Commit Graph

20 Commits

Author SHA1 Message Date
Mike Rapoport
57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Mike Rapoport
eb31d559f1 memblock: remove _virt from APIs returning virtual address
The conversion is done using

sed -i 's@memblock_virt_alloc@memblock_alloc@g' \
	$(git grep -l memblock_virt_alloc)

Link: http://lkml.kernel.org/r/1536927045-23536-8-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:15 -07:00
Kyrylo Tkachov
0293c8ba80 arm64: Fix typo in a comment in arch/arm64/mm/kasan_init.c
"bellow" -> "below"

The recommendation from kegel.com/kerspell is to only fix the howlers.
"Bellow" is a synonym of "howl" so this should be appropriate.

Signed-off-by: Kyrylo Tkachov <kyrylo.tkachov@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-05 11:49:32 +01:00
Mark Rutland
800cb2e553 arm64: kasan: avoid pfn_to_nid() before page array is initialized
In arm64's kasan_init(), we use pfn_to_nid() to find the NUMA node a
span of memory is in, hoping to allocate shadow from the same NUMA node.
However, at this point, the page array has not been initialized, and
thus this is bogus.

Since commit:

  f165b378bb ("mm: uninitialized struct page poisoning sanity")

... accessing fields of the page array results in a boot time Oops(),
highlighting this problem:

[    0.000000] Unable to handle kernel paging request at virtual address dfff200000000000
[    0.000000] Mem abort info:
[    0.000000]   ESR = 0x96000004
[    0.000000]   Exception class = DABT (current EL), IL = 32 bits
[    0.000000]   SET = 0, FnV = 0
[    0.000000]   EA = 0, S1PTW = 0
[    0.000000] Data abort info:
[    0.000000]   ISV = 0, ISS = 0x00000004
[    0.000000]   CM = 0, WnR = 0
[    0.000000] [dfff200000000000] address between user and kernel address ranges
[    0.000000] Internal error: Oops: 96000004 [#1] PREEMPT SMP
[    0.000000] Modules linked in:
[    0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.16.0-07317-gf165b378bbdf #42
[    0.000000] Hardware name: ARM Juno development board (r1) (DT)
[    0.000000] pstate: 80000085 (Nzcv daIf -PAN -UAO)
[    0.000000] pc : __asan_load8+0x8c/0xa8
[    0.000000] lr : __dump_page+0x3c/0x3b8
[    0.000000] sp : ffff2000099b7ca0
[    0.000000] x29: ffff2000099b7ca0 x28: ffff20000a1762c0
[    0.000000] x27: ffff7e0000000000 x26: ffff2000099dd000
[    0.000000] x25: ffff200009a3f960 x24: ffff200008f9c38c
[    0.000000] x23: ffff20000a9d3000 x22: ffff200009735430
[    0.000000] x21: fffffffffffffffe x20: ffff7e0001e50420
[    0.000000] x19: ffff7e0001e50400 x18: 0000000000001840
[    0.000000] x17: ffffffffffff8270 x16: 0000000000001840
[    0.000000] x15: 0000000000001920 x14: 0000000000000004
[    0.000000] x13: 0000000000000000 x12: 0000000000000800
[    0.000000] x11: 1ffff0012d0f89ff x10: ffff10012d0f89ff
[    0.000000] x9 : 0000000000000000 x8 : ffff8009687c5000
[    0.000000] x7 : 0000000000000000 x6 : ffff10000f282000
[    0.000000] x5 : 0000000000000040 x4 : fffffffffffffffe
[    0.000000] x3 : 0000000000000000 x2 : dfff200000000000
[    0.000000] x1 : 0000000000000005 x0 : 0000000000000000
[    0.000000] Process swapper (pid: 0, stack limit = 0x        (ptrval))
[    0.000000] Call trace:
[    0.000000]  __asan_load8+0x8c/0xa8
[    0.000000]  __dump_page+0x3c/0x3b8
[    0.000000]  dump_page+0xc/0x18
[    0.000000]  kasan_init+0x2e8/0x5a8
[    0.000000]  setup_arch+0x294/0x71c
[    0.000000]  start_kernel+0xdc/0x500
[    0.000000] Code: aa0403e0 9400063c 17ffffee d343fc00 (38e26800)
[    0.000000] ---[ end trace 67064f0e9c0cc338 ]---
[    0.000000] Kernel panic - not syncing: Attempted to kill the idle task!
[    0.000000] ---[ end Kernel panic - not syncing: Attempted to kill the idle task! ]---

Let's fix this by using early_pfn_to_nid(), as other architectures do in
their kasan init code. Note that early_pfn_to_nid acquires the nid from
the memblock array, which we iterate over in kasan_init(), so this
should be fine.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 39d114ddc6 ("arm64: add KASAN support")
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-04-17 16:16:59 +01:00
Will Deacon
20a004e7b0 arm64: mm: Use READ_ONCE/WRITE_ONCE when accessing page tables
In many cases, page tables can be accessed concurrently by either another
CPU (due to things like fast gup) or by the hardware page table walker
itself, which may set access/dirty bits. In such cases, it is important
to use READ_ONCE/WRITE_ONCE when accessing page table entries so that
entries cannot be torn, merged or subject to apparent loss of coherence
due to compiler transformations.

Whilst there are some scenarios where this cannot happen (e.g. pinned
kernel mappings for the linear region), the overhead of using READ_ONCE
/WRITE_ONCE everywhere is minimal and makes the code an awful lot easier
to reason about. This patch consistently uses these macros in the arch
code, as well as explicitly namespacing pointers to page table entries
from the entries themselves by using adopting a 'p' suffix for the former
(as is sometimes used elsewhere in the kernel source).

Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Tested-by: Richard Ruigrok <rruigrok@codeaurora.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-16 18:13:57 +00:00
Andrey Konovalov
917538e212 kasan: clean up KASAN_SHADOW_SCALE_SHIFT usage
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.

This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:43 -08:00
Will Deacon
e17d8025f0 arm64/mm/kasan: don't use vmemmap_populate() to initialize shadow
The kasan shadow is currently mapped using vmemmap_populate() since that
provides a semi-convenient way to map pages into init_top_pgt.  However,
since that no longer zeroes the mapped pages, it is not suitable for
kasan, which requires zeroed shadow memory.

Add kasan_populate_shadow() interface and use it instead of
vmemmap_populate().  Besides, this allows us to take advantage of
gigantic pages and use them to populate the shadow, which should save us
some memory wasted on page tables and reduce TLB pressure.

Link: http://lkml.kernel.org/r/20171103185147.2688-3-pasha.tatashin@oracle.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Andrey Ryabinin
3f9ec80f7b arm64/kasan: don't allocate extra shadow memory
We used to read several bytes of the shadow memory in advance.
Therefore additional shadow memory mapped to prevent crash if
speculative load would happen near the end of the mapped shadow memory.

Now we don't have such speculative loads, so we no longer need to map
additional shadow memory.

Link: http://lkml.kernel.org/r/20170601162338.23540-3-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:33 -07:00
Mark Rutland
b0de0ccc8b arm64: kasan: avoid bad virt_to_pfn()
Booting a v4.11-rc1 kernel with DEBUG_VIRTUAL and KASAN enabled produces
the following splat (trimmed for brevity):

[    0.000000] virt_to_phys used for non-linear address: ffff200008080000 (0xffff200008080000)
[    0.000000] WARNING: CPU: 0 PID: 0 at arch/arm64/mm/physaddr.c:14 __virt_to_phys+0x48/0x70
[    0.000000] PC is at __virt_to_phys+0x48/0x70
[    0.000000] LR is at __virt_to_phys+0x48/0x70
[    0.000000] Call trace:
[    0.000000] [<ffff2000080b1ac0>] __virt_to_phys+0x48/0x70
[    0.000000] [<ffff20000a03b86c>] kasan_init+0x1c0/0x498
[    0.000000] [<ffff20000a034018>] setup_arch+0x2fc/0x948
[    0.000000] [<ffff20000a030c68>] start_kernel+0xb8/0x570
[    0.000000] [<ffff20000a0301e8>] __primary_switched+0x6c/0x74

This is because we use virt_to_pfn() on a kernel image address when
trying to figure out its nid, so that we can allocate its shadow from
the same node.

As with other recent changes, this patch uses lm_alias() to solve this.

We could instead use NUMA_NO_NODE, as x86 does for all shadow
allocations, though we'll likely want the "real" memory shadow to be
backed from its corresponding nid anyway, so we may as well be
consistent and find the nid for the image shadow.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-03-10 17:41:41 +00:00
Ingo Molnar
9164bb4a18 sched/headers: Prepare to move 'init_task' and 'init_thread_union' from <linux/sched.h> to <linux/sched/task.h>
Update all usage sites first.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:38 +01:00
Laura Abbott
2077be6783 arm64: Use __pa_symbol for kernel symbols
__pa_symbol is technically the marcro that should be used for kernel
symbols. Switch to this as a pre-requisite for DEBUG_VIRTUAL which
will do bounds checking.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-01-12 15:05:39 +00:00
Catalin Marinas
2776e0e8ef arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
With the 16KB and 64KB page size configurations, SWAPPER_BLOCK_SIZE is
PAGE_SIZE and ARM64_SWAPPER_USES_SECTION_MAPS is 0. Since
kimg_shadow_end is not page aligned (_end shifted by
KASAN_SHADOW_SCALE_SHIFT), the edges of previously mapped kernel image
shadow via vmemmap_populate() may be overridden by subsequent calls to
kasan_populate_zero_shadow(), leading to kernel panics like below:

------------------------------------------------------------------------------
Unable to handle kernel paging request at virtual address fffffc100135068c
pgd = fffffc8009ac0000
[fffffc100135068c] *pgd=00000009ffee0003, *pud=00000009ffee0003, *pmd=00000009ffee0003, *pte=00e0000081a00793
Internal error: Oops: 9600004f [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.5.0-rc4+ #1984
Hardware name: Juno (DT)
task: fffffe09001a0000 ti: fffffe0900200000 task.ti: fffffe0900200000
PC is at __memset+0x4c/0x200
LR is at kasan_unpoison_shadow+0x34/0x50
pc : [<fffffc800846f1cc>] lr : [<fffffc800821ff54>] pstate: 00000245
sp : fffffe0900203db0
x29: fffffe0900203db0 x28: 0000000000000000
x27: 0000000000000000 x26: 0000000000000000
x25: fffffc80099b69d0 x24: 0000000000000001
x23: 0000000000000000 x22: 0000000000002000
x21: dffffc8000000000 x20: 1fffff9001350a8c
x19: 0000000000002000 x18: 0000000000000008
x17: 0000000000000147 x16: ffffffffffffffff
x15: 79746972100e041d x14: ffffff0000000000
x13: ffff000000000000 x12: 0000000000000000
x11: 0101010101010101 x10: 1fffffc11c000000
x9 : 0000000000000000 x8 : fffffc100135068c
x7 : 0000000000000000 x6 : 000000000000003f
x5 : 0000000000000040 x4 : 0000000000000004
x3 : fffffc100134f651 x2 : 0000000000000400
x1 : 0000000000000000 x0 : fffffc100135068c

Process swapper/0 (pid: 1, stack limit = 0xfffffe0900200020)
Call trace:
[<fffffc800846f1cc>] __memset+0x4c/0x200
[<fffffc8008220044>] __asan_register_globals+0x5c/0xb0
[<fffffc8008a09d34>] _GLOBAL__sub_I_65535_1_sunrpc_cache_lookup+0x1c/0x28
[<fffffc8008f20d28>] kernel_init_freeable+0x104/0x274
[<fffffc80089e1948>] kernel_init+0x10/0xf8
[<fffffc8008093a00>] ret_from_fork+0x10/0x50
------------------------------------------------------------------------------

This patch aligns kimg_shadow_start and kimg_shadow_end to
SWAPPER_BLOCK_SIZE in all configurations.

Fixes: f9040773b7 ("arm64: move kernel image to base of vmalloc area")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2016-03-11 11:03:35 +00:00
Catalin Marinas
2f76969f2e arm64: kasan: Use actual memory node when populating the kernel image shadow
With the 16KB or 64KB page configurations, the generic
vmemmap_populate() implementation warns on potential offnode
page_structs via vmemmap_verify() because the arm64 kasan_init() passes
NUMA_NO_NODE instead of the actual node for the kernel image memory.

Fixes: f9040773b7 ("arm64: move kernel image to base of vmalloc area")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: James Morse <james.morse@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
2016-03-11 11:03:34 +00:00
Ard Biesheuvel
f80fb3a3d5 arm64: add support for kernel ASLR
This adds support for KASLR is implemented, based on entropy provided by
the bootloader in the /chosen/kaslr-seed DT property. Depending on the size
of the address space (VA_BITS) and the page size, the entropy in the
virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all
4 levels), with the sidenote that displacements that result in the kernel
image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB
granule kernels, respectively) are not allowed, and will be rounded up to
an acceptable value.

If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is
randomized independently from the core kernel. This makes it less likely
that the location of core kernel data structures can be determined by an
adversary, but causes all function calls from modules into the core kernel
to be resolved via entries in the module PLTs.

If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is
randomized by choosing a page aligned 128 MB region inside the interval
[_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of
entropy (depending on page size), independently of the kernel randomization,
but still guarantees that modules are within the range of relative branch
and jump instructions (with the caveat that, since the module region is
shared with other uses of the vmalloc area, modules may need to be loaded
further away if the module region is exhausted)

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-24 14:57:27 +00:00
Ard Biesheuvel
f9040773b7 arm64: move kernel image to base of vmalloc area
This moves the module area to right before the vmalloc area, and moves
the kernel image to the base of the vmalloc area. This is an intermediate
step towards implementing KASLR, which allows the kernel image to be
located anywhere in the vmalloc area.

Since other subsystems such as hibernate may still need to refer to the
kernel text or data segments via their linears addresses, both are mapped
in the linear region as well. The linear alias of the text region is
mapped read-only/non-executable to prevent inadvertent modification or
execution.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-18 18:16:44 +00:00
Mark Rutland
068a17a580 arm64: mm: create new fine-grained mappings at boot
At boot we may change the granularity of the tables mapping the kernel
(by splitting or making sections). This may happen when we create the
linear mapping (in __map_memblock), or at any point we try to apply
fine-grained permissions to the kernel (e.g. fixup_executable,
mark_rodata_ro, fixup_init).

Changing the active page tables in this manner may result in multiple
entries for the same address being allocated into TLBs, risking problems
such as TLB conflict aborts or issues derived from the amalgamation of
TLB entries. Generally, a break-before-make (BBM) approach is necessary
to avoid conflicts, but we cannot do this for the kernel tables as it
risks unmapping text or data being used to do so.

Instead, we can create a new set of tables from scratch in the safety of
the existing mappings, and subsequently migrate over to these using the
new cpu_replace_ttbr1 helper, which avoids the two sets of tables being
active simultaneously.

To avoid issues when we later modify permissions of the page tables
(e.g. in fixup_init), we must create the page tables at a granularity
such that later modification does not result in splitting of tables.

This patch applies this strategy, creating a new set of fine-grained
page tables from scratch, and safely migrating to them. The existing
fixmap and kasan shadow page tables are reused in the new fine-grained
tables.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-16 15:10:46 +00:00
Mark Rutland
c1a88e9124 arm64: kasan: avoid TLB conflicts
The page table modification performed during the KASAN init risks the
allocation of conflicting TLB entries, as it swaps a set of valid global
entries for another without suitable TLB maintenance.

The presence of conflicting TLB entries can result in the delivery of
synchronous TLB conflict aborts, or may result in the use of erroneous
data being returned in response to a TLB lookup. This can affect
explicit data accesses from software as well as translations performed
asynchronously (e.g. as part of page table walks or speculative I-cache
fetches), and can therefore result in a wide variety of problems.

To avoid this, use cpu_replace_ttbr1 to swap the page tables. This
ensures that when the new tables are installed there are no stale
entries from the old tables which may conflict. As all updates are made
to the tables while they are not active, the updates themselves are
safe.

At the same time, add the missing barrier to ensure that the tmp_pg_dir
entries updated via memcpy are visible to the page table walkers at the
point the tmp_pg_dir is installed. All other page table updates made as
part of KASAN initialisation have the requisite barriers due to the use
of the standard page table accessors.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-16 15:10:45 +00:00
Ard Biesheuvel
7b1af97957 arm64: kasan: ensure that the KASAN zero page is mapped read-only
When switching from the early KASAN shadow region, which maps the
entire shadow space read-write, to the permanent KASAN shadow region,
which uses a zero page to shadow regions that are not subject to
instrumentation, the lowest level table kasan_zero_pte[] may be
reused unmodified, which means that the mappings of the zero page
that it contains will still be read-write.

So update it explicitly to map the zero page read only when we
activate the permanent mapping.

Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-01-25 11:09:05 +00:00
Will Deacon
83040123fd arm64: kasan: fix issues reported by sparse
Sparse reports some new issues introduced by the kasan patches:

  arch/arm64/mm/kasan_init.c:91:13: warning: no previous prototype for
  'kasan_early_init' [-Wmissing-prototypes] void __init kasan_early_init(void)
             ^
  arch/arm64/mm/kasan_init.c:91:13: warning: symbol 'kasan_early_init'
  was not declared. Should it be static? [sparse]

This patch resolves the problem by adding a prototype for
kasan_early_init and marking the function as asmlinkage, since it's only
called from head.S.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-13 14:54:42 +01:00
Andrey Ryabinin
39d114ddc6 arm64: add KASAN support
This patch adds arch specific code for kernel address sanitizer
(see Documentation/kasan.txt).

1/8 of kernel addresses reserved for shadow memory. There was no
big enough hole for this, so virtual addresses for shadow were
stolen from vmalloc area.

At early boot stage the whole shadow region populated with just
one physical page (kasan_zero_page). Later, this page reused
as readonly zero shadow for some memory that KASan currently
don't track (vmalloc).
After mapping the physical memory, pages for shadow memory are
allocated and mapped.

Functions like memset/memmove/memcpy do a lot of memory accesses.
If bad pointer passed to one of these function it is important
to catch this. Compiler's instrumentation cannot do this since
these functions are written in assembly.
KASan replaces memory functions with manually instrumented variants.
Original functions declared as weak symbols so strong definitions
in mm/kasan/kasan.c could replace them. Original functions have aliases
with '__' prefix in name, so we could call non-instrumented variant
if needed.
Some files built without kasan instrumentation (e.g. mm/slub.c).
Original mem* function replaced (via #define) with prefixed variants
to disable memory access checks for such files.

Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-12 17:46:36 +01:00