, it must be
trivially allowed.  But the check "nr_cpusets() <= 1" doesn't use the
cpusets_enabled_key static key the right way where static keys eliminate
branching overhead with jump labels.

This patch converts it so that static key is used properly.  It's also
switched to the new static key API and the checking functions are
converted to return bool instead of int.  We also provide a new variant
__cpuset_zone_allowed() which expects that the static key check was
already done and they key was enabled.  This is needed for
get_page_from_freelist() where we want to also avoid the relatively
slower check when ALLOC_CPUSET is not set in alloc_flags.

The impact on the page allocator microbenchmark is less than expected
but the cleanup in itself is worthwhile.

                                             4.6.0-rc2                  4.6.0-rc2
                                       multcheck-v1r20               cpuset-v1r20
  Min      alloc-odr0-1               348.00 (  0.00%)           348.00 (  0.00%)
  Min      alloc-odr0-2               254.00 (  0.00%)           254.00 (  0.00%)
  Min      alloc-odr0-4               213.00 (  0.00%)           213.00 (  0.00%)
  Min      alloc-odr0-8               186.00 (  0.00%)           183.00 (  1.61%)
  Min      alloc-odr0-16              173.00 (  0.00%)           171.00 (  1.16%)
  Min      alloc-odr0-32              166.00 (  0.00%)           163.00 (  1.81%)
  Min      alloc-odr0-64              162.00 (  0.00%)           159.00 (  1.85%)
  Min      alloc-odr0-128             160.00 (  0.00%)           157.00 (  1.88%)
  Min      alloc-odr0-256             169.00 (  0.00%)           166.00 (  1.78%)
  Min      alloc-odr0-512             180.00 (  0.00%)           180.00 (  0.00%)
  Min      alloc-odr0-1024            188.00 (  0.00%)           187.00 (  0.53%)
  Min      alloc-odr0-2048            194.00 (  0.00%)           193.00 (  0.52%)
  Min      alloc-odr0-4096            199.00 (  0.00%)           198.00 (  0.50%)
  Min      alloc-odr0-8192            202.00 (  0.00%)           201.00 (  0.50%)
  Min      alloc-odr0-16384           203.00 (  0.00%)           202.00 (  0.49%)

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
0b423ca22f mm, page_alloc: inline pageblock lookup in page free fast paths
The function call overhead of get_pfnblock_flags_mask() is measurable in
the page free paths.  This patch uses an inlined version that is faster.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
e5b31ac2ca mm, page_alloc: remove unnecessary variable from free_pcppages_bulk
The original count is never reused so it can be removed.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
da838d4fcb mm, page_alloc: pull out side effects from free_pages_check
Check without side-effects should be easier to maintain.  It also
removes the duplicated cpupid and flags reset done in !DEBUG_VM variant
of both free_pcp_prepare() and then bulkfree_pcp_prepare().  Finally, it
enables the next patch.

It shouldn't result in new branches, thanks to inlining of the check.

!DEBUG_VM bloat-o-meter:

  add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-27 (-27)
  function                                     old     new   delta
  __free_pages_ok                              748     739      -9
  free_pcppages_bulk                          1403    1385     -18

DEBUG_VM:

  add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-28 (-28)
  function                                     old     new   delta
  free_pages_prepare                           806     778     -28

This is also slightly faster because cpupid information is not set on
tail pages so we can avoid resets there.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
bb552ac6c6 mm, page_alloc: un-inline the bad part of free_pages_check
From: Vlastimil Babka <vbabka@suse.cz>

!DEBUG_VM size and bloat-o-meter:

  add/remove: 1/0 grow/shrink: 0/2 up/down: 124/-370 (-246)
  function                                     old     new   delta
  free_pages_check_bad                           -     124    +124
  free_pcppages_bulk                          1288    1171    -117
  __free_pages_ok                              948     695    -253

DEBUG_VM:

  add/remove: 1/0 grow/shrink: 0/1 up/down: 124/-214 (-90)
  function                                     old     new   delta
  free_pages_check_bad                           -     124    +124
  free_pages_prepare                          1112     898    -214

[akpm@linux-foundation.org: fix whitespace]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
7bfec6f47b mm, page_alloc: check multiple page fields with a single branch
Every page allocated or freed is checked for sanity to avoid corruptions
that are difficult to detect later.  A bad page could be due to a number
of fields.  Instead of using multiple branches, this patch combines
multiple fields into a single branch.  A detailed check is only
necessary if that check fails.

                                             4.6.0-rc2                  4.6.0-rc2
                                        initonce-v1r20            multcheck-v1r20
  Min      alloc-odr0-1               359.00 (  0.00%)           348.00 (  3.06%)
  Min      alloc-odr0-2               260.00 (  0.00%)           254.00 (  2.31%)
  Min      alloc-odr0-4               214.00 (  0.00%)           213.00 (  0.47%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           166.00 ( -0.61%)
  Min      alloc-odr0-64              162.00 (  0.00%)           162.00 (  0.00%)
  Min      alloc-odr0-128             161.00 (  0.00%)           160.00 (  0.62%)
  Min      alloc-odr0-256             170.00 (  0.00%)           169.00 (  0.59%)
  Min      alloc-odr0-512             181.00 (  0.00%)           180.00 (  0.55%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           188.00 (  1.05%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           194.00 (  1.02%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           199.00 (  1.49%)
  Min      alloc-odr0-8192            205.00 (  0.00%)           202.00 (  1.46%)
  Min      alloc-odr0-16384           205.00 (  0.00%)           203.00 (  0.98%)

Again, the benefit is marginal but avoiding excessive branches is
important.  Ideally the paths would not have to check these conditions
at all but regrettably abandoning the tests would make use-after-free
bugs much harder to detect.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
93ea9964d1 mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the
unnecessary field and save stack space.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c33d6c06f6 mm, page_alloc: avoid looking up the first zone in a zonelist twice
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.

                                             4.6.0-rc2                  4.6.0-rc2
                                        fastmark-v1r20             initonce-v1r20
  Min      alloc-odr0-1               364.00 (  0.00%)           359.00 (  1.37%)
  Min      alloc-odr0-2               262.00 (  0.00%)           260.00 (  0.76%)
  Min      alloc-odr0-4               214.00 (  0.00%)           214.00 (  0.00%)
  Min      alloc-odr0-8               186.00 (  0.00%)           186.00 (  0.00%)
  Min      alloc-odr0-16              173.00 (  0.00%)           173.00 (  0.00%)
  Min      alloc-odr0-32              165.00 (  0.00%)           165.00 (  0.00%)
  Min      alloc-odr0-64              161.00 (  0.00%)           162.00 ( -0.62%)
  Min      alloc-odr0-128             159.00 (  0.00%)           161.00 ( -1.26%)
  Min      alloc-odr0-256             168.00 (  0.00%)           170.00 ( -1.19%)
  Min      alloc-odr0-512             180.00 (  0.00%)           181.00 ( -0.56%)
  Min      alloc-odr0-1024            190.00 (  0.00%)           190.00 (  0.00%)
  Min      alloc-odr0-2048            196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-4096            202.00 (  0.00%)           202.00 (  0.00%)
  Min      alloc-odr0-8192            206.00 (  0.00%)           205.00 (  0.49%)
  Min      alloc-odr0-16384           206.00 (  0.00%)           205.00 (  0.49%)

The benefit is negligible and the results are within the noise but each
cycle counts.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
48ee5f3696 mm, page_alloc: shortcut watermark checks for order-0 pages
Watermarks have to be checked on every allocation including the number
of pages being allocated and whether reserves can be accessed.  The
reserves only matter if memory is limited and the free_pages adjustment
only applies to high-order pages.  This patch adds a shortcut for
order-0 pages that avoids numerous calculations if there is plenty of
free memory yielding the following performance difference in a page
allocator microbenchmark;

                                             4.6.0-rc2                  4.6.0-rc2
                                         optfair-v1r20             fastmark-v1r20
  Min      alloc-odr0-1               380.00 (  0.00%)           364.00 (  4.21%)
  Min      alloc-odr0-2               273.00 (  0.00%)           262.00 (  4.03%)
  Min      alloc-odr0-4               227.00 (  0.00%)           214.00 (  5.73%)
  Min      alloc-odr0-8               196.00 (  0.00%)           186.00 (  5.10%)
  Min      alloc-odr0-16              183.00 (  0.00%)           173.00 (  5.46%)
  Min      alloc-odr0-32              173.00 (  0.00%)           165.00 (  4.62%)
  Min      alloc-odr0-64              169.00 (  0.00%)           161.00 (  4.73%)
  Min      alloc-odr0-128             169.00 (  0.00%)           159.00 (  5.92%)
  Min      alloc-odr0-256             180.00 (  0.00%)           168.00 (  6.67%)
  Min      alloc-odr0-512             190.00 (  0.00%)           180.00 (  5.26%)
  Min      alloc-odr0-1024            198.00 (  0.00%)           190.00 (  4.04%)
  Min      alloc-odr0-2048            204.00 (  0.00%)           196.00 (  3.92%)
  Min      alloc-odr0-4096            209.00 (  0.00%)           202.00 (  3.35%)
  Min      alloc-odr0-8192            213.00 (  0.00%)           206.00 (  3.29%)
  Min      alloc-odr0-16384           214.00 (  0.00%)           206.00 (  3.74%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
305347550b mm, page_alloc: reduce cost of fair zone allocation policy retry
The fair zone allocation policy is not without cost but it can be
reduced slightly.  This patch removes an unnecessary local variable,
checks the likely conditions of the fair zone policy first, uses a bool
instead of a flags check and falls through when a remote node is
encountered instead of doing a full restart.  The benefit is marginal
but it's there

                                             4.6.0-rc2                  4.6.0-rc2
                                         decstat-v1r20              optfair-v1r20
  Min      alloc-odr0-1               377.00 (  0.00%)           380.00 ( -0.80%)
  Min      alloc-odr0-2               273.00 (  0.00%)           273.00 (  0.00%)
  Min      alloc-odr0-4               226.00 (  0.00%)           227.00 ( -0.44%)
  Min      alloc-odr0-8               196.00 (  0.00%)           196.00 (  0.00%)
  Min      alloc-odr0-16              183.00 (  0.00%)           183.00 (  0.00%)
  Min      alloc-odr0-32              175.00 (  0.00%)           173.00 (  1.14%)
  Min      alloc-odr0-64              172.00 (  0.00%)           169.00 (  1.74%)
  Min      alloc-odr0-128             170.00 (  0.00%)           169.00 (  0.59%)
  Min      alloc-odr0-256             183.00 (  0.00%)           180.00 (  1.64%)
  Min      alloc-odr0-512             191.00 (  0.00%)           190.00 (  0.52%)
  Min      alloc-odr0-1024            199.00 (  0.00%)           198.00 (  0.50%)
  Min      alloc-odr0-2048            204.00 (  0.00%)           204.00 (  0.00%)
  Min      alloc-odr0-4096            210.00 (  0.00%)           209.00 (  0.48%)
  Min      alloc-odr0-8192            213.00 (  0.00%)           213.00 (  0.00%)
  Min      alloc-odr0-16384           214.00 (  0.00%)           214.00 (  0.00%)

The benefit is marginal at best but one of the most important benefits,
avoiding a second search when falling back to another node is not
triggered by this particular test so the benefit for some corner cases
is understated.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4fcb097117 mm, page_alloc: shorten the page allocator fast path
The page allocator fast path checks page multiple times unnecessarily.
This patch avoids all the slowpath checks if the first allocation
attempt succeeds.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
3777999dd4 mm, page_alloc: check once if a zone has isolated pageblocks
When bulk freeing pages from the per-cpu lists the zone is checked for
isolated pageblocks on every release.  This patch checks it once per
drain.

[mgorman@techsingularity.net: fix locking radce, per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
83d4ca8148 mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath
__GFP_HARDWALL only has meaning in the context of cpusets but the fast
path always applies the flag on the first attempt.  Move the
manipulations into the cpuset paths where they will be masked by a
static branch in the common case.

With the other micro-optimisations in this series combined, the impact
on a page allocator microbenchmark is

                                             4.6.0-rc2                  4.6.0-rc2
                                         decstat-v1r20                micro-v1r20
  Min      alloc-odr0-1               381.00 (  0.00%)           377.00 (  1.05%)
  Min      alloc-odr0-2               275.00 (  0.00%)           273.00 (  0.73%)
  Min      alloc-odr0-4               229.00 (  0.00%)           226.00 (  1.31%)
  Min      alloc-odr0-8               199.00 (  0.00%)           196.00 (  1.51%)
  Min      alloc-odr0-16              186.00 (  0.00%)           183.00 (  1.61%)
  Min      alloc-odr0-32              179.00 (  0.00%)           175.00 (  2.23%)
  Min      alloc-odr0-64              174.00 (  0.00%)           172.00 (  1.15%)
  Min      alloc-odr0-128             172.00 (  0.00%)           170.00 (  1.16%)
  Min      alloc-odr0-256             181.00 (  0.00%)           183.00 ( -1.10%)
  Min      alloc-odr0-512             193.00 (  0.00%)           191.00 (  1.04%)
  Min      alloc-odr0-1024            201.00 (  0.00%)           199.00 (  1.00%)
  Min      alloc-odr0-2048            206.00 (  0.00%)           204.00 (  0.97%)
  Min      alloc-odr0-4096            212.00 (  0.00%)           210.00 (  0.94%)
  Min      alloc-odr0-8192            215.00 (  0.00%)           213.00 (  0.93%)
  Min      alloc-odr0-16384           216.00 (  0.00%)           214.00 (  0.93%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
5bb1b16975 mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()
page is guaranteed to be set before it is read with or without the
initialisation.

[akpm@linux-foundation.org: fix warning]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
be06af002f mm, page_alloc: remove unnecessary initialisation in get_page_from_freelist
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
4dfa6cd8fd mm, page_alloc: remove unnecessary local variable in get_page_from_freelist
zonelist here is a copy of a struct field that is used once.  Ditch it.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
fa379b9586 mm, page_alloc: convert nr_fair_skipped to bool
The number of zones skipped to a zone expiring its fair zone allocation
quota is irrelevant.  Convert to bool.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c603844bdc mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not
necessarily generate the best code depending on the compiler.  Even
without an impact, it makes more sense that this be unsigned.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
f75fb889d1 mm, page_alloc: avoid unnecessary zone lookups during pageblock operations
Pageblocks have an associated bitmap to store migrate types and whether
the pageblock should be skipped during compaction.  The bitmap may be
associated with a memory section or a zone but the zone is looked up
unconditionally.  The compiler should optimise this away automatically
so this is a cosmetic patch only in many cases.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
754078eb45 mm, page_alloc: use __dec_zone_state for order-0 page allocation
__dec_zone_state is cheaper to use for removing an order-0 page as it
has fewer conditions to check.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                         optiter-v1r20              decstat-v1r20
  Min      alloc-odr0-1               382.00 (  0.00%)           381.00 (  0.26%)
  Min      alloc-odr0-2               282.00 (  0.00%)           275.00 (  2.48%)
  Min      alloc-odr0-4               233.00 (  0.00%)           229.00 (  1.72%)
  Min      alloc-odr0-8               203.00 (  0.00%)           199.00 (  1.97%)
  Min      alloc-odr0-16              188.00 (  0.00%)           186.00 (  1.06%)
  Min      alloc-odr0-32              182.00 (  0.00%)           179.00 (  1.65%)
  Min      alloc-odr0-64              177.00 (  0.00%)           174.00 (  1.69%)
  Min      alloc-odr0-128             175.00 (  0.00%)           172.00 (  1.71%)
  Min      alloc-odr0-256             184.00 (  0.00%)           181.00 (  1.63%)
  Min      alloc-odr0-512             197.00 (  0.00%)           193.00 (  2.03%)
  Min      alloc-odr0-1024            203.00 (  0.00%)           201.00 (  0.99%)
  Min      alloc-odr0-2048            209.00 (  0.00%)           206.00 (  1.44%)
  Min      alloc-odr0-4096            214.00 (  0.00%)           212.00 (  0.93%)
  Min      alloc-odr0-8192            218.00 (  0.00%)           215.00 (  1.38%)
  Min      alloc-odr0-16384           219.00 (  0.00%)           216.00 (  1.37%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
682a3385e7 mm, page_alloc: inline the fast path of the zonelist iterator
The page allocator iterates through a zonelist for zones that match the
addressing limitations and nodemask of the caller but many allocations
will not be restricted.  Despite this, there is always functional call
overhead which builds up.

This patch inlines the optimistic basic case and only calls the iterator
function for the complex case.  A hindrance was the fact that
cpuset_current_mems_allowed is used in the fastpath as the allowed
nodemask even though all nodes are allowed on most systems.  The patch
handles this by only considering cpuset_current_mems_allowed if a cpuset
exists.  As well as being faster in the fast-path, this removes some
junk in the slowpath.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      statinline-v1r20              optiter-v1r20
  Min      alloc-odr0-1               412.00 (  0.00%)           382.00 (  7.28%)
  Min      alloc-odr0-2               301.00 (  0.00%)           282.00 (  6.31%)
  Min      alloc-odr0-4               247.00 (  0.00%)           233.00 (  5.67%)
  Min      alloc-odr0-8               215.00 (  0.00%)           203.00 (  5.58%)
  Min      alloc-odr0-16              199.00 (  0.00%)           188.00 (  5.53%)
  Min      alloc-odr0-32              191.00 (  0.00%)           182.00 (  4.71%)
  Min      alloc-odr0-64              187.00 (  0.00%)           177.00 (  5.35%)
  Min      alloc-odr0-128             185.00 (  0.00%)           175.00 (  5.41%)
  Min      alloc-odr0-256             193.00 (  0.00%)           184.00 (  4.66%)
  Min      alloc-odr0-512             207.00 (  0.00%)           197.00 (  4.83%)
  Min      alloc-odr0-1024            213.00 (  0.00%)           203.00 (  4.69%)
  Min      alloc-odr0-2048            220.00 (  0.00%)           209.00 (  5.00%)
  Min      alloc-odr0-4096            226.00 (  0.00%)           214.00 (  5.31%)
  Min      alloc-odr0-8192            229.00 (  0.00%)           218.00 (  4.80%)
  Min      alloc-odr0-16384           229.00 (  0.00%)           219.00 (  4.37%)

perf indicated that next_zones_zonelist disappeared in the profile and
__next_zones_zonelist did not appear.  This is expected as the
micro-benchmark would hit the inlined fast-path every time.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
060e74173f mm, page_alloc: inline zone_statistics
zone_statistics has one call-site but it's a public function.  Make it
static and inline.

The performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                      statbranch-v1r20           statinline-v1r20
  Min      alloc-odr0-1               419.00 (  0.00%)           412.00 (  1.67%)
  Min      alloc-odr0-2               305.00 (  0.00%)           301.00 (  1.31%)
  Min      alloc-odr0-4               250.00 (  0.00%)           247.00 (  1.20%)
  Min      alloc-odr0-8               219.00 (  0.00%)           215.00 (  1.83%)
  Min      alloc-odr0-16              203.00 (  0.00%)           199.00 (  1.97%)
  Min      alloc-odr0-32              195.00 (  0.00%)           191.00 (  2.05%)
  Min      alloc-odr0-64              191.00 (  0.00%)           187.00 (  2.09%)
  Min      alloc-odr0-128             189.00 (  0.00%)           185.00 (  2.12%)
  Min      alloc-odr0-256             198.00 (  0.00%)           193.00 (  2.53%)
  Min      alloc-odr0-512             210.00 (  0.00%)           207.00 (  1.43%)
  Min      alloc-odr0-1024            216.00 (  0.00%)           213.00 (  1.39%)
  Min      alloc-odr0-2048            221.00 (  0.00%)           220.00 (  0.45%)
  Min      alloc-odr0-4096            227.00 (  0.00%)           226.00 (  0.44%)
  Min      alloc-odr0-8192            232.00 (  0.00%)           229.00 (  1.29%)
  Min      alloc-odr0-16384           232.00 (  0.00%)           229.00 (  1.29%)

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
175145748d mm, page_alloc: use new PageAnonHead helper in the free page fast path
The PageAnon check always checks for compound_head but this is a
relatively expensive check if the caller already knows the page is a
head page.  This patch creates a helper and uses it in the page free
path which only operates on head pages.

With this patch and "Only check PageCompound for high-order pages", the
performance difference on a page allocator microbenchmark is;

                                             4.6.0-rc2                  4.6.0-rc2
                                               vanilla           nocompound-v1r20
  Min      alloc-odr0-1               425.00 (  0.00%)           417.00 (  1.88%)
  Min      alloc-odr0-2               313.00 (  0.00%)           308.00 (  1.60%)
  Min      alloc-odr0-4               257.00 (  0.00%)           253.00 (  1.56%)
  Min      alloc-odr0-8               224.00 (  0.00%)           221.00 (  1.34%)
  Min      alloc-odr0-16              208.00 (  0.00%)           205.00 (  1.44%)
  Min      alloc-odr0-32              199.00 (  0.00%)           199.00 (  0.00%)
  Min      alloc-odr0-64              195.00 (  0.00%)           193.00 (  1.03%)
  Min      alloc-odr0-128             192.00 (  0.00%)           191.00 (  0.52%)
  Min      alloc-odr0-256             204.00 (  0.00%)           200.00 (  1.96%)
  Min      alloc-odr0-512             213.00 (  0.00%)           212.00 (  0.47%)
  Min      alloc-odr0-1024            219.00 (  0.00%)           219.00 (  0.00%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           225.00 (  0.00%)
  Min      alloc-odr0-4096            230.00 (  0.00%)           231.00 ( -0.43%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           234.00 (  0.43%)
  Min      alloc-odr0-16384           235.00 (  0.00%)           234.00 (  0.43%)
  Min      free-odr0-1                215.00 (  0.00%)           191.00 ( 11.16%)
  Min      free-odr0-2                152.00 (  0.00%)           136.00 ( 10.53%)
  Min      free-odr0-4                119.00 (  0.00%)           107.00 ( 10.08%)
  Min      free-odr0-8                106.00 (  0.00%)            96.00 (  9.43%)
  Min      free-odr0-16                97.00 (  0.00%)            87.00 ( 10.31%)
  Min      free-odr0-32                91.00 (  0.00%)            83.00 (  8.79%)
  Min      free-odr0-64                89.00 (  0.00%)            81.00 (  8.99%)
  Min      free-odr0-128               88.00 (  0.00%)            80.00 (  9.09%)
  Min      free-odr0-256              106.00 (  0.00%)            95.00 ( 10.38%)
  Min      free-odr0-512              116.00 (  0.00%)           111.00 (  4.31%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             133.00 (  0.00%)           126.00 (  5.26%)
  Min      free-odr0-4096             136.00 (  0.00%)           130.00 (  4.41%)
  Min      free-odr0-8192             138.00 (  0.00%)           130.00 (  5.80%)
  Min      free-odr0-16384            137.00 (  0.00%)           130.00 (  5.11%)

There is a sizable boost to the free allocator performance.  While there
is an apparent boost on the allocation side, it's likely a co-incidence
or due to the patches slightly reducing cache footprint.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
d61f859039 mm, page_alloc: only check PageCompound for high-order pages
Another year, another round of page allocator optimisations focusing
this time on the alloc and free fast paths.  This should be of help to
workloads that are allocator-intensive from kernel space where the cost
of zeroing is not nceessraily incurred.

The series is motivated by the observation that page alloc
microbenchmarks on multiple machines regressed between 3.12.44 and 4.4.
Second, there is discussions before LSF/MM considering the possibility
of adding another page allocator which is potentially hazardous but a
patch series improving performance is better than whining.

After the series is applied, there are still hazards.  In the free
paths, the debugging checking and page zone/pageblock lookups dominate
but there was not an obvious solution to that.  In the alloc path, the
major contributers are dealing with zonelists, new page preperation, the
fair zone allocation and numerous statistic updates.  The fair zone
allocator is removed by the per-node LRU series if that gets merged so
it's nor a major concern at the moment.

On normal userspace benchmarks, there is little impact as the zeroing
cost is significant but it's visible

  aim9
                                 4.6.0-rc3             4.6.0-rc3
                                   vanilla         deferalloc-v3
  Min      page_test   828693.33 (  0.00%)   887060.00 (  7.04%)
  Min      brk_test   4847266.67 (  0.00%)  4966266.67 (  2.45%)
  Min      exec_test     1271.00 (  0.00%)     1275.67 (  0.37%)
  Min      fork_test    12371.75 (  0.00%)    12380.00 (  0.07%)

The overall impact on a page allocator microbenchmark for a range of orders
and number of pages allocated in a batch is

                                            4.6.0-rc3                  4.6.0-rc3
                                               vanilla            deferalloc-v3r7
  Min      alloc-odr0-1               428.00 (  0.00%)           316.00 ( 26.17%)
  Min      alloc-odr0-2               314.00 (  0.00%)           231.00 ( 26.43%)
  Min      alloc-odr0-4               256.00 (  0.00%)           192.00 ( 25.00%)
  Min      alloc-odr0-8               222.00 (  0.00%)           166.00 ( 25.23%)
  Min      alloc-odr0-16              207.00 (  0.00%)           154.00 ( 25.60%)
  Min      alloc-odr0-32              197.00 (  0.00%)           148.00 ( 24.87%)
  Min      alloc-odr0-64              193.00 (  0.00%)           144.00 ( 25.39%)
  Min      alloc-odr0-128             191.00 (  0.00%)           143.00 ( 25.13%)
  Min      alloc-odr0-256             203.00 (  0.00%)           153.00 ( 24.63%)
  Min      alloc-odr0-512             212.00 (  0.00%)           165.00 ( 22.17%)
  Min      alloc-odr0-1024            221.00 (  0.00%)           172.00 ( 22.17%)
  Min      alloc-odr0-2048            225.00 (  0.00%)           179.00 ( 20.44%)
  Min      alloc-odr0-4096            232.00 (  0.00%)           185.00 ( 20.26%)
  Min      alloc-odr0-8192            235.00 (  0.00%)           187.00 ( 20.43%)
  Min      alloc-odr0-16384           236.00 (  0.00%)           188.00 ( 20.34%)
  Min      alloc-odr1-1               519.00 (  0.00%)           450.00 ( 13.29%)
  Min      alloc-odr1-2               391.00 (  0.00%)           336.00 ( 14.07%)
  Min      alloc-odr1-4               313.00 (  0.00%)           268.00 ( 14.38%)
  Min      alloc-odr1-8               277.00 (  0.00%)           235.00 ( 15.16%)
  Min      alloc-odr1-16              256.00 (  0.00%)           218.00 ( 14.84%)
  Min      alloc-odr1-32              252.00 (  0.00%)           212.00 ( 15.87%)
  Min      alloc-odr1-64              244.00 (  0.00%)           206.00 ( 15.57%)
  Min      alloc-odr1-128             244.00 (  0.00%)           207.00 ( 15.16%)
  Min      alloc-odr1-256             243.00 (  0.00%)           207.00 ( 14.81%)
  Min      alloc-odr1-512             245.00 (  0.00%)           209.00 ( 14.69%)
  Min      alloc-odr1-1024            248.00 (  0.00%)           214.00 ( 13.71%)
  Min      alloc-odr1-2048            253.00 (  0.00%)           220.00 ( 13.04%)
  Min      alloc-odr1-4096            258.00 (  0.00%)           224.00 ( 13.18%)
  Min      alloc-odr1-8192            261.00 (  0.00%)           229.00 ( 12.26%)
  Min      alloc-odr2-1               560.00 (  0.00%)           753.00 (-34.46%)
  Min      alloc-odr2-2               424.00 (  0.00%)           351.00 ( 17.22%)
  Min      alloc-odr2-4               339.00 (  0.00%)           393.00 (-15.93%)
  Min      alloc-odr2-8               298.00 (  0.00%)           246.00 ( 17.45%)
  Min      alloc-odr2-16              276.00 (  0.00%)           227.00 ( 17.75%)
  Min      alloc-odr2-32              271.00 (  0.00%)           221.00 ( 18.45%)
  Min      alloc-odr2-64              264.00 (  0.00%)           217.00 ( 17.80%)
  Min      alloc-odr2-128             264.00 (  0.00%)           217.00 ( 17.80%)
  Min      alloc-odr2-256             264.00 (  0.00%)           218.00 ( 17.42%)
  Min      alloc-odr2-512             269.00 (  0.00%)           223.00 ( 17.10%)
  Min      alloc-odr2-1024            279.00 (  0.00%)           230.00 ( 17.56%)
  Min      alloc-odr2-2048            283.00 (  0.00%)           235.00 ( 16.96%)
  Min      alloc-odr2-4096            285.00 (  0.00%)           239.00 ( 16.14%)
  Min      alloc-odr3-1               629.00 (  0.00%)           505.00 ( 19.71%)
  Min      alloc-odr3-2               472.00 (  0.00%)           374.00 ( 20.76%)
  Min      alloc-odr3-4               383.00 (  0.00%)           301.00 ( 21.41%)
  Min      alloc-odr3-8               341.00 (  0.00%)           266.00 ( 21.99%)
  Min      alloc-odr3-16              316.00 (  0.00%)           248.00 ( 21.52%)
  Min      alloc-odr3-32              308.00 (  0.00%)           241.00 ( 21.75%)
  Min      alloc-odr3-64              305.00 (  0.00%)           241.00 ( 20.98%)
  Min      alloc-odr3-128             308.00 (  0.00%)           244.00 ( 20.78%)
  Min      alloc-odr3-256             317.00 (  0.00%)           249.00 ( 21.45%)
  Min      alloc-odr3-512             327.00 (  0.00%)           256.00 ( 21.71%)
  Min      alloc-odr3-1024            331.00 (  0.00%)           261.00 ( 21.15%)
  Min      alloc-odr3-2048            333.00 (  0.00%)           266.00 ( 20.12%)
  Min      alloc-odr4-1               767.00 (  0.00%)           572.00 ( 25.42%)
  Min      alloc-odr4-2               578.00 (  0.00%)           429.00 ( 25.78%)
  Min      alloc-odr4-4               474.00 (  0.00%)           346.00 ( 27.00%)
  Min      alloc-odr4-8               422.00 (  0.00%)           310.00 ( 26.54%)
  Min      alloc-odr4-16              399.00 (  0.00%)           295.00 ( 26.07%)
  Min      alloc-odr4-32              392.00 (  0.00%)           293.00 ( 25.26%)
  Min      alloc-odr4-64              394.00 (  0.00%)           293.00 ( 25.63%)
  Min      alloc-odr4-128             405.00 (  0.00%)           305.00 ( 24.69%)
  Min      alloc-odr4-256             417.00 (  0.00%)           319.00 ( 23.50%)
  Min      alloc-odr4-512             425.00 (  0.00%)           326.00 ( 23.29%)
  Min      alloc-odr4-1024            426.00 (  0.00%)           329.00 ( 22.77%)
  Min      free-odr0-1                216.00 (  0.00%)           178.00 ( 17.59%)
  Min      free-odr0-2                152.00 (  0.00%)           125.00 ( 17.76%)
  Min      free-odr0-4                120.00 (  0.00%)            99.00 ( 17.50%)
  Min      free-odr0-8                106.00 (  0.00%)            85.00 ( 19.81%)
  Min      free-odr0-16                97.00 (  0.00%)            80.00 ( 17.53%)
  Min      free-odr0-32                92.00 (  0.00%)            76.00 ( 17.39%)
  Min      free-odr0-64                89.00 (  0.00%)            74.00 ( 16.85%)
  Min      free-odr0-128               89.00 (  0.00%)            73.00 ( 17.98%)
  Min      free-odr0-256              107.00 (  0.00%)            90.00 ( 15.89%)
  Min      free-odr0-512              117.00 (  0.00%)           108.00 (  7.69%)
  Min      free-odr0-1024             125.00 (  0.00%)           118.00 (  5.60%)
  Min      free-odr0-2048             132.00 (  0.00%)           125.00 (  5.30%)
  Min      free-odr0-4096             135.00 (  0.00%)           130.00 (  3.70%)
  Min      free-odr0-8192             137.00 (  0.00%)           130.00 (  5.11%)
  Min      free-odr0-16384            137.00 (  0.00%)           131.00 (  4.38%)
  Min      free-odr1-1                318.00 (  0.00%)           289.00 (  9.12%)
  Min      free-odr1-2                228.00 (  0.00%)           207.00 (  9.21%)
  Min      free-odr1-4                182.00 (  0.00%)           165.00 (  9.34%)
  Min      free-odr1-8                163.00 (  0.00%)           146.00 ( 10.43%)
  Min      free-odr1-16               151.00 (  0.00%)           135.00 ( 10.60%)
  Min      free-odr1-32               146.00 (  0.00%)           129.00 ( 11.64%)
  Min      free-odr1-64               145.00 (  0.00%)           130.00 ( 10.34%)
  Min      free-odr1-128              148.00 (  0.00%)           134.00 (  9.46%)
  Min      free-odr1-256              148.00 (  0.00%)           137.00 (  7.43%)
  Min      free-odr1-512              151.00 (  0.00%)           140.00 (  7.28%)
  Min      free-odr1-1024             154.00 (  0.00%)           143.00 (  7.14%)
  Min      free-odr1-2048             156.00 (  0.00%)           144.00 (  7.69%)
  Min      free-odr1-4096             156.00 (  0.00%)           142.00 (  8.97%)
  Min      free-odr1-8192             156.00 (  0.00%)           140.00 ( 10.26%)
  Min      free-odr2-1                361.00 (  0.00%)           457.00 (-26.59%)
  Min      free-odr2-2                258.00 (  0.00%)           224.00 ( 13.18%)
  Min      free-odr2-4                208.00 (  0.00%)           223.00 ( -7.21%)
  Min      free-odr2-8                185.00 (  0.00%)           160.00 ( 13.51%)
  Min      free-odr2-16               173.00 (  0.00%)           149.00 ( 13.87%)
  Min      free-odr2-32               166.00 (  0.00%)           145.00 ( 12.65%)
  Min      free-odr2-64               166.00 (  0.00%)           146.00 ( 12.05%)
  Min      free-odr2-128              169.00 (  0.00%)           148.00 ( 12.43%)
  Min      free-odr2-256              170.00 (  0.00%)           152.00 ( 10.59%)
  Min      free-odr2-512              177.00 (  0.00%)           156.00 ( 11.86%)
  Min      free-odr2-1024             182.00 (  0.00%)           162.00 ( 10.99%)
  Min      free-odr2-2048             181.00 (  0.00%)           160.00 ( 11.60%)
  Min      free-odr2-4096             180.00 (  0.00%)           159.00 ( 11.67%)
  Min      free-odr3-1                431.00 (  0.00%)           367.00 ( 14.85%)
  Min      free-odr3-2                306.00 (  0.00%)           259.00 ( 15.36%)
  Min      free-odr3-4                249.00 (  0.00%)           208.00 ( 16.47%)
  Min      free-odr3-8                224.00 (  0.00%)           186.00 ( 16.96%)
  Min      free-odr3-16               208.00 (  0.00%)           176.00 ( 15.38%)
  Min      free-odr3-32               206.00 (  0.00%)           174.00 ( 15.53%)
  Min      free-odr3-64               210.00 (  0.00%)           178.00 ( 15.24%)
  Min      free-odr3-128              215.00 (  0.00%)           182.00 ( 15.35%)
  Min      free-odr3-256              224.00 (  0.00%)           189.00 ( 15.62%)
  Min      free-odr3-512              232.00 (  0.00%)           195.00 ( 15.95%)
  Min      free-odr3-1024             230.00 (  0.00%)           195.00 ( 15.22%)
  Min      free-odr3-2048             229.00 (  0.00%)           193.00 ( 15.72%)
  Min      free-odr4-1                561.00 (  0.00%)           439.00 ( 21.75%)
  Min      free-odr4-2                418.00 (  0.00%)           318.00 ( 23.92%)
  Min      free-odr4-4                339.00 (  0.00%)           269.00 ( 20.65%)
  Min      free-odr4-8                299.00 (  0.00%)           239.00 ( 20.07%)
  Min      free-odr4-16               289.00 (  0.00%)           234.00 ( 19.03%)
  Min      free-odr4-32               291.00 (  0.00%)           235.00 ( 19.24%)
  Min      free-odr4-64               298.00 (  0.00%)           238.00 ( 20.13%)
  Min      free-odr4-128              308.00 (  0.00%)           251.00 ( 18.51%)
  Min      free-odr4-256              321.00 (  0.00%)           267.00 ( 16.82%)
  Min      free-odr4-512              327.00 (  0.00%)           269.00 ( 17.74%)
  Min      free-odr4-1024             326.00 (  0.00%)           271.00 ( 16.87%)
  Min      total-odr0-1               644.00 (  0.00%)           494.00 ( 23.29%)
  Min      total-odr0-2               466.00 (  0.00%)           356.00 ( 23.61%)
  Min      total-odr0-4               376.00 (  0.00%)           291.00 ( 22.61%)
  Min      total-odr0-8               328.00 (  0.00%)           251.00 ( 23.48%)
  Min      total-odr0-16              304.00 (  0.00%)           234.00 ( 23.03%)
  Min      total-odr0-32              289.00 (  0.00%)           224.00 ( 22.49%)
  Min      total-odr0-64              282.00 (  0.00%)           218.00 ( 22.70%)
  Min      total-odr0-128             280.00 (  0.00%)           216.00 ( 22.86%)
  Min      total-odr0-256             310.00 (  0.00%)           243.00 ( 21.61%)
  Min      total-odr0-512             329.00 (  0.00%)           273.00 ( 17.02%)
  Min      total-odr0-1024            346.00 (  0.00%)           290.00 ( 16.18%)
  Min      total-odr0-2048            357.00 (  0.00%)           304.00 ( 14.85%)
  Min      total-odr0-4096            367.00 (  0.00%)           315.00 ( 14.17%)
  Min      total-odr0-8192            372.00 (  0.00%)           317.00 ( 14.78%)
  Min      total-odr0-16384           373.00 (  0.00%)           319.00 ( 14.48%)
  Min      total-odr1-1               838.00 (  0.00%)           739.00 ( 11.81%)
  Min      total-odr1-2               619.00 (  0.00%)           543.00 ( 12.28%)
  Min      total-odr1-4               495.00 (  0.00%)           433.00 ( 12.53%)
  Min      total-odr1-8               440.00 (  0.00%)           382.00 ( 13.18%)
  Min      total-odr1-16              407.00 (  0.00%)           353.00 ( 13.27%)
  Min      total-odr1-32              398.00 (  0.00%)           341.00 ( 14.32%)
  Min      total-odr1-64              389.00 (  0.00%)           336.00 ( 13.62%)
  Min      total-odr1-128             392.00 (  0.00%)           341.00 ( 13.01%)
  Min      total-odr1-256             391.00 (  0.00%)           344.00 ( 12.02%)
  Min      total-odr1-512             396.00 (  0.00%)           349.00 ( 11.87%)
  Min      total-odr1-1024            402.00 (  0.00%)           357.00 ( 11.19%)
  Min      total-odr1-2048            409.00 (  0.00%)           364.00 ( 11.00%)
  Min      total-odr1-4096            414.00 (  0.00%)           366.00 ( 11.59%)
  Min      total-odr1-8192            417.00 (  0.00%)           369.00 ( 11.51%)
  Min      total-odr2-1               921.00 (  0.00%)          1210.00 (-31.38%)
  Min      total-odr2-2               682.00 (  0.00%)           576.00 ( 15.54%)
  Min      total-odr2-4               547.00 (  0.00%)           616.00 (-12.61%)
  Min      total-odr2-8               483.00 (  0.00%)           406.00 ( 15.94%)
  Min      total-odr2-16              449.00 (  0.00%)           376.00 ( 16.26%)
  Min      total-odr2-32              437.00 (  0.00%)           366.00 ( 16.25%)
  Min      total-odr2-64              431.00 (  0.00%)           363.00 ( 15.78%)
  Min      total-odr2-128             433.00 (  0.00%)           365.00 ( 15.70%)
  Min      total-odr2-256             434.00 (  0.00%)           371.00 ( 14.52%)
  Min      total-odr2-512             446.00 (  0.00%)           379.00 ( 15.02%)
  Min      total-odr2-1024            461.00 (  0.00%)           392.00 ( 14.97%)
  Min      total-odr2-2048            464.00 (  0.00%)           395.00 ( 14.87%)
  Min      total-odr2-4096            465.00 (  0.00%)           398.00 ( 14.41%)
  Min      total-odr3-1              1060.00 (  0.00%)           872.00 ( 17.74%)
  Min      total-odr3-2               778.00 (  0.00%)           633.00 ( 18.64%)
  Min      total-odr3-4               632.00 (  0.00%)           510.00 ( 19.30%)
  Min      total-odr3-8               565.00 (  0.00%)           452.00 ( 20.00%)
  Min      total-odr3-16              524.00 (  0.00%)           424.00 ( 19.08%)
  Min      total-odr3-32              514.00 (  0.00%)           415.00 ( 19.26%)
  Min      total-odr3-64              515.00 (  0.00%)           419.00 ( 18.64%)
  Min      total-odr3-128             523.00 (  0.00%)           426.00 ( 18.55%)
  Min      total-odr3-256             541.00 (  0.00%)           438.00 ( 19.04%)
  Min      total-odr3-512             559.00 (  0.00%)           451.00 ( 19.32%)
  Min      total-odr3-1024            561.00 (  0.00%)           456.00 ( 18.72%)
  Min      total-odr3-2048            562.00 (  0.00%)           459.00 ( 18.33%)
  Min      total-odr4-1              1328.00 (  0.00%)          1011.00 ( 23.87%)
  Min      total-odr4-2               997.00 (  0.00%)           747.00 ( 25.08%)
  Min      total-odr4-4               813.00 (  0.00%)           615.00 ( 24.35%)
  Min      total-odr4-8               721.00 (  0.00%)           550.00 ( 23.72%)
  Min      total-odr4-16              689.00 (  0.00%)           529.00 ( 23.22%)
  Min      total-odr4-32              683.00 (  0.00%)           528.00 ( 22.69%)
  Min      total-odr4-64              692.00 (  0.00%)           531.00 ( 23.27%)
  Min      total-odr4-128             713.00 (  0.00%)           556.00 ( 22.02%)
  Min      total-odr4-256             738.00 (  0.00%)           586.00 ( 20.60%)
  Min      total-odr4-512             753.00 (  0.00%)           595.00 ( 20.98%)
  Min      total-odr4-1024            752.00 (  0.00%)           600.00 ( 20.21%)

This patch (of 27):

order-0 pages by definition cannot be compound so avoid the check in the
fast path for those pages.

[akpm@linux-foundation.org: use unlikely(order) in free_pages_prepare(), per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
3da88fb3ba mm, oom: move GFP_NOFS check to out_of_memory
__alloc_pages_may_oom is the central place to decide when the
out_of_memory should be invoked.  This is a good approach for most
checks there because they are page allocator specific and the allocation
fails right after for all of them.

The notable exception is GFP_NOFS context which is faking
did_some_progress and keep the page allocator looping even though there
couldn't have been any progress from the OOM killer.  This patch doesn't
change this behavior because we are not ready to allow those allocation
requests to fail yet (and maybe we will face the reality that we will
never manage to safely fail these request).  Instead __GFP_FS check is
moved down to out_of_memory and prevent from OOM victim selection there.
There are two reasons for that

	- OOM notifiers might release some memory even from this context
	  as none of the registered notifier seems to be FS related
	- this might help a dying thread to get an access to memory
          reserves and move on which will make the behavior more
          consistent with the case when the task gets killed from a
          different context.

Keep a comment in __alloc_pages_may_oom to make sure we do not forget
how GFP_NOFS is special and that we really want to do something about
it.

Note to the current oom_notifier users:

The observable difference for you is that oom notifiers cannot depend on
any fs locks because we could deadlock.  Not that this would be allowed
today because that would just lockup machine in most of the cases and
ruling out the OOM killer along the way.  Another difference is that
callbacks might be invoked sooner now because GFP_NOFS is a weaker
reclaim context and so there could be reclaimable memory which is just
not reachable now.  That would require GFP_NOFS only loads which are
really rare and more importantly the observable result would be dropping
of reconstructible object and potential performance drop which is not
such a big deal when we are struggling to fulfill other important
allocation requests.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
fc2bd799c7 mm/page_alloc: correct highmem memory statistics
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate statistics.  And, in following patches, ZONE_CMA will be
introduced and it can be treated as highmem, too.  So, instead of
manually adding stat of ZONE_MOVABLE, looping all zones and check
whether the zone is highmem or not and add stat of the zone which can be
treated as highmem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
ba6b0979e3 power: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to care this overlapping when iterating pfn range.

mark_free_pages() iterates requested zone's pfn range and unset all
range's bitmap first.  And then it marks freepages in a zone to the
bitmap.  If there is an overlapping zone, above unset could clear
previous marked bit and reference to this bitmap in the future will
cause the problem.  To prevent it, this patch adds a zone check in
mark_free_pages().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
b9eb63191a mm/memory_hotplug: add comment to some functions related to memory hotplug
__offline_isolated_pages() and test_pages_isolated() are used by memory
hotplug.  These functions require that range is in a single zone but
there is no code to do this because memory hotplug checks it before
calling these functions.  To avoid confusing future user of these
functions, this patch adds comments to them.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Li Zhang
949698a31a mm/page_alloc: Remove useless parameter of __free_pages_boot_core
__free_pages_boot_core has parameter pfn which is not used at all.
Remove it.

Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Reviewed-by: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
0139aa7b7f mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the
struct page is _count and atomic type.  They would try to handle it
directly and this could break the purpose of page reference count
tracepoint.  To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code.  After that, developer
who need to handle reference count will find that field should not be
accessed directly.

[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Jason Baron
bc22af74f2 mm: update min_free_kbytes from khugepaged after core initialization
Khugepaged attempts to raise min_free_kbytes if its set too low.
However, on boot khugepaged sets min_free_kbytes first from
subsys_initcall(), and then the mm 'core' over-rides min_free_kbytes
after from init_per_zone_wmark_min(), via a module_init() call.

Khugepaged used to use a late_initcall() to set min_free_kbytes (such
that it occurred after the core initialization), however this was
removed when the initialization of min_free_kbytes was integrated into
the starting of the khugepaged thread.

The fix here is simply to invoke the core initialization using a
core_initcall() instead of module_init(), such that the previous
initialization ordering is restored.  I didn't restore the
late_initcall() since start_stop_khugepaged() already sets
min_free_kbytes via set_recommended_min_free_kbytes().

This was noticed when we had a number of page allocation failures when
moving a workload to a kernel with this new initialization ordering.  On
an 8GB system this restores min_free_kbytes back to 67584 from 11365
when CONFIG_TRANSPARENT_HUGEPAGE=y is set and either
CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y or
CONFIG_TRANSPARENT_HUGEPAGE_MADVISE=y.

Fixes: 79553da293 ("thp: cleanup khugepaged startup")
Signed-off-by: Jason Baron <jbaron@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Vlastimil Babka
d9dddbf556 mm/page_alloc: prevent merging between isolated and other pageblocks
Hanjun Guo has reported that a CMA stress test causes broken accounting of
CMA and free pages:

> Before the test, I got:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal:         204800 kB
> CmaFree:          195044 kB
>
>
> After running the test:
> -bash-4.3# cat /proc/meminfo | grep Cma
> CmaTotal:         204800 kB
> CmaFree:         6602584 kB
>
> So the freed CMA memory is more than total..
>
> Also the the MemFree is more than mem total:
>
> -bash-4.3# cat /proc/meminfo
> MemTotal:       16342016 kB
> MemFree:        22367268 kB
> MemAvailable:   22370528 kB

Laura Abbott has confirmed the issue and suspected the freepage accounting
rewrite around 3.18/4.0 by Joonsoo Kim.  Joonsoo had a theory that this is
caused by unexpected merging between MIGRATE_ISOLATE and MIGRATE_CMA
pageblocks:

> CMA isolates MAX_ORDER aligned blocks, but, during the process,
> partialy isolated block exists. If MAX_ORDER is 11 and
> pageblock_order is 9, two pageblocks make up MAX_ORDER
> aligned block and I can think following scenario because pageblock
> (un)isolation would be done one by one.
>
> (each character means one pageblock. 'C', 'I' means MIGRATE_CMA,
> MIGRATE_ISOLATE, respectively.
>
> CC -> IC -> II (Isolation)
> II -> CI -> CC (Un-isolation)
>
> If some pages are freed at this intermediate state such as IC or CI,
> that page could be merged to the other page that is resident on
> different type of pageblock and it will cause wrong freepage count.

This was supposed to be prevented by CMA operating on MAX_ORDER blocks,
but since it doesn't hold the zone->lock between pageblocks, a race
window does exist.

It's also likely that unexpected merging can occur between
MIGRATE_ISOLATE and non-CMA pageblocks.  This should be prevented in
__free_one_page() since commit 3c605096d3 ("mm/page_alloc: restrict
max order of merging on isolated pageblock").  However, we only check
the migratetype of the pageblock where buddy merging has been initiated,
not the migratetype of the buddy pageblock (or group of pageblocks)
which can be MIGRATE_ISOLATE.

Joonsoo has suggested checking for buddy migratetype as part of
page_is_buddy(), but that would add extra checks in allocator hotpath
and bloat-o-meter has shown significant code bloat (the function is
inline).

This patch reduces the bloat at some expense of more complicated code.
The buddy-merging while-loop in __free_one_page() is initially bounded
to pageblock_border and without any migratetype checks.  The checks are
placed outside, bumping the max_order if merging is allowed, and
returning to the while-loop with a statement which can't be possibly
considered harmful.

This fixes the accounting bug and also removes the arguably weird state
in the original commit 3c605096d3 where buddies could be left
unmerged.

Fixes: 3c605096d3 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Link: https://lkml.org/lkml/2016/3/2/280
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hanjun Guo <guohanjun@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Debugged-by: Laura Abbott <labbott@redhat.com>
Debugged-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>	[3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Tetsuo Handa
0a687aace3 mm,oom: do not loop !__GFP_FS allocation if the OOM killer is disabled
After the OOM killer is disabled during suspend operation, any
!__GFP_NOFAIL && __GFP_FS allocations are forced to fail.  Thus, any
!__GFP_NOFAIL && !__GFP_FS allocations should be forced to fail as well.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Li Zhang
987b3095c2 mm: meminit: initialise more memory for inode/dentry hash tables in early boot
Upstream has supported page parallel initialisation for X86 and the boot
time is improved greately.  Some tests have been done for Power.

Here is the result I have done with different memory size.

* 4GB memory:
    boot time is as the following:
    with patch vs without patch: 10.4s vs 24.5s
    boot time is improved 57%
* 200GB memory:
    boot time looks the same with and without patches.
    boot time is about 38s
* 32TB memory:
    boot time looks the same with and without patches
    boot time is about 160s.
    The boot time is much shorter than X86 with 24TB memory.
    From community discussion, it costs about 694s for X86 24T system.

Parallel initialisation improves the performance by deferring memory
initilisation to kswap with N kthreads, it should improve the performance
therotically.

In testing on X86, performance is improved greatly with huge memory.  But
on Power platform, it is improved greatly with less than 100GB memory.
For huge memory, it is not improved greatly.  But it saves the time with
several threads at least, as the following information shows(32TB system
log):

[   22.648169] node 9 initialised, 16607461 pages in 280ms
[   22.783772] node 3 initialised, 23937243 pages in 410ms
[   22.858877] node 6 initialised, 29179347 pages in 490ms
[   22.863252] node 2 initialised, 29179347 pages in 490ms
[   22.907545] node 0 initialised, 32049614 pages in 540ms
[   22.920891] node 15 initialised, 32212280 pages in 550ms
[   22.923236] node 4 initialised, 32306127 pages in 550ms
[   22.923384] node 12 initialised, 32314319 pages in 550ms
[   22.924754] node 8 initialised, 32314319 pages in 550ms
[   22.940780] node 13 initialised, 33353677 pages in 570ms
[   22.940796] node 11 initialised, 33353677 pages in 570ms
[   22.941700] node 5 initialised, 33353677 pages in 570ms
[   22.941721] node 10 initialised, 33353677 pages in 570ms
[   22.941876] node 7 initialised, 33353677 pages in 570ms
[   22.944946] node 14 initialised, 33353677 pages in 570ms
[   22.946063] node 1 initialised, 33345485 pages in 580ms

It saves the time about 550*16 ms at least, although it can be ignore to
compare the boot time about 160 seconds.  What's more, the boot time is
much shorter on Power even without patches than x86 for huge memory
machine.

So this patchset is still necessary to be enabled for Power.

This patch (of 2):

This patch is based on Mel Gorman's old patch in the mailing list,
https://lkml.org/lkml/2015/5/5/280 which is discussed but it is fixed with
a completion to wait for all memory initialised in page_alloc_init_late().
It is to fix the OOM problem on X86 with 24TB memory which allocates
memory in late initialisation.  But for Power platform with 32TB memory,
it causes a call trace in vfs_caches_init->inode_init() and inode hash
table needs more memory.  So this patch allocates 1GB for 0.25TB/node for
large system as it is mentioned in https://lkml.org/lkml/2015/5/1/627

This call trace is found on Power with 32TB memory, 1024CPUs, 16nodes.
Currently, it only allocates 2GB*16=32GB for early initialisation.  But
Dentry cache hash table needes 16GB and Inode cache hash table needs 16GB.
So the system have no enough memory for it.  The log from dmesg as the
following:

  Dentry cache hash table entries: 2147483648 (order: 18,17179869184 bytes)
  vmalloc: allocation failure, allocated 16021913600 of 17179934720 bytes
  swapper/0: page allocation failure: order:0,mode:0x2080020
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.4.0-0-ppc64
  Call Trace:
    .dump_stack+0xb4/0xb664 (unreliable)
    .warn_alloc_failed+0x114/0x160
    .__vmalloc_area_node+0x1a4/0x2b0
    .__vmalloc_node_range+0xe4/0x110
    .__vmalloc_node+0x40/0x50
    .alloc_large_system_hash+0x134/0x2a4
    .inode_init+0xa4/0xf0
    .vfs_caches_init+0x80/0x144
    .start_kernel+0x40c/0x4e0
    start_here_common+0x20/0x4a4

Signed-off-by: Li Zhang <zhlcindy@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Michal Hocko
0f352e5392 mm: remove __GFP_NOFAIL is deprecated comment
Commit 647757197c ("mm: clarify __GFP_NOFAIL deprecation status") was
incomplete and didn't remove the comment about __GFP_NOFAIL being
deprecated in buffered_rmqueue.

Let's get rid of this leftover but keep the WARN_ON_ONCE for order > 1
because we should really discourage from using __GFP_NOFAIL with higher
order allocations because those are just too subtle.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Mel Gorman
444eb2a449 mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure.  The problem is that
THP allocation requests potentially enter reclaim/compaction.  This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses.  While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so.  Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM.  It's been years and
it's time to throw in the towel.

First, this patch defines THP defrag as follows;

 madvise: A failed allocation will direct reclaim/compact if the application requests it
 never:   Neither reclaim/compact nor wake kswapd
 defer:   A failed allocation will wake kswapd/kcompactd
 always:  A failed allocation will direct reclaim/compact (historical behaviour)
          khugepaged defrag will enter direct/reclaim but not wake kswapd.

Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.

Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work.  The callers that
really cares are slub/slab and they are updated accordingly.  The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.

This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available.  There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary.  THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future.  In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times.  The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete.  It uses multiple threads to see
if that is a factor.  On UMA, the performance is almost identical so is
not reported but on NUMA, we see this

usemem
                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)

For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases.  Similar,
notice the large reduction in most cases in system CPU usage.  The
overall CPU time is

               4.4.0       4.4.0
        kcompactd-v1r1 nodefrag-v1r3
User        10357.65    10438.33
System       3988.88     3543.94
Elapsed      2203.01     1634.41

Which is substantial. Now, the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 128458477   278352931
Major Faults                   2174976         225
Swap Ins                      16904701           0
Swap Outs                     17359627           0
Allocation stalls                43611           0
DMA allocs                           0           0
DMA32 allocs                  19832646    19448017
Normal allocs                614488453   580941839
Movable allocs                       0           0
Direct pages scanned          24163800           0
Kswapd pages scanned                 0           0
Kswapd pages reclaimed               0           0
Direct pages reclaimed        20691346           0
Compaction stalls                42263           0
Compaction success                 938           0
Compaction failures              41325           0

This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used

thpscale Fault Latencies
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload

                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                  37429143    47564000
Major Faults                      1916        1558
Swap Ins                          1466        1079
Swap Outs                      2936863      149626
Allocation stalls                62510           3
DMA allocs                           0           0
DMA32 allocs                   6566458     6401314
Normal allocs                216361697   216538171
Movable allocs                       0           0
Direct pages scanned          25977580       17998
Kswapd pages scanned                 0     3638931
Kswapd pages reclaimed               0      207236
Direct pages reclaimed         8833714          88
Compaction stalls               103349           5
Compaction success                 270           4
Compaction failures             103079           1

Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.

I also tried the stutter benchmark.  For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available

stutter
                                 4.4.0                 4.4.0
                        kcompactd-v1r1         nodefrag-v1r3
Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently.  This shows a mix because the ideal case of mapping with THP
is not hit as often.  However, note that 99% of the mappings complete
13.79% faster.  The CPU usage here is particularly interesting

               4.4.0       4.4.0
        kcompactd-v1r1nodefrag-v1r3
User           67.50        0.99
System       1327.88       91.30
Elapsed      2079.00     2128.98

And once again we look at the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 335241922  1314582827
Major Faults                       715         819
Swap Ins                             0           0
Swap Outs                            0           0
Allocation stalls               532723           0
DMA allocs                           0           0
DMA32 allocs                1822364341  1177950222
Normal allocs               1815640808  1517844854
Movable allocs                       0           0
Direct pages scanned          21892772           0
Kswapd pages scanned          20015890    41879484
Kswapd pages reclaimed        19961986    41822072
Direct pages reclaimed        21892741           0
Compaction stalls              1065755           0
Compaction success                 514           0
Compaction failures            1065241           0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available.  We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
795ae7a0de mm: scale kswapd watermarks in proportion to memory
In machines with 140G of memory and enterprise flash storage, we have
seen read and write bursts routinely exceed the kswapd watermarks and
cause thundering herds in direct reclaim.  Unfortunately, the only way
to tune kswapd aggressiveness is through adjusting min_free_kbytes - the
system's emergency reserves - which is entirely unrelated to the
system's latency requirements.  In order to get kswapd to maintain a
250M buffer of free memory, the emergency reserves need to be set to 1G.
That is a lot of memory wasted for no good reason.

On the other hand, it's reasonable to assume that allocation bursts and
overall allocation concurrency scale with memory capacity, so it makes
sense to make kswapd aggressiveness a function of that as well.

Change the kswapd watermark scale factor from the currently fixed 25% of
the tunable emergency reserve to a tunable 0.1% of memory.

Beyond 1G of memory, this will produce bigger watermark steps than the
current formula in default settings.  Ensure that the new formula never
chooses steps smaller than that, i.e.  25% of the emergency reserve.

On a 140G machine, this raises the default watermark steps - the
distance between min and low, and low and high - from 16M to 143M.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Igor Redko
d02bd27bd3 mm/page_alloc.c: calculate 'available' memory in a separate function
Add a new field, VIRTIO_BALLOON_S_AVAIL, to virtio_balloon memory
statistics protocol, corresponding to 'Available' in /proc/meminfo.

It indicates to the hypervisor how big the balloon can be inflated
without pushing the guest system to swap.  This metric would be very
useful in VM orchestration software to improve memory management of
different VMs under overcommit.

This patch (of 2):

Factor out calculation of the available memory counter into a separate
exportable function, in order to be able to use it in other parts of the
kernel.

In particular, it appears a relevant metric to report to the hypervisor
via virtio-balloon statistics interface (in a followup patch).

Signed-off-by: Igor Redko <redkoi@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
698b1b3064 mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts:

 - kswapd balancing a zone after a high-order allocation failure
 - direct compaction to satisfy a high-order allocation, including THP
   page fault attemps
 - khugepaged trying to collapse a hugepage
 - manually from /proc

The purpose of compaction is two-fold.  The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate.  The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism.  The success wrt the latter
purpose is more

The current situation wrt the purposes has a few drawbacks:

 - compaction is invoked only when a high-order page or hugepage is not
   available (or manually).  This might be too late for the purposes of
   keeping memory fragmentation low.
 - direct compaction increases latency of allocations.  Again, it would
   be better if compaction was performed asynchronously to keep
   fragmentation low, before the allocation itself comes.
 - (a special case of the previous) the cost of compaction during THP
   page faults can easily offset the benefits of THP.
 - kswapd compaction appears to be complex, fragile and not working in
   some scenarios.  It could also end up compacting for a high-order
   allocation request when it should be reclaiming memory for a later
   order-0 request.

To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.

One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much.  It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.

Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.

This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables.  The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.

For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.

This patch doesn't yet add a call to wakeup_kcompactd.  The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.

Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
 - we don't want to affect any fastpaths, so wake up kcompactd only from
   the slowpath, as it's done for kswapd
 - if kswapd is doing reclaim, it's more important than compaction, so
   don't invoke kcompactd until kswapd goes to sleep
 - the target order used for kswapd is passed to kcompactd

Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e.  __rmqueue_fallback()) occurs.  It's also
possible to perform periodic compaction with kcompactd.

[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
505f6d22db sound: query dynamic DEBUG_PAGEALLOC setting
We can disable debug_pagealloc processing even if the code is compiled
with CONFIG_DEBUG_PAGEALLOC.  This patch changes the code to query
whether it is enabled or not in runtime.

[akpm@linux-foundation.org: export _debug_pagealloc_enabled to modules]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Naoya Horiguchi
832fc1de01 /proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
Currently /proc/kpageflags returns nothing for "tail" buddy pages, which
is inconvenient when grasping how free pages are distributed.  This
patch sets KPF_BUDDY for such pages.

With this patch:

  $ grep MemFree /proc/meminfo ; tools/vm/page-types -b buddy
  MemFree:         3134992 kB
               flags      page-count       MB  symbolic-flags                     long-symbolic-flags
  0x0000000000000400          779272     3044  __________B_______________________________ buddy
  0x0000000000000c00            4385       17  __________BM______________________________ buddy,mmap
               total          783657     3061

783657 pages is 3134628 kB (roughly consistent with the global counter,)
so it's OK.

[akpm@linux-foundation.org: update comment, per Naoya]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
7cf91a98e6 mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in
there half of cpu time are spent on pageblock_pfn_to_page() in
compaction [1].

In that workload, compaction is triggered to make hugepage but most of
pageblocks are un-available for compaction due to pageblock type and
skip bit so compaction usually fails.  Most costly operations in this
case is to find valid pageblock while scanning whole zone range.  To
check if pageblock is valid to compact, valid pfn within pageblock is
required and we can obtain it by calling pageblock_pfn_to_page().  This
function checks whether pageblock is in a single zone and return valid
pfn if possible.  Problem is that we need to check it every time before
scanning pageblock even if we re-visit it and this turns out to be very
expensive in this workload.

Although we have no way to skip this pageblock check in the system where
hole exists at arbitrary position, we can use cached value for zone
continuity and just do pfn_to_page() in the system where hole doesn't
exist.  This optimization considerably speeds up in above workload.

Before vs After
  Max: 1096 MB/s vs 1325 MB/s
  Min: 635 MB/s 1015 MB/s
  Avg: 899 MB/s 1194 MB/s

Avg is improved by roughly 30% [2].

[1]: http://www.spinics.net/lists/linux-mm/msg97378.html
[2]: https://lkml.org/lkml/2015/12/9/23

[akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00