Use the common helper uuid_is_null() and remove the xfs specific
helper uuid_is_nil().
The common helper does not check for the NULL pointer value as
xfs helper did, but xfs code never calls the helper with a pointer
that can be NULL.
Conform comments and warning strings to use the term 'null uuid'
instead of 'nil uuid', because this is the terminology used by
lib/uuid.c and its users. It is also the terminology used in
userspace by libuuid and xfsprogs.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
[hch: remove now unused uuid.[ch]]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Opencode uuid_getnodeuniq in the only caller, and directly decode
the uuid_t representation instead of using a structure cast for it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
These helper are used to compare and copy two uuid_t type objects.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
[hch: also provide the respective guid_ versions]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Our "little endian" UUID really is a Wintel GUID, so rename it and its
helpers such (guid_t). The big endian UUID is the only true one, so
give it the name uuid_t. The uuid_le and uuid_be names are retained for
now, but will hopefully go away soon. The exception to that are the _cmp
helpers that will be replaced by better primitives ASAP and thus don't
get the new names.
Also the _to_bin helpers are named to match the better named uuid_parse
routine in userspace.
Also remove the existing typedef in XFS that's now been superceeded by
the generic type name.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[andy: also update the UUID_LE/UUID_BE macros including fallout]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Use the generic Linux definition to implement our UUID type, this will
allow using more generic infrastructure in the future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
uuid_t definition is about to change.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
- Fix an unmount hang due to a race in io buffer accounting.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJZMKVEAAoJEPh/dxk0SrTrBYcQAKSpzE8C9wDBw6cyxP3kwrTr
FSQiSr7flnGBHwy2U0UC/SIFIwYxvW4BTnXJWADyqtnvLWP1+TC7UY1oNpkTsbkK
KLsWgz3aOcT/8sb346PzFDAuxof2lkv3xFPRBFaoeSkybxWqLz6BWsbmaJNH/wqy
W3k3H241mAftEiv1i9IUlAZMXE31qywIKzzUJvkOglXS8OdVFfMPQvUz6epU2LWA
I2tBip936Sl45vLu6ubqoRpk8dWNuPPX+f4YXl8dVeqRKTYhviMwgYD4rlljb6Ti
kIRG9HYg1GVZo5z/5unAjyEaKzYoRrXnO5Lg+i09NIhezlDhB2HJ+k71NljoeHoe
YCwqumQIGgnxdFu+FP10tKh2EWvDp80SQxgzIvr+FCCKJdsdNYyftRh4CtsCPJSG
xWHT1jgovygHsBEEmG2LS9mCXKkyWgMkHNMBu3Yy/F/4HGzrPjcU3F+x90OmOo7J
S26kEwsAoo+Q5Is8QkmqrnD+CQ7jwXEv9Mw3UqRwQ7UagRdR2nI8CIGEC7W+42Mm
Gd3TtAyJCbhZWXNq7pLeTnGu7JY3/dhR/8VSW+mIKtvFg7v9O1wZBYId8vTwZN1+
8jgnW0h6myE10YKU5bc1TZeYYAkWA+JLRKxoexL3QD8jWeffyZgMNWPM2rb+4Jjp
2wwCHMPvHE8X7a2urTW3
=wRbJ
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.12-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull XFS fix from Darrick Wong:
"I've one more bugfix for you for 4.12-rc4: Fix an unmount hang due to
a race in io buffer accounting"
* tag 'xfs-4.12-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: use ->b_state to fix buffer I/O accounting release race
We've had user reports of unmount hangs in xfs_wait_buftarg() that
analysis shows is due to btp->bt_io_count == -1. bt_io_count
represents the count of in-flight asynchronous buffers and thus
should always be >= 0. xfs_wait_buftarg() waits for this value to
stabilize to zero in order to ensure that all untracked (with
respect to the lru) buffers have completed I/O processing before
unmount proceeds to tear down in-core data structures.
The value of -1 implies an I/O accounting decrement race. Indeed,
the fact that xfs_buf_ioacct_dec() is called from xfs_buf_rele()
(where the buffer lock is no longer held) means that bp->b_flags can
be updated from an unsafe context. While a user-level reproducer is
currently not available, some intrusive hacks to run racing buffer
lookups/ioacct/releases from multiple threads was used to
successfully manufacture this problem.
Existing callers do not expect to acquire the buffer lock from
xfs_buf_rele(). Therefore, we can not safely update ->b_flags from
this context. It turns out that we already have separate buffer
state bits and associated serialization for dealing with buffer LRU
state in the form of ->b_state and ->b_lock. Therefore, replace the
_XBF_IN_FLIGHT flag with a ->b_state variant, update the I/O
accounting wrappers appropriately and make sure they are used with
the correct locking. This ensures that buffer in-flight state can be
modified at buffer release time without racing with modifications
from a buffer lock holder.
Fixes: 9c7504aa72 ("xfs: track and serialize in-flight async buffers against unmount")
Cc: <stable@vger.kernel.org> # v4.8+
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Libor Pechacek <lpechacek@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
- Fix indlen block reservation accounting bug when splitting delalloc extent
- Fix warnings about unused variables that appeared in -rc1.
- Don't spew errors when bmapping a local format directory
- Fix an off-by-one error in a delalloc eof assertion
- Make fsmap only return inode information for CAP_SYS_ADMIN
- Fix a potential mount time deadlock recovering cow extents
- Fix unaligned memory access in _btree_visit_blocks
- Fix various SEEK_HOLE/SEEK_DATA bugs
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJZJwnxAAoJEPh/dxk0SrTr/TMQAKP6OMsjYxpro+1Uif+oPTQ6
vvUfXJMWLKc07QI/czwLDY4A36h2TZjNxpBJypSfVumlD82ZPa8gp6XFWngwIUb4
3G+A9zq4Fviq8Vzz3G75C8Q49h8IpmU3SimTlhS1BIcxe+upu2qplzM3yc6/T4MB
WTTqtjL3SaW5D2v0ZdPL9ulQKKAlL1WfbZV9dDJ4UiRw5Jlwj2Udg6HnbRvfrcZF
IziYlidrTIt64ecA9GqR32soXqFBGPKo6Wp9Pk+iWLlsfM6qcCt1m+yfM1JonRGA
wycygcrrjfR/lFHMQCGonLs1ajC6isLeMZ804P6OP2q6kfdtersedvY7XSoYsEJ4
ok4J3fiyqYgMGhPz7x0Y8IH9+gdudn7+fHiC5/RNkolEy8AbPPe21XhFDVxeTkCs
4GAHNGQfOEK2PT69Ya81taVzT/TpuIGIkUAaDH8vsfxwcVunM08/OffsCiinLMJx
bt3G7fH3wJ+VuYJS92amj3k6n6EAeHYc0dAVGd5e8dtN25079nBm+EP0Wp+j8uVl
PwaJjde68wxWUvuYXVK1a8vietRS7xChyta34cYcStd4wWu1knccpN/mjQnK/ucB
4etZspB1rQQx08KBqHVq8t508PA7nWtFxjE91JYkpvbyYym1WEH8Mz7rbVBI6NjS
Y/8+uPhFq2BU1b9skj0U
=pDjl
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.12-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull XFS fixes from Darrick Wong:
"A few miscellaneous bug fixes & cleanups:
- Fix indlen block reservation accounting bug when splitting delalloc
extent
- Fix warnings about unused variables that appeared in -rc1.
- Don't spew errors when bmapping a local format directory
- Fix an off-by-one error in a delalloc eof assertion
- Make fsmap only return inode information for CAP_SYS_ADMIN
- Fix a potential mount time deadlock recovering cow extents
- Fix unaligned memory access in _btree_visit_blocks
- Fix various SEEK_HOLE/SEEK_DATA bugs"
* tag 'xfs-4.12-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: Move handling of missing page into one place in xfs_find_get_desired_pgoff()
xfs: Fix off-by-in in loop termination in xfs_find_get_desired_pgoff()
xfs: Fix missed holes in SEEK_HOLE implementation
xfs: fix off-by-one on max nr_pages in xfs_find_get_desired_pgoff()
xfs: fix unaligned access in xfs_btree_visit_blocks
xfs: avoid mount-time deadlock in CoW extent recovery
xfs: only return detailed fsmap info if the caller has CAP_SYS_ADMIN
xfs: bad assertion for delalloc an extent that start at i_size
xfs: fix warnings about unused stack variables
xfs: BMAPX shouldn't barf on inline-format directories
xfs: fix indlen accounting error on partial delalloc conversion
Currently several places in xfs_find_get_desired_pgoff() handle the case
of a missing page. Make them all handled in one place after the loop has
terminated.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is an off-by-one error in loop termination conditions in
xfs_find_get_desired_pgoff() since 'end' may index a page beyond end of
desired range if 'endoff' is page aligned. It doesn't have any visible
effects but still it is good to fix it.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS SEEK_HOLE implementation could miss a hole in an unwritten extent as
can be seen by the following command:
xfs_io -c "falloc 0 256k" -c "pwrite 0 56k" -c "pwrite 128k 8k"
-c "seek -h 0" file
wrote 57344/57344 bytes at offset 0
56 KiB, 14 ops; 0.0000 sec (49.312 MiB/sec and 12623.9856 ops/sec)
wrote 8192/8192 bytes at offset 131072
8 KiB, 2 ops; 0.0000 sec (70.383 MiB/sec and 18018.0180 ops/sec)
Whence Result
HOLE 139264
Where we can see that hole at offset 56k was just ignored by SEEK_HOLE
implementation. The bug is in xfs_find_get_desired_pgoff() which does
not properly detect the case when pages are not contiguous.
Fix the problem by properly detecting when found page has larger offset
than expected.
CC: stable@vger.kernel.org
Fixes: d126d43f63
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_find_get_desired_pgoff() is used to search for offset of hole or
data in page range [index, end] (both inclusive), and the max number
of pages to search should be at least one, if end == index.
Otherwise the only page is missed and no hole or data is found,
which is not correct.
When block size is smaller than page size, this can be demonstrated
by preallocating a file with size smaller than page size and writing
data to the last block. E.g. run this xfs_io command on a 1k block
size XFS on x86_64 host.
# xfs_io -fc "falloc 0 3k" -c "pwrite 2k 1k" \
-c "seek -d 0" /mnt/xfs/testfile
wrote 1024/1024 bytes at offset 2048
1 KiB, 1 ops; 0.0000 sec (33.675 MiB/sec and 34482.7586 ops/sec)
Whence Result
DATA EOF
Data at offset 2k was missed, and lseek(2) returned ENXIO.
This is uncovered by generic/285 subtest 07 and 08 on ppc64 host,
where pagesize is 64k. Because a recent change to generic/285
reduced the preallocated file size to smaller than 64k.
Cc: stable@vger.kernel.org # v3.7+
Signed-off-by: Eryu Guan <eguan@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This structure copy was throwing unaligned access warnings on sparc64:
Kernel unaligned access at TPC[1043c088] xfs_btree_visit_blocks+0x88/0xe0 [xfs]
xfs_btree_copy_ptrs does a memcpy, which avoids it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If a malicious user corrupts the refcount btree to cause a cycle between
different levels of the tree, the next mount attempt will deadlock in
the CoW recovery routine while grabbing buffer locks. We can use the
ability to re-grab a buffer that was previous locked to a transaction to
avoid deadlocks, so do that here.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There were a number of handwaving complaints that one could "possibly"
use inode numbers and extent maps to fingerprint a filesystem hosting
multiple containers and somehow use the information to guess at the
contents of other containers and attack them. Despite the total lack of
any demonstration that this is actually possible, it's easier to
restrict access now and broaden it later, so use the rmapbt fsmap
backends only if the caller has CAP_SYS_ADMIN. Unprivileged users will
just have to make do with only getting the free space and static
metadata placement information.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
By run fsstress long enough time enough in RHEL-7, I find an
assertion failure (harder to reproduce on linux-4.11, but problem
is still there):
XFS: Assertion failed: (iflags & BMV_IF_DELALLOC) != 0, file: fs/xfs/xfs_bmap_util.c
The assertion is in xfs_getbmap() funciton:
if (map[i].br_startblock == DELAYSTARTBLOCK &&
--> map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
ASSERT((iflags & BMV_IF_DELALLOC) != 0);
When map[i].br_startoff == XFS_B_TO_FSB(mp, XFS_ISIZE(ip)), the
startoff is just at EOF. But we only need to make sure delalloc
extents that are within EOF, not include EOF.
Signed-off-by: Zorro Lang <zlang@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reduce stack usage and get rid of compiler warnings by eliminating
unused variables.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
When we're fulfilling a BMAPX request, jump out early if the data fork
is in local format. This prevents us from hitting a debugging check in
bmapi_read and barfing errors back to userspace. The on-disk extent
count check later isn't sufficient for IF_DELALLOC mode because da
extents are in memory and not on disk.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The delalloc -> real block conversion path uses an incorrect
calculation in the case where the middle part of a delalloc extent
is being converted. This is documented as a rare situation because
XFS generally attempts to maximize contiguity by converting as much
of a delalloc extent as possible.
If this situation does occur, the indlen reservation for the two new
delalloc extents left behind by the conversion of the middle range
is calculated and compared with the original reservation. If more
blocks are required, the delta is allocated from the global block
pool. This delta value can be characterized as the difference
between the new total requirement (temp + temp2) and the currently
available reservation minus those blocks that have already been
allocated (startblockval(PREV.br_startblock) - allocated).
The problem is that the current code does not account for previously
allocated blocks correctly. It subtracts the current allocation
count from the (new - old) delta rather than the old indlen
reservation. This means that more indlen blocks than have been
allocated end up stashed in the remaining extents and free space
accounting is broken as a result.
Fix up the calculation to subtract the allocated block count from
the original extent indlen and thus correctly allocate the
reservation delta based on the difference between the new total
requirement and the unused blocks from the original reservation.
Also remove a bogus assert that contradicts the fact that the new
indlen reservation can be larger than the original indlen
reservation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Tetsuo reports:
fs/built-in.o: In function `xfs_file_iomap_end':
xfs_iomap.c:(.text+0xe0ef9): undefined reference to `put_dax'
fs/built-in.o: In function `xfs_file_iomap_begin':
xfs_iomap.c:(.text+0xe1a7f): undefined reference to `dax_get_by_host'
make: *** [vmlinux] Error 1
$ grep DAX .config
CONFIG_DAX=m
# CONFIG_DEV_DAX is not set
# CONFIG_FS_DAX is not set
When FS_DAX=n we can/must throw away the dax code in filesystems.
Implement 'fs_' versions of dax_get_by_host() and put_dax() that are
nops in the FS_DAX=n case.
Cc: <linux-xfs@vger.kernel.org>
Cc: <linux-ext4@vger.kernel.org>
Cc: Jan Kara <jack@suse.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Fixes: ef51042472 ("block, dax: move 'select DAX' from BLOCK to FS_DAX")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull libnvdimm fixes from Dan Williams:
"Incremental fixes and a small feature addition on top of the main
libnvdimm 4.12 pull request:
- Geert noticed that tinyconfig was bloated by BLOCK selecting DAX.
The size regression is fixed by moving all dax helpers into the
dax-core and only specifying "select DAX" for FS_DAX and
dax-capable drivers. He also asked for clarification of the
NR_DEV_DAX config option which, on closer look, does not need to be
a config option at all. Mike also throws in a DEV_DAX_PMEM fixup
for good measure.
- Ben's attention to detail on -stable patch submissions caught a
case where the recent fixes to arch_copy_from_iter_pmem() missed a
condition where we strand dirty data in the cache. This is tagged
for -stable and will also be included in the rework of the pmem api
to a proposed {memcpy,copy_user}_flushcache() interface for 4.13.
- Vishal adds a feature that missed the initial pull due to pending
review feedback. It allows the kernel to clear media errors when
initializing a BTT (atomic sector update driver) instance on a pmem
namespace.
- Ross noticed that the dax_device + dax_operations conversion broke
__dax_zero_page_range(). The nvdimm unit tests fail to check this
path, but xfstests immediately trips over it. No excuse for missing
this before submitting the 4.12 pull request.
These all pass the nvdimm unit tests and an xfstests spot check. The
set has received a build success notification from the kbuild robot"
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
filesystem-dax: fix broken __dax_zero_page_range() conversion
libnvdimm, btt: ensure that initializing metadata clears poison
libnvdimm: add an atomic vs process context flag to rw_bytes
x86, pmem: Fix cache flushing for iovec write < 8 bytes
device-dax: kill NR_DEV_DAX
block, dax: move "select DAX" from BLOCK to FS_DAX
device-dax: Tell kbuild DEV_DAX_PMEM depends on DEV_DAX
Fix typos and add the following to the scripts/spelling.txt:
intialisation||initialisation
intialised||initialised
intialise||initialise
This commit does not intend to change the British spelling itself.
Link: http://lkml.kernel.org/r/1481573103-11329-18-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For configurations that do not enable DAX filesystems or drivers, do not
require the DAX core to be built.
Given that the 'direct_access' method has been removed from
'block_device_operations', we can also go ahead and remove the
block-related dax helper functions from fs/block_dev.c to
drivers/dax/super.c. This keeps dax details out of the block layer and
lets the DAX core be built as a module in the FS_DAX=n case.
Filesystems need to include dax.h to call bdev_dax_supported().
Cc: linux-xfs@vger.kernel.org
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
- various code cleanups
- introduce GETFSMAP ioctl
- various refactoring
- avoid dio reads past eof
- fix memory corruption and other errors with fragmented directory blocks
- fix accidental userspace memory corruptions
- publish fs uuid in superblock
- make fstrim terminatable
- fix race between quotaoff and in-core inode creation
- Avoid use-after-free when finishing up w/ buffer heads
- Reserve enough space to handle bmap tree resizing during cow remap
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJZDfIzAAoJEPh/dxk0SrTrsEgP/3TjYbaqsad2e6KqtZwqN/Qx
DUljUxReZl4rgnAaFD55XOPYWGZ2bBGNtAQlAR7/JYZuZs6obbBrqUukS19jPVi7
SeQdknnU3yTq17LrwEeeQUOhem28GHxYtQYazdgNoTigZXABeXWzi53HzvPw5+Ci
3a+zB1clu3cycKsD+UAhz/m0Z40ckjDMsDueJMOACiax+vPjlzSu36H9wzlF/h0R
nq7VGSDZy6aS3H75PDjWVxoJGUSdO7jHYxwQflkk6wxrcmTCLZxuiDeSANOZ2KxM
y8qTln6hqxalQSH9r6n84/XrQstYWfdLqwngIL5wMSvN6UbuFyNQKuouEkWs6EEZ
4cuSqfihT7o5VcIpYiq1ZDgNzzpmDDMMeho4J9WBvm5Qt5hgPCo3gzweE/C6Sscs
m+V1NvLd+kBiHoMhYPB8/lm4nXa/wT1Y3TtHc+8A/qkZKAwoOdxWKNIY58jfmdzb
Rvv0LKi+6W5zanzXlNs3NXJBwZAeHuHXKY3UJT4BAWfjdtS6QvIf1Bcpj9ApyqE2
oOnNMRhF+wSS9dSFoPXkRjzIyoR5CoOylB0KYV9OYELYPDLczwbvtX/9+tjDEol9
odCZyyzJtKxYQbwf2TQ/ZqXQV4vw6lWOB7G4Itx7yv0Taa9vQ7cxSX2MnE7TA/pW
IQKsE6C2I24Bfr2oPfms
=oKCc
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.12-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"Here are the XFS changes for 4.12. The big new feature for this
release is the new space mapping ioctl that we've been discussing
since LSF2016, but other than that most of the patches are larger bug
fixes, memory corruption prevention, and other cleanups.
Summary:
- various code cleanups
- introduce GETFSMAP ioctl
- various refactoring
- avoid dio reads past eof
- fix memory corruption and other errors with fragmented directory blocks
- fix accidental userspace memory corruptions
- publish fs uuid in superblock
- make fstrim terminatable
- fix race between quotaoff and in-core inode creation
- avoid use-after-free when finishing up w/ buffer heads
- reserve enough space to handle bmap tree resizing during cow remap"
* tag 'xfs-4.12-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (53 commits)
xfs: fix use-after-free in xfs_finish_page_writeback
xfs: reserve enough blocks to handle btree splits when remapping
xfs: wait on new inodes during quotaoff dquot release
xfs: update ag iterator to support wait on new inodes
xfs: support ability to wait on new inodes
xfs: publish UUID in struct super_block
xfs: Allow user to kill fstrim process
xfs: better log intent item refcount checking
xfs: fix up quotacheck buffer list error handling
xfs: remove xfs_trans_ail_delete_bulk
xfs: don't use bool values in trace buffers
xfs: fix getfsmap userspace memory corruption while setting OF_LAST
xfs: fix __user annotations for xfs_ioc_getfsmap
xfs: corruption needs to respect endianess too!
xfs: use NULL instead of 0 to initialize a pointer in xfs_ioc_getfsmap
xfs: use NULL instead of 0 to initialize a pointer in xfs_getfsmap
xfs: simplify validation of the unwritten extent bit
xfs: remove unused values from xfs_exntst_t
xfs: remove the unused XFS_MAXLINK_1 define
xfs: more do_div cleanups
...
* Region media error reporting: A libnvdimm region device is the parent
to one or more namespaces. To date, media errors have been reported via
the "badblocks" attribute attached to pmem block devices for namespaces
in "raw" or "memory" mode. Given that namespaces can be in "device-dax"
or "btt-sector" mode this new interface reports media errors
generically, i.e. independent of namespace modes or state. This
subsequently allows userspace tooling to craft "ACPI 6.1 Section
9.20.7.6 Function Index 4 - Clear Uncorrectable Error" requests and
submit them via the ioctl path for NVDIMM root bus devices.
* Introduce 'struct dax_device' and 'struct dax_operations': Prompted by
a request from Linus and feedback from Christoph this allows for dax
capable drivers to publish their own custom dax operations. This fixes
the broken assumption that all dax operations are related to a
persistent memory device, and makes it easier for other architectures
and platforms to add customized persistent memory support.
* 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is
available for storage appliance applications to manually trigger memory
controllers to drain write-pending buffers that would otherwise be
flushed automatically by the platform ADR (asynchronous-DRAM-refresh)
mechanism at a power loss event. Support for "locked" DIMMs is included
to prevent namespaces from surfacing when the namespace label data area
is locked. Finally, fixes for various reported deadlocks and crashes,
also tagged for -stable.
* ACPI / nfit driver updates: General updates of the nfit driver to add
DSM command overrides, ACPI 6.1 health state flags support, DSM payload
debug available by default, and various fixes.
Acknowledgements that came after the branch was pushed:
commmit 565851c972 "device-dax: fix sysfs attribute deadlock"
Tested-by: Yi Zhang <yizhan@redhat.com>
commit 23f4984483 "libnvdimm: rework region badblocks clearing"
Tested-by: Toshi Kani <toshi.kani@hpe.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZDONJAAoJEB7SkWpmfYgC3SsP/2KrLvTUcz646ViuPOgZ2cC4
W6wAx6cvDSt+H52kLnFEsYoFt7WAj20ggPirb/Bc5jkGlvwE0lT9Xtmso9GpVkYT
J9ZJ9pP/4YaAD3II1gmTwaUjYi0FxoOdx3Eb92yuWkO/8ylz4b2Nu3cBpYwyziGQ
nIfEVwDXRLE86u6x0bWuf6TlVuvsbdiAI55CDqDMVQC6xIOLbSez7b8QIHlpiKEb
Mw+xqdQva0esoreZEOXEhWNO+qtfILx8/ceBEGTNMp4e/JjZ2FbrSNplM+9bH5k7
ywqP8lW+mBEw0fmBBkYoVG/xyesiiBb55JLnbi8Ew+7IUxw8a3iV7wftRi62lHcK
zAjsHe4L+MansgtZsCL8wluvIPaktAdtB4xr7l9VNLKRYRUG73jEWU0gcUNryHIL
BkQJ52pUS1PkClyAsWbBBHl1I/CvzVPd21VW0YELmLR4OywKy1c+eKw2bcYgjrb4
59HZSv6S6EoKaQC+2qvVNpePil7cdfg5V2ubH/ki9HoYVyoxDptEWHnvf0NNatIH
Y7mNcOPvhOksJmnKSyHbDjtRur7WoHIlC9D7UjEFkSBWsKPjxJHoidN4SnCMRtjQ
WKQU0seoaKj04b68Bs/Qm9NozVgnsPFIUDZeLMikLFX2Jt7YSPu+Jmi2s4re6WLh
TmJQ3Ly9t3o3/weHSzmn
=Ox0s
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"The bulk of this has been in multiple -next releases. There were a few
late breaking fixes and small features that got added in the last
couple days, but the whole set has received a build success
notification from the kbuild robot.
Change summary:
- Region media error reporting: A libnvdimm region device is the
parent to one or more namespaces. To date, media errors have been
reported via the "badblocks" attribute attached to pmem block
devices for namespaces in "raw" or "memory" mode. Given that
namespaces can be in "device-dax" or "btt-sector" mode this new
interface reports media errors generically, i.e. independent of
namespace modes or state.
This subsequently allows userspace tooling to craft "ACPI 6.1
Section 9.20.7.6 Function Index 4 - Clear Uncorrectable Error"
requests and submit them via the ioctl path for NVDIMM root bus
devices.
- Introduce 'struct dax_device' and 'struct dax_operations': Prompted
by a request from Linus and feedback from Christoph this allows for
dax capable drivers to publish their own custom dax operations.
This fixes the broken assumption that all dax operations are
related to a persistent memory device, and makes it easier for
other architectures and platforms to add customized persistent
memory support.
- 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is
available for storage appliance applications to manually trigger
memory controllers to drain write-pending buffers that would
otherwise be flushed automatically by the platform ADR
(asynchronous-DRAM-refresh) mechanism at a power loss event.
Support for "locked" DIMMs is included to prevent namespaces from
surfacing when the namespace label data area is locked. Finally,
fixes for various reported deadlocks and crashes, also tagged for
-stable.
- ACPI / nfit driver updates: General updates of the nfit driver to
add DSM command overrides, ACPI 6.1 health state flags support, DSM
payload debug available by default, and various fixes.
Acknowledgements that came after the branch was pushed:
- commmit 565851c972 "device-dax: fix sysfs attribute deadlock":
Tested-by: Yi Zhang <yizhan@redhat.com>
- commit 23f4984483 "libnvdimm: rework region badblocks clearing"
Tested-by: Toshi Kani <toshi.kani@hpe.com>"
* tag 'libnvdimm-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (52 commits)
libnvdimm, pfn: fix 'npfns' vs section alignment
libnvdimm: handle locked label storage areas
libnvdimm: convert NDD_ flags to use bitops, introduce NDD_LOCKED
brd: fix uninitialized use of brd->dax_dev
block, dax: use correct format string in bdev_dax_supported
device-dax: fix sysfs attribute deadlock
libnvdimm: restore "libnvdimm: band aid btt vs clear poison locking"
libnvdimm: fix nvdimm_bus_lock() vs device_lock() ordering
libnvdimm: rework region badblocks clearing
acpi, nfit: kill ACPI_NFIT_DEBUG
libnvdimm: fix clear length of nvdimm_forget_poison()
libnvdimm, pmem: fix a NULL pointer BUG in nd_pmem_notify
libnvdimm, region: sysfs trigger for nvdimm_flush()
libnvdimm: fix phys_addr for nvdimm_clear_poison
x86, dax, pmem: remove indirection around memcpy_from_pmem()
block: remove block_device_operations ->direct_access()
block, dax: convert bdev_dax_supported() to dax_direct_access()
filesystem-dax: convert to dax_direct_access()
Revert "block: use DAX for partition table reads"
ext2, ext4, xfs: retrieve dax_device for iomap operations
...
kmem_zalloc_large and _xfs_buf_map_pages use memalloc_noio_{save,restore}
API to prevent from reclaim recursion into the fs because vmalloc can
invoke unconditional GFP_KERNEL allocations and these functions might be
called from the NOFS contexts. The memalloc_noio_save will enforce
GFP_NOIO context which is even weaker than GFP_NOFS and that seems to be
unnecessary. Let's use memalloc_nofs_{save,restore} instead as it
should provide exactly what we need here - implicit GFP_NOFS context.
Link: http://lkml.kernel.org/r/20170306131408.9828-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_NOFS context is used for the following 5 reasons currently:
- to prevent from deadlocks when the lock held by the allocation
context would be needed during the memory reclaim
- to prevent from stack overflows during the reclaim because the
allocation is performed from a deep context already
- to prevent lockups when the allocation context depends on other
reclaimers to make a forward progress indirectly
- just in case because this would be safe from the fs POV
- silence lockdep false positives
Unfortunately overuse of this allocation context brings some problems to
the MM. Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.
In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily. We would like to get rid of
those as much as possible. One way to do that is to use the flag in
scopes rather than isolated cases. Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.
Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.
Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context. This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.
PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve
their semantic. kmem_flags_convert() doesn't need to evaluate the flag
anymore.
This patch shouldn't introduce any functional changes.
Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.
[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfs has defined PF_FSTRANS to declare a scope GFP_NOFS semantic quite
some time ago. We would like to make this concept more generic and use
it for other filesystems as well. Let's start by giving the flag a more
generic name PF_MEMALLOC_NOFS which is in line with an exiting
PF_MEMALLOC_NOIO already used for the same purpose for GFP_NOIO
contexts. Replace all PF_FSTRANS usage from the xfs code in the first
step before we introduce a full API for it as xfs uses the flag directly
anyway.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170306131408.9828-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In xfs_reflink_end_cow, we erroneously reserve only enough blocks to
handle adding 1 extent. This is problematic if we fragment free space,
have to do CoW, and then have to perform multiple bmap btree expansions.
Furthermore, the BUI recovery routine doesn't reserve /any/ blocks to
handle btree splits, so log recovery fails after our first error causes
the filesystem to go down.
Therefore, refactor the transaction block reservation macros until we
have a macro that works for our deferred (re)mapping activities, and fix
both problems by using that macro.
With 1k blocks we can hit this fairly often in g/187 if the scratch fs
is big enough.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Pull block layer updates from Jens Axboe:
- Add BFQ IO scheduler under the new blk-mq scheduling framework. BFQ
was initially a fork of CFQ, but subsequently changed to implement
fairness based on B-WF2Q+, a modified variant of WF2Q. BFQ is meant
to be used on desktop type single drives, providing good fairness.
From Paolo.
- Add Kyber IO scheduler. This is a full multiqueue aware scheduler,
using a scalable token based algorithm that throttles IO based on
live completion IO stats, similary to blk-wbt. From Omar.
- A series from Jan, moving users to separately allocated backing
devices. This continues the work of separating backing device life
times, solving various problems with hot removal.
- A series of updates for lightnvm, mostly from Javier. Includes a
'pblk' target that exposes an open channel SSD as a physical block
device.
- A series of fixes and improvements for nbd from Josef.
- A series from Omar, removing queue sharing between devices on mostly
legacy drivers. This helps us clean up other bits, if we know that a
queue only has a single device backing. This has been overdue for
more than a decade.
- Fixes for the blk-stats, and improvements to unify the stats and user
windows. This both improves blk-wbt, and enables other users to
register a need to receive IO stats for a device. From Omar.
- blk-throttle improvements from Shaohua. This provides a scalable
framework for implementing scalable priotization - particularly for
blk-mq, but applicable to any type of block device. The interface is
marked experimental for now.
- Bucketized IO stats for IO polling from Stephen Bates. This improves
efficiency of polled workloads in the presence of mixed block size
IO.
- A few fixes for opal, from Scott.
- A few pulls for NVMe, including a lot of fixes for NVMe-over-fabrics.
From a variety of folks, mostly Sagi and James Smart.
- A series from Bart, improving our exposed info and capabilities from
the blk-mq debugfs support.
- A series from Christoph, cleaning up how handle WRITE_ZEROES.
- A series from Christoph, cleaning up the block layer handling of how
we track errors in a request. On top of being a nice cleanup, it also
shrinks the size of struct request a bit.
- Removal of mg_disk and hd (sorry Linus) by Christoph. The former was
never used by platforms, and the latter has outlived it's usefulness.
- Various little bug fixes and cleanups from a wide variety of folks.
* 'for-4.12/block' of git://git.kernel.dk/linux-block: (329 commits)
block: hide badblocks attribute by default
blk-mq: unify hctx delay_work and run_work
block: add kblock_mod_delayed_work_on()
blk-mq: unify hctx delayed_run_work and run_work
nbd: fix use after free on module unload
MAINTAINERS: bfq: Add Paolo as maintainer for the BFQ I/O scheduler
blk-mq-sched: alloate reserved tags out of normal pool
mtip32xx: use runtime tag to initialize command header
scsi: Implement blk_mq_ops.show_rq()
blk-mq: Add blk_mq_ops.show_rq()
blk-mq: Show operation, cmd_flags and rq_flags names
blk-mq: Make blk_flags_show() callers append a newline character
blk-mq: Move the "state" debugfs attribute one level down
blk-mq: Unregister debugfs attributes earlier
blk-mq: Only unregister hctxs for which registration succeeded
blk-mq-debugfs: Rename functions for registering and unregistering the mq directory
blk-mq: Let blk_mq_debugfs_register() look up the queue name
blk-mq: Register <dev>/queue/mq after having registered <dev>/queue
ide-pm: always pass 0 error to ide_complete_rq in ide_do_devset
ide-pm: always pass 0 error to __blk_end_request_all
..
The quotaoff operation has a race with inode allocation that results
in a livelock. An inode allocation that occurs before the quota
status flags are updated acquires the appropriate dquots for the
inode via xfs_qm_vop_dqalloc(). It then inserts the XFS_INEW inode
into the perag radix tree, sometime later attaches the dquots to the
inode and finally clears the XFS_INEW flag. Quotaoff expects to
release the dquots from all inodes in the filesystem via
xfs_qm_dqrele_all_inodes(). This invokes the AG inode iterator,
which skips inodes in the XFS_INEW state because they are not fully
constructed. If the scan occurs after dquots have been attached to
an inode, but before XFS_INEW is cleared, the newly allocated inode
will continue to hold a reference to the applicable dquots. When
quotaoff invokes xfs_qm_dqpurge_all(), the reference count of those
dquot(s) remain elevated and the dqpurge scan spins indefinitely.
To address this problem, update the xfs_qm_dqrele_all_inodes() scan
to wait on inodes marked on the XFS_INEW state. We wait on the
inodes explicitly rather than skip and retry to avoid continuous
retry loops due to a parallel inode allocation workload. Since
quotaoff updates the quota state flags and uses a synchronous
transaction before the dqrele scan, and dquots are attached to
inodes after radix tree insertion iff quota is enabled, one INEW
waiting pass through the AG guarantees that the scan has processed
all inodes that could possibly hold dquot references.
Reported-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The AG inode iterator currently skips new inodes as such inodes are
inserted into the inode radix tree before they are fully
constructed. Certain contexts require the ability to wait on the
construction of new inodes, however. The fs-wide dquot release from
the quotaoff sequence is an example of this.
Update the AG inode iterator to support the ability to wait on
inodes flagged with XFS_INEW upon request. Create a new
xfs_inode_ag_iterator_flags() interface and support a set of
iteration flags to modify the iteration behavior. When the
XFS_AGITER_INEW_WAIT flag is set, include XFS_INEW flags in the
radix tree inode lookup and wait on them before the callback is
executed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Inodes that are inserted into the perag tree but still under
construction are flagged with the XFS_INEW bit. Most contexts either
skip such inodes when they are encountered or have the ability to
handle them.
The runtime quotaoff sequence introduces a context that must wait
for construction of such inodes to correctly ensure that all dquots
in the fs are released. In anticipation of this, support the ability
to wait on new inodes. Wake the appropriate bit when XFS_INEW is
cleared.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Copy the uuid of the filesystem to struct super_block s_uuid field,
as several other filesystems already do. Copy regardless of the nouuid
mount option, because other filesystems also do not guaranty uniqueness
of the s_uuid field in super_block struct.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
fstrim can take really long time on big, slow device or on file system
with a lots of allocation groups. Currently there is no way for the user
to cancell the operation. This patch makes it possible for the user to
kill fstrim pocess by adding the check for fatal_signal_pending() in
xfs_trim_extents().
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reported-by: Zdenek Kabelac <zkabelac@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In preparation for converting fs/dax.c to use dax_direct_access()
instead of bdev_direct_access(), add the plumbing to retrieve the
dax_device associated with a given block_device.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Use ASSERTs on the log intent item refcounts so that we fail noisily if
anyone tries to double-free the item.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The quotacheck error handling of the delwri buffer list assumes the
resident buffers are locked and doesn't clear the _XBF_DELWRI_Q flag
on the buffers that are dequeued. This can lead to assert failures
on buffer release and possibly other locking problems.
Move this code to a delwri queue cancel helper function to
encapsulate the logic required to properly release buffers from a
delwri queue. Update the helper to clear the delwri queue flag and
call it from quotacheck.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_iflush_done uses an on-stack variable length array to pass the log
items to be deleted to xfs_trans_ail_delete_bulk. On-stack VLAs are a
nasty gcc extension that can lead to unbounded stack allocations, but
fortunately we can easily avoid them by simply open coding
xfs_trans_ail_delete_bulk in xfs_iflush_done, which is the only caller
of it except for the single-item xfs_trans_ail_delete.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
At the end of a getfsmap call, we will set FMR_OF_LAST in the last
struct fsmap that was handed in by userspace if we've truly run out of
space mapping record (as opposed to simply running out of space in the
user array). Unfortunately, fmh_entries is the wrong check for whether
or not we've filled out anything in the user array because the ioctl
provides that fmh_count==0 sets fmh_entries without filling out the user
array. Therefore we end up writing things into user memory areas that we
weren't given, and kaboom.
Since Christoph amended the getfsmap structure to track the number of
fsmap entries we've actually filled out, use that as part of deciding if
we have to set the OF_LAST flag.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
By passing the whole fsmap_head structure and an index we can get the
user point annotations right for the embedded variable sized array
in struct fsmap_head.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: change idx to unsigned int]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
At least if we want to be able to recognize the pattern. Add a missing
byte swap to the corruption injection case in xlog_sync.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Found by sparse.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Found by sparse.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS only supports the unwritten extent bit in the data fork, and only if
the file system has a version 5 superblock or the unwritten extent
feature bit.
We currently have two routines that validate the invariant:
xfs_check_nostate_extents which return -EFSCORRUPTED when it's not met,
and xfs_validate_extent that triggers and assert in debug build.
Both of them iterate over all extents of an inode fork when called,
which isn't very efficient.
This patch instead adds a new helper that verifies the invariant one
extent at a time, and calls it from the places where we iterate over
all extents to converted them from or two the in-memory format. The
callers then return -EFSCORRUPTED when reading invalid extents from
disk, or trigger an assert when writing them to disk.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only ever use the normal and unwritten states. And the actual
ondisk format (this enum isn't despite being in xfs_format.h) only
has space for the unwritten bit anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
On some architectures do_div does the pointer compare
trick to make sure that we've sent it an unsigned 64-bit
number. (Why unsigned? I don't know.)
Fix up the few places that squawk about this; in
xfs_bmap_wants_extents() we just used a bare int64_t so change
that to unsigned.
In xfs_adjust_extent_unmap_boundaries() all we wanted was the
mod, and we have an xfs-specific function to handle that w/o
side effects, which includes proper casting for do_div.
In xfs_daddr_to_ag[b]no, we were using the wrong type anyway;
XFS_BB_TO_FSBT returns a block in the filesystem, so use
xfs_rfsblock_t not xfs_daddr_t, and gain the unsignedness
from that type as a bonus.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The kbuild test robot caught this; in debug code we have another
caller of do_div with a 32-bit dividend (j) which is caught now
that we are using the kernel-supplied do_div.
None of the values used here are 64-bit; just use simple division.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The trailing newlines wil lead to extra newlines in the trace file
which looks like the following output, so remove them.
>kworker/4:1H-1508 [004] .... 47879.101608: xfs_discard_extent: dev 8:0
>
>kworker/u16:2-238 [004] .... 47879.101725: xfs_extent_busy_clear: dev 8:0
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix the getfsmap tracepoints too]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Directory block readahead uses a complex iteration mechanism to map
between high-level directory blocks and underlying physical extents.
This mechanism attempts to traverse the higher-level dir blocks in a
manner that handles multi-fsb directory blocks and simultaneously
maintains a reference to the corresponding physical blocks.
This logic doesn't handle certain (discontiguous) physical extent
layouts correctly with multi-fsb directory blocks. For example,
consider the case of a 4k FSB filesystem with a 2 FSB (8k) directory
block size and a directory with the following extent layout:
EXT: FILE-OFFSET BLOCK-RANGE AG AG-OFFSET TOTAL
0: [0..7]: 88..95 0 (88..95) 8
1: [8..15]: 80..87 0 (80..87) 8
2: [16..39]: 168..191 0 (168..191) 24
3: [40..63]: 5242952..5242975 1 (72..95) 24
Directory block 0 spans physical extents 0 and 1, dirblk 1 lies
entirely within extent 2 and dirblk 2 spans extents 2 and 3. Because
extent 2 is larger than the directory block size, the readahead code
erroneously assumes the block is contiguous and issues a readahead
based on the physical mapping of the first fsb of the dirblk. This
results in read verifier failure and a spurious corruption or crc
failure, depending on the filesystem format.
Further, the subsequent readahead code responsible for walking
through the physical table doesn't correctly advance the physical
block reference for dirblk 2. Instead of advancing two physical
filesystem blocks, the first iteration of the loop advances 1 block
(correctly), but the subsequent iteration advances 2 more physical
blocks because the next physical extent (extent 3, above) happens to
cover more than dirblk 2. At this point, the higher-level directory
block walking is completely off the rails of the actual physical
layout of the directory for the respective mapping table.
Update the contiguous dirblock logic to consider the current offset
in the physical extent to avoid issuing directory readahead to
unrelated blocks. Also, update the mapping table advancing code to
consider the current offset within the current dirblock to avoid
advancing the mapping reference too far beyond the dirblock.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Carlos had a case where "find" seemed to start spinning
forever and never return.
This was on a filesystem with non-default multi-fsb (8k)
directory blocks, and a fragmented directory with extents
like this:
0:[0,133646,2,0]
1:[2,195888,1,0]
2:[3,195890,1,0]
3:[4,195892,1,0]
4:[5,195894,1,0]
5:[6,195896,1,0]
6:[7,195898,1,0]
7:[8,195900,1,0]
8:[9,195902,1,0]
9:[10,195908,1,0]
10:[11,195910,1,0]
11:[12,195912,1,0]
12:[13,195914,1,0]
...
i.e. the first extent is a contiguous 2-fsb dir block, but
after that it is fragmented into 1 block extents.
At the top of the readdir path, we allocate a mapping array
which (for this filesystem geometry) can hold 10 extents; see
the assignment to map_info->map_size. During readdir, we are
therefore able to map extents 0 through 9 above into the array
for readahead purposes. If we count by 2, we see that the last
mapped index (9) is the first block of a 2-fsb directory block.
At the end of xfs_dir2_leaf_readbuf() we have 2 loops to fill
more readahead; the outer loop assumes one full dir block is
processed each loop iteration, and an inner loop that ensures
that this is so by advancing to the next extent until a full
directory block is mapped.
The problem is that this inner loop may step past the last
extent in the mapping array as it tries to reach the end of
the directory block. This will read garbage for the extent
length, and as a result the loop control variable 'j' may
become corrupted and never fail the loop conditional.
The number of valid mappings we have in our array is stored
in map->map_valid, so stop this inner loop based on that limit.
There is an ASSERT at the top of the outer loop for this
same condition, but we never made it out of the inner loop,
so the ASSERT never fired.
Huge appreciation for Carlos for debugging and isolating
the problem.
Debugged-and-analyzed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that reflink operations don't set the firstblock value we don't
need the workarounds for non-NULL firstblock values without a prior
allocation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The main thing that xfs_bmap_remap_alloc does is fixing the AGFL, similar
to what we do in the space allocator. But the reflink code doesn't touch
the allocation btree unlike the normal space allocator, so we couldn't
care less about the state of the AGFL.
So remove xfs_bmap_remap_alloc and just handle the di_nblocks update in
the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new helper to be used for reflink extent list additions instead of
funneling them through xfs_bmapi_write and overloading the firstblock
member in struct xfs_bmalloca and struct xfs_alloc_args.
With some small changes to xfs_bmap_remap_alloc this also means we do
not need a xfs_bmalloca structure for this case at all.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
For the reflink case we'd much rather pass the required arguments than
faking up a struct xfs_bmalloca.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We never do COW operations for the attr fork, so don't pretend we handle
them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
bno should be a xfs_fsblock_t, which is 64-bit wides instead of a
xfs_aglock_t, which truncates the value to 32 bits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Lockdep complains about use of the iolock in inode reclaim context
because it doesn't understand that reclaim has the last reference to
the inode, and thus an iolock->reclaim->iolock deadlock is not
possible.
The iolock is technically not necessary in xfs_inactive() and was
only added to appease an assert in xfs_free_eofblocks(), which can
be called from other non-reclaim contexts. Therefore, just kill the
assert and drop the use of the iolock from reclaim context to quiet
lockdep.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Long ago, all this gunk was added with a lament about problems
with gcc's do_div, and a fun recommendation in the changelog:
egcs-2.91.66 is the recommended compiler version for building XFS.
All this special stuff was needed to work around an old gcc bug,
apparently, and it's been there ever since.
There should be no need for this anymore, so remove it.
Remove the special 32-bit xfs_do_mod as well; just let the
kernel's do_div() handle all this.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
ndquots is a 32-bit value, and we don't care
about the remainder; there is no reason to use do_div
here, it seems to be the result of a decade+ historical
accident.
Worse, the do_div implementation in userspace breaks
when fed a 32-bit dividend, so we commented it out there
in any case.
Change to simple division, and then we can change
userspace to match, and mandate a 64-bit dividend in
the do_div() in userspace as well.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Pull VFS fixes from Al Viro:
"statx followup fixes and a fix for stack-smashing on alpha"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
alpha: fix stack smashing in old_adjtimex(2)
statx: Include a mask for stx_attributes in struct statx
statx: Reserve the top bit of the mask for future struct expansion
xfs: report crtime and attribute flags to statx
ext4: Add statx support
statx: optimize copy of struct statx to userspace
statx: remove incorrect part of vfs_statx() comment
statx: reject unknown flags when using NULL path
Documentation/filesystems: fix documentation for ->getattr()
Turn the existing discard flag into a new BLKDEV_ZERO_UNMAP flag with
similar semantics, but without referring to diѕcard.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Apparently FIEMAP for xattrs has been broken since we switched to
the iomap backend because of an incorrect check for xattr presence.
Also fix the broken locking.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
No one cares about the low-level helper anymore.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the realtime bitmap to return free space information via getfsmap.
Eventually this will be superseded by the realtime rmapbt code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
If the reverse-mapping btree isn't available, fall back to the
free space btrees to provide partial reverse mapping information.
The online scrub tool can make use of even partial information to
speed up the data block scan.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Introduce a new ioctl that uses the reverse mapping btree to return
information about the physical layout of the filesystem.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add _query_range and _query_all functions to the realtime bitmap
allocator. These two functions are similar in usage to the btree
functions with the same name and will be used for getfsmap and scrub.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a helper function that will query all records in a btree.
This will be used by the online repair functions to examine every
record in a btree to rebuild a second btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Implement a query_range function for the bnobt and cntbt. This will
be used for getfsmap fallback if there is no rmapbt and by the online
scrub and repair code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Plumb in the pieces (init_high_key, diff_two_keys) necessary to call
query_range on the free space btrees. Remove the debugging asserts
so that we can make queries starting from block 0.
While we're at it, merge the redundant "if (btnum ==" hunks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In xfs_ioc_getbmap, we should only copy the fields of struct getbmap
from userspace, or else we end up copying random stack contents into the
kernel. struct getbmap is a strict subset of getbmapx, so a partial
structure copy should work fine.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This function has been removed ever since at least 3.12-era. No need to
keep its declaration in the header so nuke it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
"xfs_iread: validation failed for inode 96 failed"
One "failed" seems like enough.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Alex Elder <elder@linaro.org>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Opencoding the trivial checks makes it much easier to read (and grep..).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This checks for all the non-normal extent types, including handling both
encodings of delayed allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The log covering background task used to be part of the xfssyncd
workqueue. That workqueue was removed as of commit 5889608df ("xfs:
syncd workqueue is no more") and the associated work item scheduled
to the xfs-log wq. The latter is used for log buffer I/O completion.
Since xfs_log_worker() can invoke a log flush, a deadlock is
possible between the xfs-log and xfs-cil workqueues. Consider the
following codepath from xfs_log_worker():
xfs_log_worker()
xfs_log_force()
_xfs_log_force()
xlog_cil_force()
xlog_cil_force_lsn()
xlog_cil_push_now()
flush_work()
The above is in xfs-log wq context and blocked waiting on the
completion of an xfs-cil work item. Concurrently, the cil push in
progress can end up blocked here:
xlog_cil_push_work()
xlog_cil_push()
xlog_write()
xlog_state_get_iclog_space()
xlog_wait(&log->l_flush_wait, ...)
The above is in xfs-cil context waiting on log buffer I/O
completion, which executes in xfs-log wq context. In this scenario
both workqueues are deadlocked waiting on eachother.
Add a new workqueue specifically for the high level log covering and
ail pushing worker, as was the case prior to commit 5889608df.
Diagnosed-by: David Jeffery <djeffery@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix a memory exposure problems in inumbers where we allocate an array of
structures with holes, fail to zero the holes, then blindly copy the
kernel memory contents (junk and all) into userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When punching past EOF on XFS, fallocate(mode=PUNCH_HOLE|KEEP_SIZE) will
round the file size up to the nearest multiple of PAGE_SIZE:
calvinow@vm-disks/generic-xfs-1 ~$ dd if=/dev/urandom of=test bs=2048 count=1
calvinow@vm-disks/generic-xfs-1 ~$ stat test
Size: 2048 Blocks: 8 IO Block: 4096 regular file
calvinow@vm-disks/generic-xfs-1 ~$ fallocate -n -l 2048 -o 2048 -p test
calvinow@vm-disks/generic-xfs-1 ~$ stat test
Size: 4096 Blocks: 8 IO Block: 4096 regular file
Commit 3c2bdc912a ("xfs: kill xfs_zero_remaining_bytes") replaced
xfs_zero_remaining_bytes() with calls to iomap helpers. The new helpers
don't enforce that [pos,offset) lies strictly on [0,i_size) when being
called from xfs_free_file_space(), so by "leaking" these ranges into
xfs_zero_range() we get this buggy behavior.
Fix this by reintroducing the checks xfs_zero_remaining_bytes() did
against i_size at the bottom of xfs_free_file_space().
Reported-by: Aaron Gao <gzh@fb.com>
Fixes: 3c2bdc912a ("xfs: kill xfs_zero_remaining_bytes")
Cc: Christoph Hellwig <hch@lst.de>
Cc: Brian Foster <bfoster@redhat.com>
Cc: <stable@vger.kernel.org> # 4.8+
Signed-off-by: Calvin Owens <calvinowens@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix a memory exposure problems in inumbers where we allocate an array of
structures with holes, fail to zero the holes, then blindly copy the
kernel memory contents (junk and all) into userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When punching past EOF on XFS, fallocate(mode=PUNCH_HOLE|KEEP_SIZE) will
round the file size up to the nearest multiple of PAGE_SIZE:
calvinow@vm-disks/generic-xfs-1 ~$ dd if=/dev/urandom of=test bs=2048 count=1
calvinow@vm-disks/generic-xfs-1 ~$ stat test
Size: 2048 Blocks: 8 IO Block: 4096 regular file
calvinow@vm-disks/generic-xfs-1 ~$ fallocate -n -l 2048 -o 2048 -p test
calvinow@vm-disks/generic-xfs-1 ~$ stat test
Size: 4096 Blocks: 8 IO Block: 4096 regular file
Commit 3c2bdc912a ("xfs: kill xfs_zero_remaining_bytes") replaced
xfs_zero_remaining_bytes() with calls to iomap helpers. The new helpers
don't enforce that [pos,offset) lies strictly on [0,i_size) when being
called from xfs_free_file_space(), so by "leaking" these ranges into
xfs_zero_range() we get this buggy behavior.
Fix this by reintroducing the checks xfs_zero_remaining_bytes() did
against i_size at the bottom of xfs_free_file_space().
Reported-by: Aaron Gao <gzh@fb.com>
Fixes: 3c2bdc912a ("xfs: kill xfs_zero_remaining_bytes")
Cc: Christoph Hellwig <hch@lst.de>
Cc: Brian Foster <bfoster@redhat.com>
Cc: <stable@vger.kernel.org> # 4.8+
Signed-off-by: Calvin Owens <calvinowens@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The inline directory verifiers should be called on the inode fork data,
which means after iformat_local on the read side, and prior to
ifork_flush on the write side. This makes the fork verifier more
consistent with the way buffer verifiers work -- i.e. they will operate
on the memory buffer that the code will be reading and writing directly.
Furthermore, revise the verifier function to return -EFSCORRUPTED so
that we don't flood the logs with corruption messages and assert
notices. This has been a particular problem with xfs/348, which
triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the
kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do
that, at least not in a verifier.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
statx has the ability to report inode creation times and inode flags, so
hook up di_crtime and di_flags to that functionality.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The inline directory verifiers should be called on the inode fork data,
which means after iformat_local on the read side, and prior to
ifork_flush on the write side. This makes the fork verifier more
consistent with the way buffer verifiers work -- i.e. they will operate
on the memory buffer that the code will be reading and writing directly.
Furthermore, revise the verifier function to return -EFSCORRUPTED so
that we don't flood the logs with corruption messages and assert
notices. This has been a particular problem with xfs/348, which
triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the
kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do
that, at least not in a verifier.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
---
v2: get the inode d_ops the proper way
v3: describe the bug that this patch fixes; no code changes
When we're reading or writing the data fork of an inline directory,
check the contents to make sure we're not overflowing buffers or eating
garbage data. xfs/348 corrupts an inline symlink into an inline
directory, triggering a buffer overflow bug.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
---
v2: add more checks consistent with _dir2_sf_check and make the verifier
usable from anywhere.
When a reflink operation causes the bmap code to allocate a btree block
we're currently doing single-AG allocations due to having ->firstblock
set and then try any higher AG due a little reflink quirk we've put in
when adding the reflink code. But given that we do not have a minleft
reservation of any kind in this AG we can still not have any space in
the same or higher AG even if the file system has enough free space.
To fix this use a XFS_ALLOCTYPE_FIRST_AG allocation in this fall back
path instead.
[And yes, we need to redo this properly instead of piling hacks over
hacks. I'm working on that, but it's not going to be a small series.
In the meantime this fixes the customer reported issue]
Also add a warning for failing allocations to make it easier to debug.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Commit fa7f138 ("xfs: clear delalloc and cache on buffered write
failure") fixed one regression in the iomap error handling code and
exposed another. The fundamental problem is that if a buffered write
is a rewrite of preexisting delalloc blocks and the write fails, the
failure handling code can punch out preexisting blocks with valid
file data.
This was reproduced directly by sub-block writes in the LTP
kernel/syscalls/write/write03 test. A first 100 byte write allocates
a single block in a file. A subsequent 100 byte write fails and
punches out the block, including the data successfully written by
the previous write.
To address this problem, update the ->iomap_begin() handler to
distinguish newly allocated delalloc blocks from preexisting
delalloc blocks via the IOMAP_F_NEW flag. Use this flag in the
->iomap_end() handler to decide when a failed or short write should
punch out delalloc blocks.
This introduces the subtle requirement that ->iomap_begin() should
never combine newly allocated delalloc blocks with existing blocks
in the resulting iomap descriptor. This can occur when a new
delalloc reservation merges with a neighboring extent that is part
of the current write, for example. Therefore, drop the
post-allocation extent lookup from xfs_bmapi_reserve_delalloc() and
just return the record inserted into the fork. This ensures only new
blocks are returned and thus that preexisting delalloc blocks are
always handled as "found" blocks and not punched out on a failed
rewrite.
Reported-by: Xiong Zhou <xzhou@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The sole remaining caller of kmem_zalloc_greedy is bulkstat, which uses
it to grab 1-4 pages for staging of inobt records. The infinite loop in
the greedy allocation function is causing hangs[1] in generic/269, so
just get rid of the greedy allocator in favor of kmem_zalloc_large.
This makes bulkstat somewhat more likely to ENOMEM if there's really no
pages to spare, but eliminates a source of hangs.
[1] http://lkml.kernel.org/r/20170301044634.rgidgdqqiiwsmfpj%40XZHOUW.usersys.redhat.com
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
---
v2: remove single-page fallback
When block size is larger than inode cluster size, the call to
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size) returns 0. Also, mkfs.xfs
would have set xfs_sb->sb_inoalignmt to 0. Hence in
xfs_set_inoalignment(), xfs_mount->m_inoalign_mask gets initialized to
-1 instead of 0. However, xfs_mount->m_sinoalign would get correctly
intialized to 0 because for every positive value of xfs_mount->m_dalign,
the condition "!(mp->m_dalign & mp->m_inoalign_mask)" would evaluate to
false.
Also, xfs_imap() worked fine even with xfs_mount->m_inoalign_mask having
-1 as the value because blks_per_cluster variable would have the value 1
and hence we would never have a need to use xfs_mount->m_inoalign_mask
to compute the inode chunk's agbno and offset within the chunk.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are two different cases of buffered I/O errors:
- first we can have an already shutdown fs. In that case we should skip
any on-disk operations and just clean up the appen transaction if
present and destroy the ioend
- a real I/O error. In that case we should cleanup any lingering COW
blocks. This gets skipped in the current code and is fixed by this
patch.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only want to reclaim preallocations from our periodic work item.
Currently this is archived by looking for a dirty inode, but that check
is rather fragile. Instead add a flag to xfs_reflink_cancel_cow_* so
that the caller can ask for just cancelling unwritten extents in the COW
fork.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix typos in commit message]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Pull vfs 'statx()' update from Al Viro.
This adds the new extended stat() interface that internally subsumes our
previous stat interfaces, and allows user mode to specify in more detail
what kind of information it wants.
It also allows for some explicit synchronization information to be
passed to the filesystem, which can be relevant for network filesystems:
is the cached value ok, or do you need open/close consistency, or what?
From David Howells.
Andreas Dilger points out that the first version of the extended statx
interface was posted June 29, 2010:
https://www.spinics.net/lists/linux-fsdevel/msg33831.html
* 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Update the .c files that depend on these APIs.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.
Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace all 1 << inode->i_blkbits and (1 << inode->i_blkbits) in fs
branch.
This patch also fixes multiple checkpatch warnings: WARNING: Prefer
'unsigned int' to bare use of 'unsigned'
Thanks to Andrew Morton for suggesting more appropriate function instead
of macro.
[geliangtang@gmail.com: truncate: use i_blocksize()]
Link: http://lkml.kernel.org/r/9c8b2cd83c8f5653805d43debde9fa8817e02fc4.1484895804.git.geliangtang@gmail.com
Link: http://lkml.kernel.org/r/1481319905-10126-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has
been somewhat painful with getting the flags set and removed at the
correct locations. More than one kernel oops was introduced due to
difficulties of getting the placement correctly.
Remove the flag values and introduce an input parameter to huge_fault
that indicates the size of the page entry. This makes the code easier
to trace and should avoid the issues we see with the fault flags where
removal of the flag was necessary in the fallback paths.
Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
"142 patches:
- DAX updates
- various misc bits
- OCFS2 updates
- most of MM"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits)
mm/z3fold.c: limit first_num to the actual range of possible buddy indexes
mm: fix <linux/pagemap.h> stray kernel-doc notation
zram: remove obsolete sysfs attrs
mm/memblock.c: remove unnecessary log and clean up
oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA
mm: drop unused argument of zap_page_range()
mm: drop zap_details::check_swap_entries
mm: drop zap_details::ignore_dirty
mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled
mm: help __GFP_NOFAIL allocations which do not trigger OOM killer
mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically
mm: consolidate GFP_NOFAIL checks in the allocator slowpath
lib/show_mem.c: teach show_mem to work with the given nodemask
arch, mm: remove arch specific show_mem
mm, page_alloc: warn_alloc print nodemask
mm, page_alloc: do not report all nodes in show_mem
Revert "mm: bail out in shrink_inactive_list()"
mm, vmscan: consider eligible zones in get_scan_count
mm, vmscan: cleanup lru size claculations
mm, vmscan: do not count freed pages as PGDEACTIVATE
...
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJYp85wAAoJEPh/dxk0SrTr5HgP/jcx/oI+ap/NaXMi1Q8K65mh
C3gf27cgUxtdGnEO5KRUE1Jyscuu4ZpzugDdLQISwR55kesT5FU0xpgbsfiICc86
dxLAhg8auwpTfHV+96Do2hfpO3IhYoBC2w5jo32+C+SaQUqTdPixncZukX89tjyP
HOFLrQnpc336hCO2rv1Q9hSkD6IUCkSAtk+Dh1xMvbsmKFLGdmkTdqUQfl1U4YnV
2S98k9QSRdiVyzj3lAGOy+IU9aTcPX/PptMEYaQZEaod5WWNjy91lQZNM6zRc4QW
8P199yiH6CQa2vESO2SV72cJ40WihM1KQXqnrlJjAMGQ7mMGTGJcTwxhuZYUbDYZ
cuk6bAUaijt/PzfmydJKlcH8vFerX4aU4CGkxPU0nph0iTR5kxYlIAMmFw2cdRzf
Iar3SBb8Pc9jiNnEZMFsQ0Fd9hNk9rNoUSpKqm4FtSRocU6JjmpAdPqNYdTVKc2l
2EY7JMo0xCaTVC1WT6sE2NsxsFvm0R7H6HHG2vMFIMNkhI24GRijIXH6dQlaGCQJ
5oTHrSM7503qPlEQNsxF7zI02LpJT+duf+2ODw/FSjA1z/TWwOUYYUrPUOyQNdzP
NrRnMa6LWsEehkuvz2FFko8PKXD55lTuUP1KdjigjqKp8Jzkc/PP+uvuwF5vUFfd
pWRvE5m/NePWBZetbL3Q
=Ga1F
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"Here are the XFS changes for 4.11. We aren't introducing any major
features in this release cycle except for this being the first merge
window I've managed on my own. :)
Changes since last update:
- Various cleanups
- Livelock fixes for eofblocks scanning
- Improved input verification for on-disk metadata
- Fix races in the copy on write remap mechanism
- Fix buffer io error timeout controls
- Streamlining of directio copy on write
- Asynchronous discard support
- Fix asserts when splitting delalloc reservations
- Don't bloat bmbt when right shifting extents
- Inode alignment fixes for 32k block sizes"
* tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (39 commits)
xfs: remove XFS_ALLOCTYPE_ANY_AG and XFS_ALLOCTYPE_START_AG
xfs: simplify xfs_rtallocate_extent
xfs: tune down agno asserts in the bmap code
xfs: Use xfs_icluster_size_fsb() to calculate inode chunk alignment
xfs: don't reserve blocks for right shift transactions
xfs: fix len comparison in xfs_extent_busy_trim
xfs: fix uninitialized variable in _reflink_convert_cow
xfs: split indlen reservations fairly when under reserved
xfs: handle indlen shortage on delalloc extent merge
xfs: resurrect debug mode drop buffered writes mechanism
xfs: clear delalloc and cache on buffered write failure
xfs: don't block the log commit handler for discards
xfs: improve busy extent sorting
xfs: improve handling of busy extents in the low-level allocator
xfs: don't fail xfs_extent_busy allocation
xfs: correct null checks and error processing in xfs_initialize_perag
xfs: update ctime and mtime on clone destinatation inodes
xfs: allocate direct I/O COW blocks in iomap_begin
xfs: go straight to real allocations for direct I/O COW writes
xfs: return the converted extent in __xfs_reflink_convert_cow
...
pmd_fault() and related functions really only need the vmf parameter since
the additional parameters are all included in the vmf struct. Remove the
additional parameter and simplify pmd_fault() and friends.
Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing in multiple parameters in the pmd_fault() handler,
a vmf can be passed in just like a fault() handler. This will simplify
code and remove the need for the actual pmd fault handlers to allocate a
vmf. Related functions are also modified to do the same.
[dave.jiang@intel.com: fix issue with xfs_tests stall when DAX option is off]
Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/1484085142-2297-7-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
XFS_ALLOCTYPE_ANY_AG was only used for the RT allocator and is unused
now, and XFS_ALLOCTYPE_START_AG has been unused for a while.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can deduce the allocation type from the bno argument, and do the
return without prod much simpler internally.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix the macro for the non-rt build]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In various places we currently assert that xfs_bmap_btalloc allocates
from the same as the firstblock value passed in, unless it's either
NULLAGNO or the dop_low flag is set. But the reflink code does not
fully follow this convention as it passes in firstblock purely as
a hint for the allocator without actually having previous allocations
in the transaction, and without having a minleft check on the current
AG, leading to the assert firing on a very full and heavily used
file system. As even the reflink code only allocates from equal or
higher AGs for now we can simply the check to always allow for equal
or higher AGs.
Note that we need to eventually split the two meanings of the firstblock
value. At that point we can also allow the reflink code to allocate
from any AG instead of limiting it in any way.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
On a ppc64 system, executing generic/256 test with 32k block size gives the following call trace,
XFS: Assertion failed: args->maxlen > 0, file: /root/repos/linux/fs/xfs/libxfs/xfs_alloc.c, line: 2026
kernel BUG at /root/repos/linux/fs/xfs/xfs_message.c:113!
Oops: Exception in kernel mode, sig: 5 [#1]
SMP NR_CPUS=2048
DEBUG_PAGEALLOC
NUMA
pSeries
Modules linked in:
CPU: 2 PID: 19361 Comm: mkdir Not tainted 4.10.0-rc5 #58
task: c000000102606d80 task.stack: c0000001026b8000
NIP: c0000000004ef798 LR: c0000000004ef798 CTR: c00000000082b290
REGS: c0000001026bb090 TRAP: 0700 Not tainted (4.10.0-rc5)
MSR: 8000000000029032 <SF,EE,ME,IR,DR,RI>
CR: 28004428 XER: 00000000
CFAR: c0000000004ef180 SOFTE: 1
GPR00: c0000000004ef798 c0000001026bb310 c000000001157300 ffffffffffffffea
GPR04: 000000000000000a c0000001026bb130 0000000000000000 ffffffffffffffc0
GPR08: 00000000000000d1 0000000000000021 00000000ffffffd1 c000000000dd4990
GPR12: 0000000022004444 c00000000fe00800 0000000020000000 0000000000000000
GPR16: 0000000000000000 0000000043a606fc 0000000043a76c08 0000000043a1b3d0
GPR20: 000001002a35cd60 c0000001026bbb80 0000000000000000 0000000000000001
GPR24: 0000000000000240 0000000000000004 c00000062dc55000 0000000000000000
GPR28: 0000000000000004 c00000062ecd9200 0000000000000000 c0000001026bb6c0
NIP [c0000000004ef798] .assfail+0x28/0x30
LR [c0000000004ef798] .assfail+0x28/0x30
Call Trace:
[c0000001026bb310] [c0000000004ef798] .assfail+0x28/0x30 (unreliable)
[c0000001026bb380] [c000000000455d74] .xfs_alloc_space_available+0x194/0x1b0
[c0000001026bb410] [c00000000045b914] .xfs_alloc_fix_freelist+0x144/0x480
[c0000001026bb580] [c00000000045c368] .xfs_alloc_vextent+0x698/0xa90
[c0000001026bb650] [c0000000004a6200] .xfs_ialloc_ag_alloc+0x170/0x820
[c0000001026bb7c0] [c0000000004a9098] .xfs_dialloc+0x158/0x320
[c0000001026bb8a0] [c0000000004e628c] .xfs_ialloc+0x7c/0x610
[c0000001026bb990] [c0000000004e8138] .xfs_dir_ialloc+0xa8/0x2f0
[c0000001026bbaa0] [c0000000004e8814] .xfs_create+0x494/0x790
[c0000001026bbbf0] [c0000000004e5ebc] .xfs_generic_create+0x2bc/0x410
[c0000001026bbce0] [c0000000002b4a34] .vfs_mkdir+0x154/0x230
[c0000001026bbd70] [c0000000002bc444] .SyS_mkdirat+0x94/0x120
[c0000001026bbe30] [c00000000000b760] system_call+0x38/0xfc
Instruction dump:
4e800020 60000000 7c0802a6 7c862378 3c82ffca 7ca72b78 38841c18 7c651b78
38600000 f8010010 f821ff91 4bfff94d <0fe00000> 60000000 7c0802a6 7c892378
When block size is larger than inode cluster size, the call to
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size) returns 0. Also, mkfs.xfs
would have set xfs_sb->sb_inoalignmt to 0. This causes
xfs_ialloc_cluster_alignment() to return 0. Due to this
args.minalignslop (in xfs_ialloc_ag_alloc()) gets the unsigned
equivalent of -1 assigned to it. This later causes alloc_len in
xfs_alloc_space_available() to have a value of 0. In such a scenario
when args.total is also 0, the assert statement "ASSERT(args->maxlen >
0);" fails.
This commit fixes the bug by replacing the call to XFS_B_TO_FSBT() in
xfs_ialloc_cluster_alignment() with a call to xfs_icluster_size_fsb().
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The block reservation for the transaction allocated in
xfs_shift_file_space() is an artifact of the original collapse range
support. It exists to handle the case where a collapse range occurs,
the initial extent is left shifted into a location that forms a
contiguous boundary with the previous extent and thus the extents
are merged. This code was subsequently refactored and reused for
insert range (right shift) support.
If an insert range occurs under low free space conditions, the
extent at the starting offset is split before the first shift
transaction is allocated. If the block reservation fails, this
leaves separate, but contiguous extents around in the inode. While
not a fatal problem, this is unexpected and will flag a warning on
subsequent insert range operations on the inode. This problem has
been reproduce intermittently by generic/270 running against a
ramdisk device.
Since right shift does not create new extent boundaries in the
inode, a block reservation for extent merge is unnecessary. Update
xfs_shift_file_space() to conditionally reserve fs blocks for left
shift transactions only. This avoids the warning reproduced by
generic/270.
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The length is now passed by reference, so the assertion has to be updated
to match the other changes, as pointed out by this W=1 warning:
fs/xfs/xfs_extent_busy.c: In function 'xfs_extent_busy_trim':
fs/xfs/xfs_extent_busy.c:356:13: error: ordered comparison of pointer with integer zero [-Werror=extra]
Fixes: ebf5587261 ("xfs: improve handling of busy extents in the low-level allocator")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Fix an uninitialize variable.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Certain workoads that punch holes into speculative preallocation can
cause delalloc indirect reservation splits when the delalloc extent is
split in two. If further splits occur, an already short-handed extent
can be split into two in a manner that leaves zero indirect blocks for
one of the two new extents. This occurs because the shortage is large
enough that the xfs_bmap_split_indlen() algorithm completely drains the
requested indlen of one of the extents before it honors the existing
reservation.
This ultimately results in a warning from xfs_bmap_del_extent(). This
has been observed during file copies of large, sparse files using 'cp
--sparse=always.'
To avoid this problem, update xfs_bmap_split_indlen() to explicitly
apply the reservation shortage fairly between both extents. This smooths
out the overall indlen shortage and defers the situation where we end up
with a delalloc extent with zero indlen reservation to extreme
circumstances.
Reported-by: Patrick Dung <mpatdung@gmail.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When a delalloc extent is created, it can be merged with pre-existing,
contiguous, delalloc extents. When this occurs,
xfs_bmap_add_extent_hole_delay() merges the extents along with the
associated indirect block reservations. The expectation here is that the
combined worst case indlen reservation is always less than or equal to
the indlen reservation for the individual extents.
This is not always the case, however, as existing extents can less than
the expected indlen reservation if the extent was previously split due
to a hole punch. If a new extent merges with such an extent, the total
indlen requirement may be larger than the sum of the indlen reservations
held by both extents.
xfs_bmap_add_extent_hole_delay() assumes that the worst case indlen
reservation is always available and assigns it to the merged extent
without consideration for the indlen held by the pre-existing extent. As
a result, the subsequent xfs_mod_fdblocks() call can attempt an
unintentional allocation rather than a free (indicated by an ASSERT()
failure). Further, if the allocation happens to fail in this context,
the failure goes unhandled and creates a filesystem wide block
accounting inconsistency.
Fix xfs_bmap_add_extent_hole_delay() to function as designed. Cap the
indlen reservation assigned to the merged extent to the sum of the
indlen reservations held by each of the individual extents.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A debug mode write failure mechanism was introduced to XFS in commit
801cc4e17a ("xfs: debug mode forced buffered write failure") to
facilitate targeted testing of delalloc indirect reservation management
from userspace. This code was subsequently rendered ineffective by the
move to iomap based buffered writes in commit 68a9f5e700 ("xfs:
implement iomap based buffered write path"). This likely went unnoticed
because the associated userspace code had not made it into xfstests.
Resurrect this mechanism to facilitate effective indlen reservation
testing from xfstests. The move to iomap based buffered writes relocated
the hook this mechanism needs to return write failure from XFS to
generic code. The failure trigger must remain in XFS. Given that
limitation, convert this from a write failure mechanism to one that
simply drops writes without returning failure to userspace. Rename all
"fail_writes" references to "drop_writes" to illustrate the point. This
is more hacky than preferred, but still triggers the XFS error handling
behavior required to drive the indlen tests. This is only available in
DEBUG mode and for testing purposes only.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The buffered write failure handling code in
xfs_file_iomap_end_delalloc() has a couple minor problems. First, if
written == 0, start_fsb is not rounded down and it fails to kill off a
delalloc block if the start offset is block unaligned. This results in a
lingering delalloc block and broken delalloc block accounting detected
at unmount time. Fix this by rounding down start_fsb in the unlikely
event that written == 0.
Second, it is possible for a failed overwrite of a delalloc extent to
leave dirty pagecache around over a hole in the file. This is because is
possible to hit ->iomap_end() on write failure before the iomap code has
attempted to allocate pagecache, and thus has no need to clean it up. If
the targeted delalloc extent was successfully written by a previous
write, however, then it does still have dirty pages when ->iomap_end()
punches out the underlying blocks. This ultimately results in writeback
over a hole. To fix this problem, unconditionally punch out the
pagecache from XFS before the associated delalloc range.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead we submit the discard requests and use another workqueue to
release the extents from the extent busy list.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Sort busy extents by the full block number instead of just the AGNO so
that we can issue consecutive discard requests that the block layer could
merge (although we'll need additional block layer fixes for fast devices).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we force the log and simply try again if we hit a busy extent,
but especially with online discard enabled it might take a while after
the log force for the busy extents to disappear, and we might have
already completed our second pass.
So instead we add a new waitqueue and a generation counter to the pag
structure so that we can do wakeups once we've removed busy extents,
and we replace the single retry with an unconditional one - after
all we hold the AGF buffer lock, so no other allocations or frees
can be racing with us in this AG.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We don't just need the structure to track busy extents which can be
avoided with a synchronous transaction, but also to keep track of
pending discard.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If pag cannot be allocated, the current error exit path will trip
a null pointer deference error when calling xfs_buf_hash_destroy
with a null pag. Fix this by adding a new error exit labels and
jumping to those accordingly, avoiding the hash destroy and
unnecessary kmem_free on pag.
Up to three things need to be properly unwound:
1) pag memory allocation
2) xfs_buf_hash_init
3) radix_tree_insert
For any given iteration through the loop, any of the above which
succeed must be unwound for /this/ pag, and then all prior
initialized pags must be unwound.
Addresses-Coverity-Id: 1397628 ("Dereference after null check")
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We're changing both metadata and data, so we need to update the
timestamps for clone operations. Dedupe on the other hand does
not change file data, and only changes invisible metadata so the
timestamps should not be updated.
This follows existing btrfs behavior.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: remove redundant is_dedupe test]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of preallocating all the required COW blocks in the high-level
write code do it inside the iomap code, like we do for all other I/O.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we allocate COW fork blocks for direct I/O writes we currently first
create a delayed allocation, and then convert it to a real allocation
once we've got the delayed one.
As there is no good reason for that this patch instead makes use call
xfs_bmapi_write from the COW allocation path. The only interesting bits
are a few tweaks the low-level allocator to allow for this, most notably
the need to remove the call to xfs_bmap_extsize_align for the cowextsize
in xfs_bmap_btalloc - for the existing convert case it's a no-op, but
for the direct allocation case it would blow up our block reservation
way beyond what we reserved for the transaction.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We'll need it for the direct I/O code. Also rename the function to
xfs_reflink_convert_cow_extent to describe it a bit better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Factor a helper to calculate the extent-size aligned block out of the
iomap code, so that it can be reused by the upcoming reflink dio code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We currently fall back from direct to buffered writes if we detect a
remaining shared extent in the iomap_begin callback. But by the time
iomap_begin is called for the potentially unaligned end block we might
have already written most of the data to disk, which we'd now write
again using buffered I/O. To avoid this reject all writes to reflinked
files before starting I/O so that we are guaranteed to only write the
data once.
The alternative would be to unshare the unaligned start and/or end block
before doing the I/O. I think that's doable, and will actually be
required to support reflinks on DAX file system. But it will take a
little more time and I'd rather get rid of the double write ASAP.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
After successful IO or permanent error, b_first_retry_time also
needs to be cleared, else the invalid first retry time will be
used by the next retry check.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Christoph Hellwig pointed out that there's a potentially nasty race when
performing simultaneous nearby directio cow writes:
"Thread 1 writes a range from B to c
" B --------- C
p
"a little later thread 2 writes from A to B
" A --------- B
p
[editor's note: the 'p' denote cowextsize boundaries, which I added to
make this more clear]
"but the code preallocates beyond B into the range where thread
"1 has just written, but ->end_io hasn't been called yet.
"But once ->end_io is called thread 2 has already allocated
"up to the extent size hint into the write range of thread 1,
"so the end_io handler will splice the unintialized blocks from
"that preallocation back into the file right after B."
We can avoid this race by ensuring that thread 1 cannot accidentally
remap the blocks that thread 2 allocated (as part of speculative
preallocation) as part of t2's write preparation in t1's end_io handler.
The way we make this happen is by taking advantage of the unwritten
extent flag as an intermediate step.
Recall that when we begin the process of writing data to shared blocks,
we create a delayed allocation extent in the CoW fork:
D: --RRRRRRSSSRRRRRRRR---
C: ------DDDDDDD---------
When a thread prepares to CoW some dirty data out to disk, it will now
convert the delalloc reservation into an /unwritten/ allocated extent in
the cow fork. The da conversion code tries to opportunistically
allocate as much of a (speculatively prealloc'd) extent as possible, so
we may end up allocating a larger extent than we're actually writing
out:
D: --RRRRRRSSSRRRRRRRR---
U: ------UUUUUUU---------
Next, we convert only the part of the extent that we're actively
planning to write to normal (i.e. not unwritten) status:
D: --RRRRRRSSSRRRRRRRR---
U: ------UURRUUU---------
If the write succeeds, the end_cow function will now scan the relevant
range of the CoW fork for real extents and remap only the real extents
into the data fork:
D: --RRRRRRRRSRRRRRRRR---
U: ------UU--UUU---------
This ensures that we never obliterate valid data fork extents with
unwritten blocks from the CoW fork.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In the data fork, we only allow extents to perform the following state
transitions:
delay -> real <-> unwritten
There's no way to move directly from a delalloc reservation to an
/unwritten/ allocated extent. However, for the CoW fork we want to be
able to do the following to each extent:
delalloc -> unwritten -> written -> remapped to data fork
This will help us to avoid a race in the speculative CoW preallocation
code between a first thread that is allocating a CoW extent and a second
thread that is remapping part of a file after a write. In order to do
this, however, we need two things: first, we have to be able to
transition from da to unwritten, and second the function that converts
between real and unwritten has to be made aware of the cow fork. Do
both of those things.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Perform basic sanity checking of the directory free block header
fields so that we avoid hanging the system on invalid data.
(Granted that just means that now we shutdown on directory write,
but that seems better than hanging...)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We can't handle a bmbt that's taller than BTREE_MAXLEVELS, and there's
no such thing as a zero-level bmbt (for that we have extents format),
so if we see this, send back an error code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't let anybody load an obviously bad btree pointer. Since the values
come from disk, we must return an error, not just ASSERT.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
When we open a directory, we try to readahead block 0 of the directory
on the assumption that we're going to need it soon. If the bmbt is
corrupt, the directory will never be usable and the readahead fails
immediately, so we might as well prevent the directory from being opened
at all. This prevents a subsequent read or modify operation from
hitting it and taking the fs offline.
NOTE: We're only checking for early failures in the block mapping, not
the readahead directory block itself.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We use di_format and if_flags to decide whether we're grabbing the ilock
in btree mode (btree extents not loaded) or shared mode (anything else),
but the state of those fields can be changed by other threads that are
also trying to load the btree extents -- IFEXTENTS gets set before the
_bmap_read_extents call and cleared if it fails.
We don't actually need to have IFEXTENTS set until after the bmbt
records are successfully loaded and validated, which will fix the race
between multiple threads trying to read the same directory. The next
patch strengthens directory bmbt validation by refusing to open the
directory if reading the bmbt to start directory readahead fails.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
blk_get_backing_dev_info() is now a simple dereference. Remove that
function and simplify some code around that.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
The "full" argument was used only by the fiemap formatter,
which is now gone with the iomap updates.
Remove the unused arg.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Alex Elder <elder@linaro.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It's possible for post-eof blocks to end up being used for direct I/O
writes. dio write performs an upfront unwritten extent allocation, sends
the dio and then updates the inode size (if necessary) on write
completion. If a file release occurs while a file extending dio write is
in flight, it is possible to mistake the post-eof blocks for speculative
preallocation and incorrectly truncate them from the inode. This means
that the resulting dio write completion can discover a hole and allocate
new blocks rather than perform unwritten extent conversion.
This requires a strange mix of I/O and is thus not likely to reproduce
in real world workloads. It is intermittently reproduced by generic/299.
The error manifests as an assert failure due to transaction overrun
because the aforementioned write completion transaction has only
reserved enough blocks for btree operations:
XFS: Assertion failed: tp->t_blk_res_used <= tp->t_blk_res, \
file: fs/xfs//xfs_trans.c, line: 309
The root cause is that xfs_free_eofblocks() uses i_size to truncate
post-eof blocks from the inode, but async, file extending direct writes
do not update i_size until write completion, long after inode locks are
dropped. Therefore, xfs_free_eofblocks() effectively truncates the inode
to the incorrect size.
Update xfs_free_eofblocks() to serialize against dio similar to how
extending writes are serialized against i_size updates before post-eof
block zeroing. Specifically, wait on dio while under the iolock. This
ensures that dio write completions have updated i_size before post-eof
blocks are processed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xfs_eofblocks.eof_scan_owner field is an internal field to
facilitate invoking eofb scans from the kernel while under the iolock.
This is necessary because the eofb scan acquires the iolock of each
inode. Synchronous scans are invoked on certain buffered write failures
while under iolock. In such cases, the scan owner indicates that the
context for the scan already owns the particular iolock and prevents a
double lock deadlock.
eofblocks scans while under iolock are still livelock prone in the event
of multiple parallel scans, however. If multiple buffered writes to
different inodes fail and invoke eofblocks scans at the same time, each
scan avoids a deadlock with its own inode by virtue of the
eof_scan_owner field, but will never be able to acquire the iolock of
the inode from the parallel scan. Because the low free space scans are
invoked with SYNC_WAIT, the scan will not return until it has processed
every tagged inode and thus both scans will spin indefinitely on the
iolock being held across the opposite scan. This problem can be
reproduced reliably by generic/224 on systems with higher cpu counts
(x16).
To avoid this problem, simplify the semantics of eofblocks scans to
never invoke a scan while under iolock. This means that the buffered
write context must drop the iolock before the scan. It must reacquire
the lock before the write retry and also repeat the initial write
checks, as the original state might no longer be valid once the iolock
was dropped.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_free_eofblocks() requires the IOLOCK_EXCL lock, but is called from
different contexts where the lock may or may not be held. The
need_iolock parameter exists for this reason, to indicate whether
xfs_free_eofblocks() must acquire the iolock itself before it can
proceed.
This is ugly and confusing. Simplify the semantics of
xfs_free_eofblocks() to require the caller to acquire the iolock
appropriately and kill the need_iolock parameter. While here, the mp
param can be removed as well as the xfs_mount is accessible from the
xfs_inode structure. This patch does not change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
After scratching my head looking for "xfs_busy_extent" I realized
it's not used; it's xfs_extent_busy, and the declaration for the
other name is bogus. Remove that and a few others as well.
(struct xfs_log_callback is used, but the 2nd declaration is
unnecessary).
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that xfs_btree_init_block_int is able to determine crc
status from the passed-in mp, we can determine the proper
magic as well if we are given a btree number, rather than
an explicit magic value.
Change xfs_btree_init_block[_int] callers to pass in the
btree number, and let xfs_btree_init_block_int use the
xfs_magics array via the xfs_btree_magic macro to determine
which magic value is needed. This makes all of the
if (crc) / else stanzas identical, and the if/else can be
removed, leading to a single, common init_block call.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Right now the xfs_btree_magic() define takes only a cursor;
change this to take crc and btnum args to make it more generically
useful, and move to a function.
This will allow xfs_btree_init_block_int callers which don't
have a cursor to make use of the xfs_magics array, which will
happen in the next patch.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_btree_init_block_int() can determine whether crcs are
in effect without the passed-in XFS_BTREE_CRC_BLOCKS flag;
the mp argument allows us to determine this from the
superblock. Remove the flag from callers, and use
xfs_sb_version_hascrc(&mp->m_sb) internally instead.
This removes one difference between the if & else cases
in the callers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Quotacheck runs at mount time in situations where quota accounting must
be recalculated. In doing so, it uses bulkstat to visit every inode in
the filesystem. Historically, every inode processed during quotacheck
was released and immediately tagged for reclaim because quotacheck runs
before the superblock is marked active by the VFS. In other words,
the final iput() lead to an immediate ->destroy_inode() call, which
allowed the XFS background reclaim worker to start reclaiming inodes.
Commit 17c12bcd3 ("xfs: when replaying bmap operations, don't let
unlinked inodes get reaped") marks the XFS superblock active sooner as
part of the mount process to support caching inodes processed during log
recovery. This occurs before quotacheck and thus means all inodes
processed by quotacheck are inserted to the LRU on release. The
s_umount lock is held until the mount has completed and thus prevents
the shrinkers from operating on the sb. This means that quotacheck can
excessively populate the inode LRU and lead to OOM conditions on systems
without sufficient RAM.
Update the quotacheck bulkstat handler to set XFS_IGET_DONTCACHE on
inodes processed by quotacheck. This causes ->drop_inode() to return 1
and in turn causes iput_final() to evict the inode. This preserves the
original quotacheck behavior and prevents it from overloading the LRU
and running out of memory.
CC: stable@vger.kernel.org # v4.9
Reported-by: Martin Svec <martin.svec@zoner.cz>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In a bmapx call, bmv_count is the total size of the array, including the
zeroth element that userspace uses to supply the search key. The output
array starts at offset 1 so that we can set up the user for the next
invocation. Since we now can split an extent into multiple bmap records
due to shared/unshared status, we have to be careful that we don't
overflow the output array.
In the original patch f86f403794 ("xfs: teach get_bmapx about shared
extents and the CoW fork") I used cur_ext (the output index) to check
for overflows, albeit with an off-by-one error. Since nexleft no longer
describes the number of unfilled slots in the output, we can rip all
that out and use cur_ext for the overflow check directly.
Failure to do this causes heap corruption in bmapx callers such as
xfs_io and xfs_scrub. xfs/328 can reproduce this problem.
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If we try to allocate memory pages to back an xfs_buf that we're trying
to read, it's possible that we'll be so short on memory that the page
allocation fails. For a blocking read we'll just wait, but for
readahead we simply dump all the pages we've collected so far.
Unfortunately, after dumping the pages we neglect to clear the
_XBF_PAGES state, which means that the subsequent call to xfs_buf_free
thinks that b_pages still points to pages we own. It then double-frees
the b_pages pages.
This results in screaming about negative page refcounts from the memory
manager, which xfs oughtn't be triggering. To reproduce this case,
mount a filesystem where the size of the inodes far outweighs the
availalble memory (a ~500M inode filesystem on a VM with 300MB memory
did the trick here) and run bulkstat in parallel with other memory
eating processes to put a huge load on the system. The "check summary"
phase of xfs_scrub also works for this purpose.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
With COW files they are the hotpath, just like for files with the
extent size hint attribute. We really shouldn't micro-manage anything
but failure cases with unlikely.
Additionally Arnd Bergmann recently reported that one of these two
unlikely annotations causes link failures together with an upcoming
kernel instrumentation patch, so let's get rid of it ASAP.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_attr_[get|remove]() have unlocked attribute fork checks to optimize
away a lock cycle in cases where the fork does not exist or is otherwise
empty. This check is not safe, however, because an attribute fork short
form to extent format conversion includes a transient state that causes
the xfs_inode_hasattr() check to fail. Specifically,
xfs_attr_shortform_to_leaf() creates an empty extent format attribute
fork and then adds the existing shortform attributes to it.
This means that lookup of an existing xattr can spuriously return
-ENOATTR when racing against a setxattr that causes the associated
format conversion. This was originally reproduced by an untar on a
particularly configured glusterfs volume, but can also be reproduced on
demand with properly crafted xattr requests.
The format conversion occurs under the exclusive ilock. xfs_attr_get()
and xfs_attr_remove() already have the proper locking and checks further
down in the functions to handle this situation correctly. Drop the
unlocked checks to avoid the spurious failure and rely on the existing
logic.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we try to rely on the global reserved block pool for block
allocations for the free inode btree, but I have customer reports
(fairly complex workload, need to find an easier reproducer) where that
is not enough as the AG where we free an inode that requires a new
finobt block is entirely full. This causes us to cancel a dirty
transaction and thus a file system shutdown.
I think the right way to guard against this is to treat the finot the same
way as the refcount btree and have a per-AG reservations for the possible
worst case size of it, and the patch below implements that.
Note that this could increase mount times with large finobt trees. In
an ideal world we would have added a field for the number of finobt
fields to the AGI, similar to what we did for the refcount blocks.
We should do add it next time we rev the AGI or AGF format by adding
new fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Try to reserve the blocks first and only then update the fields in
or hanging off the mount structure. This way we can call __xfs_ag_resv_init
again after a previous failure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
sb_dirblklog is added to sb_blocklog to compute the directory block size
in bytes. Therefore, we must compare the sum of both those values
against XFS_MAX_BLOCKSIZE_LOG, not just dirblklog.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way how xfs_iomap_write_allocate tries to convert the whole
found extents from delalloc to real space we can run into a race
condition with multiple threads doing writes to this same extent.
For the non-COW case that is harmless as the only thing that can happen
is that we call xfs_bmapi_write on an extent that has already been
converted to a real allocation. For COW writes where we move the extent
from the COW to the data fork after I/O completion the race is, however,
not quite as harmless. In the worst case we are now calling
xfs_bmapi_write on a region that contains hole in the COW work, which
will trip up an assert in debug builds or lead to file system corruption
in non-debug builds. This seems to be reproducible with workloads of
small O_DSYNC write, although so far I've not managed to come up with
a with an isolated reproducer.
The fix for the issue is relatively simple: tell xfs_bmapi_write
that we are only asked to convert delayed allocations and skip holes
in that case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A harmless warning just got introduced:
fs/xfs/libxfs/xfs_dir2.h:40:8: error: type qualifiers ignored on function return type [-Werror=ignored-qualifiers]
Removing the 'const' modifier avoids the warning and has no
other effect.
Fixes: 1fc4d33fed ("xfs: replace xfs_mode_to_ftype table with switch statement")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The GETNEXTQOTA ioctl takes whatever ID is sent in,
and looks for the next active quota for an user
equal or higher to that ID.
But if we are at the maximum ID and then ask for the "next"
one, we may wrap back to zero. In this case, userspace
may loop forever, because it will start querying again
at zero.
We'll fix this in userspace as well, but for the kernel,
return -ENOENT if we ask for the next quota ID
past UINT_MAX so the caller knows to stop.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Check for invalid file type in xfs_dinode_verify()
and fail to load the inode structure from disk.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The helper xfs_dentry_to_name() is used by 2 different
classes of callers: Callers that pass zero mode and don't care
about the returned name.type field and Callers that pass
non zero mode and do care about the name.type field.
Change xfs_dentry_to_name() to not take the mode argument and
change the call sites of the first class to not pass the mode
argument.
Create a new helper xfs_dentry_mode_to_name() which does pass
the mode argument and returns -EFSCORRUPTED if mode is invalid.
Callers that translate non zero mode to on-disk file type now
check the return value and will export the error to user instead
of staging an invalid file type to be written to directory entry.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The size of the xfs_mode_to_ftype[] conversion table
was too small to handle an invalid value of mode=S_IFMT.
Instead of fixing the table size, replace the conversion table
with a conversion helper that uses a switch statement.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_dir2.h dereferences some data types in inline functions
and fails to include those type definitions, e.g.:
xfs_dir2_data_aoff_t, struct xfs_da_geometry.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This changes fixes an assertion hit when fuzzing on-disk
i_mode values.
The easy case to fix is when changing an empty file
i_mode to S_IFDIR. In this case, xfs_dinode_verify()
detects an illegal zero size for directory and fails
to load the inode structure from disk.
For the case of non empty file whose i_mode is changed
to S_IFDIR, the ASSERT() statement in xfs_dir2_isblock()
is replaced with return -EFSCORRUPTED, to avoid interacting
with corrupted jusk also when XFS_DEBUG is disabled.
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ASSERT() condition is the normal case, not the exception,
so testing the condition should be likely(), not unlikely().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Commit 99579ccec4 "xfs: skip dirty pages in ->releasepage()" started
to skip dirty pages in xfs_vm_releasepage() which also has the effect
that if a dirty page is truncated, it does not get freed by
block_invalidatepage() and is lingering in LRU list waiting for reclaim.
So a simple loop like:
while true; do
dd if=/dev/zero of=file bs=1M count=100
rm file
done
will keep using more and more memory until we hit low watermarks and
start pagecache reclaim which will eventually reclaim also the truncate
pages. Keeping these truncated (and thus never usable) pages in memory
is just a waste of memory, is unnecessarily stressing page cache
reclaim, and reportedly also leads to anonymous mmap(2) returning ENOMEM
prematurely.
So instead of just skipping dirty pages in xfs_vm_releasepage(), return
to old behavior of skipping them only if they have delalloc or unwritten
buffers and fix the spurious warnings by warning only if the page is
clean.
CC: stable@vger.kernel.org
CC: Brian Foster <bfoster@redhat.com>
CC: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Petr Tůma <petr.tuma@d3s.mff.cuni.cz>
Fixes: 99579ccec4
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are only two reasons for xfs_log_force / xfs_log_force_lsn to fail:
one is an I/O error, for which xlog_bdstrat already logs a warning, and
the second is an already shutdown log due to a previous I/O errors. In
the latter case we'll already have a previous indication for the actual
error, but the large stream of misleading warnings from xfs_log_force
will probably scroll it out of the message buffer.
Simply removing the warnings thus makes the XFS log reporting significantly
better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
->total is a bit of an odd parameter passed down to the low-level
allocator all the way from the high-level callers. It's supposed to
contain the maximum number of blocks to be allocated for the whole
transaction [1].
But in xfs_iomap_write_allocate we only convert existing delayed
allocations and thus only have a minimal block reservation for the
current transaction, so xfs_alloc_space_available can't use it for
the allocation decisions. Use the maximum of args->total and the
calculated block requirement to make a decision. We probably should
get rid of args->total eventually and instead apply ->minleft more
broadly, but that will require some extensive changes all over.
[1] which creates lots of confusion as most callers don't decrement it
once doing a first allocation. But that's for a separate series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We must decide in xfs_alloc_fix_freelist if we can perform an
allocation from a given AG is possible or not based on the available
space, and should not fail the allocation past that point on a
healthy file system.
But currently we have two additional places that second-guess
xfs_alloc_fix_freelist: xfs_alloc_ag_vextent tries to adjust the
maxlen parameter to remove the reservation before doing the
allocation (but ignores the various minium freespace requirements),
and xfs_alloc_fix_minleft tries to fix up the allocated length
after we've found an extent, but ignores the reservations and also
doesn't take the AGFL into account (and thus fails allocations
for not matching minlen in some cases).
Remove all these later fixups and just correct the maxlen argument
inside xfs_alloc_fix_freelist once we have the AGF buffer locked.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can't just set minleft to 0 when we're low on space - that's exactly
what we need minleft for: to protect space in the AG for btree block
allocations when we are low on free space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Setting aside 4 blocks globally for bmbt splits isn't all that useful,
as different threads can allocate space in parallel. Bump it to 4
blocks per AG to allow each thread that is currently doing an
allocation to dip into it separately. Without that we may no have
enough reserved blocks if there are enough parallel transactions
in an almost out space file system that all run into bmap btree
splits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
max_retries _show and _store functions should test against cfg->max_retries,
not cfg->retry_timeout
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There is a race window between write_cache_pages calling
clear_page_dirty_for_io and XFS calling set_page_writeback, in which
the mapping for an inode is tagged neither as dirty, nor as writeback.
If the COW shrinker hits in exactly that window we'll remove the delayed
COW extents and writepages trying to write it back, which in release
kernels will manifest as corruption of the bmap btree, and in debug
kernels will trip the ASSERT about now calling xfs_bmapi_write with the
COWFORK flag for holes. A complex customer load manages to hit this
window fairly reliably, probably by always having COW writeback in flight
while the cow shrinker runs.
This patch adds another check for having the I_DIRTY_PAGES flag set,
which is still set during this race window. While this fixes the problem
I'm still not overly happy about the way the COW shrinker works as it
still seems a bit fragile.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to use the actual AG length when making per-AG reservations,
since we could otherwise end up reserving more blocks out of the last
AG than there are actual blocks.
Complained-about-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Dan Carpenter reported a double-free of rcur if _defer_finish fails
while we're recovering CUI items. Fix the error recovery to prevent
this.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Strengthen the checking of pos/len vs. i_size, clarify the return values
for the clone prep function, and remove pointless code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull partial readlink cleanups from Miklos Szeredi.
This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.
Miklos and Al are still discussing the rest of the series.
* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: make generic_readlink() static
vfs: remove ".readlink = generic_readlink" assignments
vfs: default to generic_readlink()
vfs: replace calling i_op->readlink with vfs_readlink()
proc/self: use generic_readlink
ecryptfs: use vfs_get_link()
bad_inode: add missing i_op initializers
Pull more vfs updates from Al Viro:
"In this pile:
- autofs-namespace series
- dedupe stuff
- more struct path constification"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
ocfs2: implement the VFS clone_range, copy_range, and dedupe_range features
ocfs2: charge quota for reflinked blocks
ocfs2: fix bad pointer cast
ocfs2: always unlock when completing dio writes
ocfs2: don't eat io errors during _dio_end_io_write
ocfs2: budget for extent tree splits when adding refcount flag
ocfs2: prohibit refcounted swapfiles
ocfs2: add newlines to some error messages
ocfs2: convert inode refcount test to a helper
simple_write_end(): don't zero in short copy into uptodate
exofs: don't mess with simple_write_{begin,end}
9p: saner ->write_end() on failing copy into non-uptodate page
fix gfs2_stuffed_write_end() on short copies
fix ceph_write_end()
nfs_write_end(): fix handling of short copies
vfs: refactor clone/dedupe_file_range common functions
fs: try to clone files first in vfs_copy_file_range
vfs: misc struct path constification
namespace.c: constify struct path passed to a bunch of primitives
quota: constify struct path in quota_on
...
Contained in this update:
- DAX PMD vaults via iomap infrastructure
- Direct-io support in iomap infrastructure
- removal of now-redundant XFS inode iolock, replaced with VFS i_rwsem
- synchronisation with fixes and changes in userspace libxfs code
- extent tree lookup helpers
- lots of little corruption detection improvements to verifiers
- optimised CRC calculations
- faster buffer cache lookups
- deprecation of barrier/nobarrier mount options - we always use
REQ_FUA/REQ_FLUSH where appropriate for data integrity now
- cleanups to speculative preallocation
- miscellaneous minor bug fixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYUgqdAAoJEK3oKUf0dfodQgsP/1dJ4qUc6cRk8kL+f10FoIek
oFzdViRHZj8cROGe2n2YTBJtPa9KjU5DNHnxaxWZBN4ZpItp/uN1sAQhgtNQ4/cN
C3JF6B/+/dIbNSbd7DwvSl0dMWknzmrB+Myfs2ZPpMA1S4GInk1MOJSj7AQdYAvJ
dS0dQWAuIB20cahwuGA4y7zUniYL1IcF/BH8hlmzpcUNUoJ9AkR1hTg5/aVfmga3
w2p1vZyT2E4xs/Ff4FYW5MzPGxLVQMZVNIAXAcJl+c61z46ndXqidSmVHGvc+Tlt
ouxftHy/7KqowZlCFss1pSXg9HlXHhjS+iLbZerfcjO2qldriZS+QqQyASmQzPAz
+PpnMfVOj+yjsXKyIHWuS1G35aV16pPWwdA0ECeU6yv9iZ7tSz5rvSrsPZPLFz4x
RVhcKbmXR3y8DugkmtznU5ozxPt5hbbstEV3leCzxJpZu5reRJThUW7nYkSd0CEJ
ZyT/GP6Aq/MM8O/hOgVutAH409dsrYok8m/lq1J7VbNUt8inylcsMWsBeX/0/AHY
aC7I2Vx8bnbfL+C8wYKYhuShOGSch93O5hDUXdH2K/Sm5cK4y2asWge6MfFsS6Lu
waVYwd5aYBlNbzkvUMm2I5EV4cCCR3YwWYwfBEP7kPYUDxN14huOz6lVXnQPDLQ1
qsV1aNfK9PPiw6Fcaop0
=HwDG
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There is quite a varied bunch of stuff in this update, and some of it
you will have already merged through the ext4 tree which imported the
dax-4.10-iomap-pmd topic branch from the XFS tree.
There is also a new direct IO implementation that uses the iomap
infrastructure. It's much simpler, faster, and has lower IO latency
than the existing direct IO infrastructure.
Summary:
- DAX PMD faults via iomap infrastructure
- Direct-io support in iomap infrastructure
- removal of now-redundant XFS inode iolock, replaced with VFS
i_rwsem
- synchronisation with fixes and changes in userspace libxfs code
- extent tree lookup helpers
- lots of little corruption detection improvements to verifiers
- optimised CRC calculations
- faster buffer cache lookups
- deprecation of barrier/nobarrier mount options - we always use
REQ_FUA/REQ_FLUSH where appropriate for data integrity now
- cleanups to speculative preallocation
- miscellaneous minor bug fixes and cleanups"
* tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (63 commits)
xfs: nuke unused tracepoint definitions
xfs: use GPF_NOFS when allocating btree cursors
xfs: use xfs_vn_setattr_size to check on new size
xfs: deprecate barrier/nobarrier mount option
xfs: Always flush caches when integrity is required
xfs: ignore leaf attr ichdr.count in verifier during log replay
xfs: use rhashtable to track buffer cache
xfs: optimise CRC updates
xfs: make xfs btree stats less huge
xfs: don't cap maximum dedupe request length
xfs: don't allow di_size with high bit set
xfs: error out if trying to add attrs and anextents > 0
xfs: don't crash if reading a directory results in an unexpected hole
xfs: complain if we don't get nextents bmap records
xfs: check for bogus values in btree block headers
xfs: forbid AG btrees with level == 0
xfs: several xattr functions can be void
xfs: handle cow fork in xfs_bmap_trace_exlist
xfs: pass state not whichfork to trace_xfs_extlist
xfs: Move AGI buffer type setting to xfs_read_agi
...
needed for both ext4 and xfs dax changes to use iomap for DAX. It
also includes the fscrypt branch which is needed for ubifs encryption
work as well as ext4 encryption and fscrypt cleanups.
Lots of cleanups and bug fixes, especially making sure ext4 is robust
against maliciously corrupted file systems --- especially maliciously
corrupted xattr blocks and a maliciously corrupted superblock. Also
fix ext4 support for 64k block sizes so it works well on ppcle. Fixed
mbcache so we don't miss some common xattr blocks that can be merged.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlhQQVEACgkQ8vlZVpUN
gaN9TQgAoCD+V4kJjMCFhiV8u6QR3hqD6bOZbggo5wJf4CHglWkmrbAmc3jANOgH
CKsXDRRjxuDjPXf1ukB1i4M7ArLYjkbbzKdsu7lismoJLS+w8uwUKSNdep+LYMjD
alxUcf5DCzLlUmdOdW4yE22L+CwRfqfs8IpBvKmJb7DrAKiwJVA340ys6daBGuu1
63xYx0QIyPzq0xjqLb6TVf88HUI4NiGVXmlm2wcrnYd5966hEZd/SztOZTVCVWOf
Z0Z0fGQ1WJzmaBB9+YV3aBi+BObOx4m2PUprIa531+iEW02E+ot5Xd4vVQFoV/r4
NX3XtoBrT1XlKagy2sJLMBoCavqrKw==
=j4KP
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"This merge request includes the dax-4.0-iomap-pmd branch which is
needed for both ext4 and xfs dax changes to use iomap for DAX. It also
includes the fscrypt branch which is needed for ubifs encryption work
as well as ext4 encryption and fscrypt cleanups.
Lots of cleanups and bug fixes, especially making sure ext4 is robust
against maliciously corrupted file systems --- especially maliciously
corrupted xattr blocks and a maliciously corrupted superblock. Also
fix ext4 support for 64k block sizes so it works well on ppcle. Fixed
mbcache so we don't miss some common xattr blocks that can be merged"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (86 commits)
dax: Fix sleep in atomic contex in grab_mapping_entry()
fscrypt: Rename FS_WRITE_PATH_FL to FS_CTX_HAS_BOUNCE_BUFFER_FL
fscrypt: Delay bounce page pool allocation until needed
fscrypt: Cleanup page locking requirements for fscrypt_{decrypt,encrypt}_page()
fscrypt: Cleanup fscrypt_{decrypt,encrypt}_page()
fscrypt: Never allocate fscrypt_ctx on in-place encryption
fscrypt: Use correct index in decrypt path.
fscrypt: move the policy flags and encryption mode definitions to uapi header
fscrypt: move non-public structures and constants to fscrypt_private.h
fscrypt: unexport fscrypt_initialize()
fscrypt: rename get_crypt_info() to fscrypt_get_crypt_info()
fscrypto: move ioctl processing more fully into common code
fscrypto: remove unneeded Kconfig dependencies
MAINTAINERS: fscrypto: recommend linux-fsdevel for fscrypto patches
ext4: do not perform data journaling when data is encrypted
ext4: return -ENOMEM instead of success
ext4: reject inodes with negative size
ext4: remove another test in ext4_alloc_file_blocks()
Documentation: fix description of ext4's block_validity mount option
ext4: fix checks for data=ordered and journal_async_commit options
...
Pull block layer updates from Jens Axboe:
"This is the main block pull request this series. Contrary to previous
release, I've kept the core and driver changes in the same branch. We
always ended up having dependencies between the two for obvious
reasons, so makes more sense to keep them together. That said, I'll
probably try and keep more topical branches going forward, especially
for cycles that end up being as busy as this one.
The major parts of this pull request is:
- Improved support for O_DIRECT on block devices, with a small
private implementation instead of using the pig that is
fs/direct-io.c. From Christoph.
- Request completion tracking in a scalable fashion. This is utilized
by two components in this pull, the new hybrid polling and the
writeback queue throttling code.
- Improved support for polling with O_DIRECT, adding a hybrid mode
that combines pure polling with an initial sleep. From me.
- Support for automatic throttling of writeback queues on the block
side. This uses feedback from the device completion latencies to
scale the queue on the block side up or down. From me.
- Support from SMR drives in the block layer and for SD. From Hannes
and Shaun.
- Multi-connection support for nbd. From Josef.
- Cleanup of request and bio flags, so we have a clear split between
which are bio (or rq) private, and which ones are shared. From
Christoph.
- A set of patches from Bart, that improve how we handle queue
stopping and starting in blk-mq.
- Support for WRITE_ZEROES from Chaitanya.
- Lightnvm updates from Javier/Matias.
- Supoort for FC for the nvme-over-fabrics code. From James Smart.
- A bunch of fixes from a whole slew of people, too many to name
here"
* 'for-4.10/block' of git://git.kernel.dk/linux-block: (182 commits)
blk-stat: fix a few cases of missing batch flushing
blk-flush: run the queue when inserting blk-mq flush
elevator: make the rqhash helpers exported
blk-mq: abstract out blk_mq_dispatch_rq_list() helper
blk-mq: add blk_mq_start_stopped_hw_queue()
block: improve handling of the magic discard payload
blk-wbt: don't throttle discard or write zeroes
nbd: use dev_err_ratelimited in io path
nbd: reset the setup task for NBD_CLEAR_SOCK
nvme-fabrics: Add FC LLDD loopback driver to test FC-NVME
nvme-fabrics: Add target support for FC transport
nvme-fabrics: Add host support for FC transport
nvme-fabrics: Add FC transport LLDD api definitions
nvme-fabrics: Add FC transport FC-NVME definitions
nvme-fabrics: Add FC transport error codes to nvme.h
Add type 0x28 NVME type code to scsi fc headers
nvme-fabrics: patch target code in prep for FC transport support
nvme-fabrics: set sqe.command_id in core not transports
parser: add u64 number parser
nvme-rdma: align to generic ib_event logging helper
...
Hoist both the XFS reflink inode state and preparation code and the XFS
file blocks compare functions into the VFS so that ocfs2 can take
advantage of it for reflink and dedupe.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A clone is a perfectly fine implementation of a file copy, so most
file systems just implement the copy that way. Instead of duplicating
this logic move it to the VFS. Currently btrfs and XFS implement copies
the same way as clones and there is no behavior change for them, cifs
only implements clones and grow support for copy_file_range with this
patch. NFS implements both, so this will allow copy_file_range to work
on servers that only implement CLONE and be lot more efficient on servers
that implements CLONE and COPY.
Signed-off-by: Christoph Hellwig <hch@lst.de>
If .readlink == NULL implies generic_readlink().
Generated by:
to_del="\.readlink.*=.*generic_readlink"
for i in `git grep -l $to_del`; do sed -i "/$to_del"/d $i; done
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Also check d_is_symlink() in callers instead of inode->i_op->readlink
because following patches will allow NULL ->readlink for symlinks.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This is all unused code, so remove it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Use NOFS for allocating btree cursors, since they can be called
under the ilock.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Commit 6552321831 ("xfs: remove i_iolock and use i_rwsem in the
VFS inode instead") introduced a regression that truncate(2) doesn't
check on new size, so it succeeds even if the new size exceeds the
current resource limit. Because xfs_setattr_size() was used instead
of xfs_vn_setattr_size(), and the latter calls xfs_vn_change_ok()
first to do sanity check on permission and new size.
This is found by truncate03 test from ltp, and the following is a
simplified reproducer:
#!/bin/bash
dev=/dev/sda5
mnt=/mnt/xfs
mkfs -t xfs -f $dev
mount $dev $mnt
# set max file size to 16k
ulimit -f 16
truncate -s $((16 * 1024 + 1)) /mnt/xfs/testfile
[ $? -eq 0 ] && echo "FAIL: truncate exceeded max file size"
ulimit -f unlimited
umount $mnt
Signed-off-by: Eryu Guan <eguan@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We always perform integrity operations now, so these mount options
don't do anything. Deprecate them and mark them for removal in
in a year.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no reason anymore for not issuing device integrity
operations when teh filesystem requires ordering or data integrity
guarantees. We should always issue cache flushes and FUA writes
where necessary and let the underlying storage optimise them as
necessary for correct integrity operation.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we create a new attribute, we first create a shortform
attribute, and try to fit the new attribute into it.
If that fails, we copy the (empty) attribute into a leaf attribute,
and do the copy again. Thus there can be a transient state where
we have an empty leaf attribute.
If we encounter this during log replay, the verifier will fail.
So add a test to ignore this part of the leaf attr verification
during log replay.
Thanks as usual to dchinner for spotting the problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On filesystems with a lot of metadata and in metadata intensive workloads
xfs_buf_find() is showing up at the top of the CPU cycles trace. Most of
the CPU time is spent on CPU cache misses while traversing the rbtree.
As the buffer cache does not need any kind of ordering, but fast lookups
a hashtable is the natural data structure to use. The rhashtable
infrastructure provides a self-scaling hashtable implementation and
allows lookups to proceed while the table is going through a resize
operation.
This reduces the CPU-time spent for the lookups to 1/3 even for small
filesystems with a relatively small number of cached buffers, with
possibly much larger gains on higher loaded filesystems.
[dchinner: reduce minimum hash size to an acceptable size for large
filesystems with many AGs with no active use.]
[dchinner: remove stale rbtree asserts.]
[dchinner: use xfs_buf_map for compare function argument.]
[dchinner: make functions static.]
[dchinner: remove redundant comments.]
Signed-off-by: Lucas Stach <dev@lynxeye.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Nick Piggin reported that the CRC overhead in an fsync heavy
workload was higher than expected on a Power8 machine. Part of this
was to do with the fact that the power8 CRC implementation is not
efficient for CRC lengths of less than 512 bytes, and so the way we
split the CRCs over the CRC field means a lot of the CRCs are
reduced to being less than than optimal size.
To optimise this, change the CRC update mechanism to zero the CRC
field first, and then compute the CRC in one pass over the buffer
and write the result back into the buffer. We can do this safely
because anything writing a CRC has exclusive access to the buffer
the CRC is being calculated over.
We leave the CRC verify code the same - it still splits the CRC
calculation - because we do not want read-only operations modifying
the underlying buffer. This is because read-only operations may not
have an exclusive access to the buffer guaranteed, and so temporary
modifications could leak out to to other processes accessing the
buffer concurrently.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.
Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.
If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.
We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:
text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o
it reduces the core btree infrastructure code size by close to 25%!
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
After various discussions on linux-fsdevel, it has been decided that it
is not necessary to cap the length of a dedupe request, and that
correctly-written userspace client programs will be able to absorb the
change. Therefore, remove the length clamping behavior.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>