The oom killer takes task_lock() in a couple of places solely to protect
printing the task's comm.
A process's comm, including current's comm, may change due to
/proc/pid/comm or PR_SET_NAME.
The comm will always be NULL-terminated, so the worst race scenario would
only be during update. We can tolerate a comm being printed that is in
the middle of an update to avoid taking the lock.
Other locations in the kernel have already dropped task_lock() when
printing comm, so this is consistent.
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_process() sends SIGKILL to other thread groups sharing victim's
mm. But printing
"Kill process %d (%s) sharing same memory\n"
lines makes no sense if they already have pending SIGKILL. This patch
reduces the "Kill process" lines by printing that line with info level
only if SIGKILL is not pending.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the for_each_process() loop in oom_kill_process(), we are comparing
address of OOM victim's mm without holding a reference to that mm. If
there are a lot of processes to compare or a lot of "Kill process %d (%s)
sharing same memory" messages to print, for_each_process() loop could take
very long time.
It is possible that meanwhile the OOM victim exits and releases its mm,
and then mm is allocated with the same address and assigned to some
unrelated process. When we hit such race, the unrelated process will be
killed by error. To make sure that the OOM victim's mm does not go away
until for_each_process() loop finishes, get a reference on the OOM
victim's mm before calling task_unlock(victim).
[oleg@redhat.com: several fixes]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was confirmed that a local unprivileged user can consume all memory
reserves and hang up that system using time lag between the OOM killer
sets TIF_MEMDIE on an OOM victim and sends SIGKILL to that victim, for
printk() inside for_each_process() loop at oom_kill_process() can consume
many seconds when there are many thread groups sharing the same memory.
Before starting oom-depleter process:
Node 0 DMA: 3*4kB (UM) 6*8kB (U) 4*16kB (UEM) 0*32kB 0*64kB 1*128kB (M) 2*256kB (EM) 2*512kB (UE) 2*1024kB (EM) 1*2048kB (E) 1*4096kB (M) = 9980kB
Node 0 DMA32: 31*4kB (UEM) 27*8kB (UE) 32*16kB (UE) 13*32kB (UE) 14*64kB (UM) 7*128kB (UM) 8*256kB (UM) 8*512kB (UM) 3*1024kB (U) 4*2048kB (UM) 362*4096kB (UM) = 1503220kB
As of invoking the OOM killer:
Node 0 DMA: 11*4kB (UE) 8*8kB (UEM) 6*16kB (UE) 2*32kB (EM) 0*64kB 1*128kB (U) 3*256kB (UEM) 2*512kB (UE) 3*1024kB (UEM) 1*2048kB (U) 0*4096kB = 7308kB
Node 0 DMA32: 1049*4kB (UEM) 507*8kB (UE) 151*16kB (UE) 53*32kB (UEM) 83*64kB (UEM) 52*128kB (EM) 25*256kB (UEM) 11*512kB (M) 6*1024kB (UM) 1*2048kB (M) 0*4096kB = 44556kB
Between the thread group leader got TIF_MEMDIE and receives SIGKILL:
Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB
Node 0 DMA32: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB
The oom-depleter's thread group leader which got TIF_MEMDIE started
memset() in user space after the OOM killer set TIF_MEMDIE, and it was
free to abuse ALLOC_NO_WATERMARKS by TIF_MEMDIE for memset() in user space
until SIGKILL is delivered. If SIGKILL is delivered before TIF_MEMDIE is
set, the oom-depleter can terminate without touching memory reserves.
Although the possibility of hitting this time lag is very small for 3.19
and earlier kernels because TIF_MEMDIE is set immediately before sending
SIGKILL, preemption or long interrupts (an extreme example is SysRq-t) can
step between and allow memory allocations which are not needed for
terminating the OOM victim.
Fixes: 83363b917a ("oom: make sure that TIF_MEMDIE is set under task_lock")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "killed" variable in out_of_memory() can be removed since the call to
oom_kill_process() where we should block to allow the process time to
exit is obvious.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sysrq+f is used to kill a process either for debug or when the VM is
otherwise unresponsive.
It is not intended to trigger a panic when no process may be killed.
Avoid panicking the system for sysrq+f when no processes are killed.
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Michal Hocko <mhocko@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The force_kill member of struct oom_control isn't needed if an order of -1
is used instead. This is the same as order == -1 in struct
compact_control which requires full memory compaction.
This patch introduces no functional change.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are essential elements to an oom context that are passed around to
multiple functions.
Organize these elements into a new struct, struct oom_control, that
specifies the context for an oom condition.
This patch introduces no functional change.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In oom_kill_process(), the variable 'points' is unsigned int. Print it as
such.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The zonelist locking and the oom_sem are two overlapping locks that are
used to serialize global OOM killing against different things.
The historical zonelist locking serializes OOM kills from allocations with
overlapping zonelists against each other to prevent killing more tasks
than necessary in the same memory domain. Only when neither tasklists nor
zonelists from two concurrent OOM kills overlap (tasks in separate memcgs
bound to separate nodes) are OOM kills allowed to execute in parallel.
The younger oom_sem is a read-write lock to serialize OOM killing against
the PM code trying to disable the OOM killer altogether.
However, the OOM killer is a fairly cold error path, there is really no
reason to optimize for highly performant and concurrent OOM kills. And
the oom_sem is just flat-out redundant.
Replace both locking schemes with a single global mutex serializing OOM
kills regardless of context.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Disabling the OOM killer needs to exclude allocators from entering, not
existing victims from exiting.
Right now the only waiter is suspend code, which achieves quiescence by
disabling the OOM killer. But later on we want to add waits that hold
the lock instead to stop new victims from showing up.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that the mechanism to wait for exiting OOM victims is less
generic than it looks: it won't issue wakeups unless the OOM killer is
disabled.
The reason this check was added was the thought that, since only the OOM
disabling code would wait on this queue, wakeup operations could be
saved when that specific consumer is known to be absent.
However, this is quite the handgrenade. Later attempts to reuse the
waitqueue for other purposes will lead to completely unexpected bugs and
the failure mode will appear seemingly illogical. Generally, providers
shouldn't make unnecessary assumptions about consumers.
This could have been replaced with waitqueue_active(), but it only saves
a few instructions in one of the coldest paths in the kernel. Simply
remove it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
exit_oom_victim() already knows that TIF_MEMDIE is set, and nobody else
can clear it concurrently. Use clear_thread_flag() directly.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename unmark_oom_victim() to exit_oom_victim(). Marking and unmarking
are related in functionality, but the interface is not symmetrical at
all: one is an internal OOM killer function used during the killing, the
other is for an OOM victim to signal its own death on exit later on.
This has locking implications, see follow-up changes.
While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which
is easier on the eye.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting oom_killer_disabled to false is atomic, there is no need for
further synchronization with ongoing allocations trying to OOM-kill.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If kernel panics due to oom, caused by a cgroup reaching its limit, when
'compulsory panic_on_oom' is enabled, then we will only see that the OOM
happened because of "compulsory panic_on_oom is enabled" but this doesn't
tell the difference between mempolicy and memcg. And dumping system wide
information is plain wrong and more confusing. This patch provides the
information of the cgroup whose limit triggerred panic
Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5695be142e ("OOM, PM: OOM killed task shouldn't escape PM
suspend") has left a race window when OOM killer manages to
note_oom_kill after freeze_processes checks the counter. The race
window is quite small and really unlikely and partial solution deemed
sufficient at the time of submission.
Tejun wasn't happy about this partial solution though and insisted on a
full solution. That requires the full OOM and freezer's task freezing
exclusion, though. This is done by this patch which introduces oom_sem
RW lock and turns oom_killer_disable() into a full OOM barrier.
oom_killer_disabled check is moved from the allocation path to the OOM
level and we take oom_sem for reading for both the check and the whole
OOM invocation.
oom_killer_disable() takes oom_sem for writing so it waits for all
currently running OOM killer invocations. Then it disable all the further
OOMs by setting oom_killer_disabled and checks for any oom victims.
Victims are counted via mark_tsk_oom_victim resp. unmark_oom_victim. The
last victim wakes up all waiters enqueued by oom_killer_disable().
Therefore this function acts as the full OOM barrier.
The page fault path is covered now as well although it was assumed to be
safe before. As per Tejun, "We used to have freezing points deep in file
system code which may be reacheable from page fault." so it would be
better and more robust to not rely on freezing points here. Same applies
to the memcg OOM killer.
out_of_memory tells the caller whether the OOM was allowed to trigger and
the callers are supposed to handle the situation. The page allocation
path simply fails the allocation same as before. The page fault path will
retry the fault (more on that later) and Sysrq OOM trigger will simply
complain to the log.
Normally there wouldn't be any unfrozen user tasks after
try_to_freeze_tasks so the function will not block. But if there was an
OOM killer racing with try_to_freeze_tasks and the OOM victim didn't
finish yet then we have to wait for it. This should complete in a finite
time, though, because
- the victim cannot loop in the page fault handler (it would die
on the way out from the exception)
- it cannot loop in the page allocator because all the further
allocation would fail and __GFP_NOFAIL allocations are not
acceptable at this stage
- it shouldn't be blocked on any locks held by frozen tasks
(try_to_freeze expects lockless context) and kernel threads and
work queues are not frozen yet
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_process only sets TIF_MEMDIE flag and sends a signal to the
victim. This is basically noop when the task is frozen though because the
task sleeps in the uninterruptible sleep. The victim is eventually thawed
later when oom_scan_process_thread meets the task again in a later OOM
invocation so the OOM killer doesn't live lock. But this is less than
optimal.
Let's add __thaw_task into mark_tsk_oom_victim after we set TIF_MEMDIE to
the victim. We are not checking whether the task is frozen because that
would be racy and __thaw_task does that already. oom_scan_process_thread
doesn't need to care about freezer anymore as TIF_MEMDIE and freezer are
excluded completely now.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset addresses a race which was described in the changelog for
5695be142e ("OOM, PM: OOM killed task shouldn't escape PM suspend"):
: PM freezer relies on having all tasks frozen by the time devices are
: getting frozen so that no task will touch them while they are getting
: frozen. But OOM killer is allowed to kill an already frozen task in order
: to handle OOM situtation. In order to protect from late wake ups OOM
: killer is disabled after all tasks are frozen. This, however, still keeps
: a window open when a killed task didn't manage to die by the time
: freeze_processes finishes.
The original patch hasn't closed the race window completely because that
would require a more complex solution as it can be seen by this patchset.
The primary motivation was to close the race condition between OOM killer
and PM freezer _completely_. As Tejun pointed out, even though the race
condition is unlikely the harder it would be to debug weird bugs deep in
the PM freezer when the debugging options are reduced considerably. I can
only speculate what might happen when a task is still runnable
unexpectedly.
On a plus side and as a side effect the oom enable/disable has a better
(full barrier) semantic without polluting hot paths.
I have tested the series in KVM with 100M RAM:
- many small tasks (20M anon mmap) which are triggering OOM continually
- s2ram which resumes automatically is triggered in a loop
echo processors > /sys/power/pm_test
while true
do
echo mem > /sys/power/state
sleep 1s
done
- simple module which allocates and frees 20M in 8K chunks. If it sees
freezing(current) then it tries another round of allocation before calling
try_to_freeze
- debugging messages of PM stages and OOM killer enable/disable/fail added
and unmark_oom_victim is delayed by 1s after it clears TIF_MEMDIE and before
it wakes up waiters.
- rebased on top of the current mmotm which means some necessary updates
in mm/oom_kill.c. mark_tsk_oom_victim is now called under task_lock but
I think this should be OK because __thaw_task shouldn't interfere with any
locking down wake_up_process. Oleg?
As expected there are no OOM killed tasks after oom is disabled and
allocations requested by the kernel thread are failing after all the tasks
are frozen and OOM disabled. I wasn't able to catch a race where
oom_killer_disable would really have to wait but I kinda expected the race
is really unlikely.
[ 242.609330] Killed process 2992 (mem_eater) total-vm:24412kB, anon-rss:2164kB, file-rss:4kB
[ 243.628071] Unmarking 2992 OOM victim. oom_victims: 1
[ 243.636072] (elapsed 2.837 seconds) done.
[ 243.641985] Trying to disable OOM killer
[ 243.643032] Waiting for concurent OOM victims
[ 243.644342] OOM killer disabled
[ 243.645447] Freezing remaining freezable tasks ... (elapsed 0.005 seconds) done.
[ 243.652983] Suspending console(s) (use no_console_suspend to debug)
[ 243.903299] kmem_eater: page allocation failure: order:1, mode:0x204010
[...]
[ 243.992600] PM: suspend of devices complete after 336.667 msecs
[ 243.993264] PM: late suspend of devices complete after 0.660 msecs
[ 243.994713] PM: noirq suspend of devices complete after 1.446 msecs
[ 243.994717] ACPI: Preparing to enter system sleep state S3
[ 243.994795] PM: Saving platform NVS memory
[ 243.994796] Disabling non-boot CPUs ...
The first 2 patches are simple cleanups for OOM. They should go in
regardless the rest IMO.
Patches 3 and 4 are trivial printk -> pr_info conversion and they should
go in ditto.
The main patch is the last one and I would appreciate acks from Tejun and
Rafael. I think the OOM part should be OK (except for __thaw_task vs.
task_lock where a look from Oleg would appreciated) but I am not so sure I
haven't screwed anything in the freezer code. I have found several
surprises there.
This patch (of 5):
This patch is just a preparatory and it doesn't introduce any functional
change.
Note:
I am utterly unhappy about lowmemory killer abusing TIF_MEMDIE just to
wait for the oom victim and to prevent from new killing. This is
just a side effect of the flag. The primary meaning is to give the oom
victim access to the memory reserves and that shouldn't be necessary
here.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OOM killer tries to exclude tasks which do not have mm_struct associated
because killing such a task wouldn't help much. The OOM victim gets
TIF_MEMDIE set to disable OOM killer while the current victim releases the
memory and then enables the OOM killer again by dropping the flag.
oom_kill_process is currently prone to a race condition when the OOM
victim is already exiting and TIF_MEMDIE is set after the task releases
its address space. This might theoretically lead to OOM livelock if the
OOM victim blocks on an allocation later during exiting because it
wouldn't kill any other process and the exiting one won't be able to exit.
The situation is highly unlikely because the OOM victim is expected to
release some memory which should help to sort out OOM situation.
Fix this by checking task->mm and setting TIF_MEMDIE flag under task_lock
which will serialize the OOM killer with exit_mm which sets task->mm to
NULL. Setting the flag for current is not necessary because check and set
is not racy.
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
out_of_memory() doesn't trigger the OOM killer if the current task is
already exiting or it has fatal signals pending, and gives the task
access to memory reserves instead. However, doing so is wrong if
out_of_memory() is called by an allocation (e.g. from exit_task_work())
after the current task has already released its memory and cleared
TIF_MEMDIE at exit_mm(). If we again set TIF_MEMDIE to post-exit_mm()
current task, the OOM killer will be blocked by the task sitting in the
final schedule() waiting for its parent to reap it. It will trigger an
OOM livelock if its parent is unable to reap it due to doing an
allocation and waiting for the OOM killer to kill it.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After the previous patch we can remove the PT_TRACE_EXIT check in
oom_scan_process_thread(), it was added to handle the case when the
coredumping was "frozen" by ptrace, but it doesn't really work. If
nothing else, we would need to check all threads which could share the
same ->mm to make it more or less correct.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill.c assumes that PF_EXITING task should exit and free the memory
soon. This is wrong in many ways and one important case is the coredump.
A task can sleep in exit_mm() "forever" while the coredumping sub-thread
can need more memory.
Change the PF_EXITING checks to take SIGNAL_GROUP_COREDUMP into account,
we add the new trivial helper for that.
Note: this is only the first step, this patch doesn't try to solve other
problems. The SIGNAL_GROUP_COREDUMP check is obviously racy, a task can
participate in coredump after it was already observed in PF_EXITING state,
so TIF_MEMDIE (which also blocks oom-killer) still can be wrongly set.
fatal_signal_pending() can be true because of SIGNAL_GROUP_COREDUMP so
out_of_memory() and mem_cgroup_out_of_memory() shouldn't blindly trust it.
And even the name/usage of the new helper is confusing, an exiting thread
can only free its ->mm if it is the only/last task in thread group.
[akpm@linux-foundation.org: add comment]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup update from Tejun Heo:
"cpuset got simplified a bit. cgroup core got a fix on unified
hierarchy and grew some effective css related interfaces which will be
used for blkio support for writeback IO traffic which is currently
being worked on"
* 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: implement cgroup_get_e_css()
cgroup: add cgroup_subsys->css_e_css_changed()
cgroup: add cgroup_subsys->css_released()
cgroup: fix the async css offline wait logic in cgroup_subtree_control_write()
cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write()
cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask()
cpuset: lock vs unlock typo
cpuset: simplify cpuset_node_allowed API
cpuset: convert callback_mutex to a spinlock
None of the mem_cgroup_same_or_subtree() callers actually require it to
take the RCU lock, either because they hold it themselves or they have css
references. Remove it.
To make the API change clear, rename the leftover helper to
mem_cgroup_is_descendant() to match cgroup_is_descendant().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current cpuset API for checking if a zone/node is allowed to allocate
from looks rather awkward. We have hardwall and softwall versions of
cpuset_node_allowed with the softwall version doing literally the same
as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags.
If it isn't, the softwall version may check the given node against the
enclosing hardwall cpuset, which it needs to take the callback lock to
do.
Such a distinction was introduced by commit 02a0e53d82 ("cpuset:
rework cpuset_zone_allowed api"). Before, we had the only version with
the __GFP_HARDWALL flag determining its behavior. The purpose of the
commit was to avoid sleep-in-atomic bugs when someone would mistakenly
call the function without the __GFP_HARDWALL flag for an atomic
allocation. The suffixes introduced were intended to make the callers
think before using the function.
However, since the callback lock was converted from mutex to spinlock by
the previous patch, the softwall check function cannot sleep, and these
precautions are no longer necessary.
So let's simplify the API back to the single check.
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
PM freezer relies on having all tasks frozen by the time devices are
getting frozen so that no task will touch them while they are getting
frozen. But OOM killer is allowed to kill an already frozen task in
order to handle OOM situtation. In order to protect from late wake ups
OOM killer is disabled after all tasks are frozen. This, however, still
keeps a window open when a killed task didn't manage to die by the time
freeze_processes finishes.
Reduce the race window by checking all tasks after OOM killer has been
disabled. This is still not race free completely unfortunately because
oom_killer_disable cannot stop an already ongoing OOM killer so a task
might still wake up from the fridge and get killed without
freeze_processes noticing. Full synchronization of OOM and freezer is,
however, too heavy weight for this highly unlikely case.
Introduce and check oom_kills counter which gets incremented early when
the allocator enters __alloc_pages_may_oom path and only check all the
tasks if the counter changes during the freezing attempt. The counter
is updated so early to reduce the race window since allocator checked
oom_killer_disabled which is set by PM-freezing code. A false positive
will push the PM-freezer into a slow path but that is not a big deal.
Changes since v1
- push the re-check loop out of freeze_processes into
check_frozen_processes and invert the condition to make the code more
readable as per Rafael
Fixes: f660daac47 (oom: thaw threads if oom killed thread is frozen before deferring)
Cc: 3.2+ <stable@vger.kernel.org> # 3.2+
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Page reclaim tests zone_is_reclaim_dirty(), but the site that actually
sets this state does zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY), sending the
reader through layers indirection just to track down a simple bit.
Remove all zone flag wrappers and just use bitops against zone->flags
directly. It's just as readable and the lines are barely any longer.
Also rename ZONE_TAIL_LRU_DIRTY to ZONE_DIRTY to match ZONE_WRITEBACK, and
remove the zone_flags_t typedef.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer scans each process and determines whether it is eligible
for oom kill or whether the oom killer should abort because of
concurrent memory freeing. It will abort when an eligible process is
found to have TIF_MEMDIE set, meaning it has already been oom killed and
we're waiting for it to exit.
Processes with task->mm == NULL should not be considered because they
are either kthreads or have already detached their memory and killing
them would not lead to memory freeing. That memory is only freed after
exit_mm() has returned, however, and not when task->mm is first set to
NULL.
Clear TIF_MEMDIE after exit_mm()'s mmput() so that an oom killed process
is no longer considered for oom kill, but only until exit_mm() has
returned. This was fragile in the past because it relied on
exit_notify() to be reached before no longer considering TIF_MEMDIE
processes.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_set_zonelist_oom() and clear_zonelist_oom() are not named properly
to imply that they require locking semantics to avoid out_of_memory()
being reordered.
zone_scan_lock is required for both functions to ensure that there is
proper locking synchronization.
Rename try_set_zonelist_oom() to oom_zonelist_trylock() and rename
clear_zonelist_oom() to oom_zonelist_unlock() to imply there is proper
locking semantics.
At the same time, convert oom_zonelist_trylock() to return bool instead
of int since only success and failure are tested.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With memoryless node support being worked on, it's possible that for
optimizations that a node may not have a non-NULL zonelist. When
CONFIG_NUMA is enabled and node 0 is memoryless, this means the zonelist
for first_online_node may become NULL.
The oom killer requires a zonelist that includes all memory zones for
the sysrq trigger and pagefault out of memory handler.
Ensure that a non-NULL zonelist is always passed to the oom killer.
[akpm@linux-foundation.org: fix non-numa build]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A 3% of system memory bonus is sometimes too excessive in comparison to
other processes.
With commit a63d83f427 ("oom: badness heuristic rewrite"), the OOM
killer tries to avoid killing privileged tasks by subtracting 3% of
overall memory (system or cgroup) from their per-task consumption. But
as a result, all root tasks that consume less than 3% of overall memory
are considered equal, and so it only takes 33+ privileged tasks pushing
the system out of memory for the OOM killer to do something stupid and
kill dhclient or other root-owned processes. For example, on a 32G
machine it can't tell the difference between the 1M agetty and the 10G
fork bomb member.
The changelog describes this 3% boost as the equivalent to the global
overcommit limit being 3% higher for privileged tasks, but this is not
the same as discounting 3% of overall memory from _every privileged task
individually_ during OOM selection.
Replace the 3% of system memory bonus with a 3% of current memory usage
bonus.
By giving root tasks a bonus that is proportional to their actual size,
they remain comparable even when relatively small. In the example
above, the OOM killer will discount the 1M agetty's 256 badness points
down to 179, and the 10G fork bomb's 262144 points down to 183500 points
and make the right choice, instead of discounting both to 0 and killing
agetty because it's first in the task list.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When two threads have the same badness score, it's preferable to kill
the thread group leader so that the actual process name is printed to
the kernel log rather than the thread group name which may be shared
amongst several processes.
This was the behavior when select_bad_process() used to do
for_each_process(), but it now iterates threads instead and leads to
ambiguity.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_lock_task_mm() expects it is called under rcu or tasklist lock, but
it seems that at least oom_unkillable_task()->task_in_mem_cgroup() and
mem_cgroup_out_of_memory()->oom_badness() can call it lockless.
Perhaps we could fix the callers, but this patch simply adds rcu lock
into find_lock_task_mm(). This also allows to simplify a bit one of its
callers, oom_kill_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Cc: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At least out_of_memory() calls has_intersects_mems_allowed() without
even rcu_read_lock(), this is obviously buggy.
Add the necessary rcu_read_lock(). This means that we can not simply
return from the loop, we need "bool ret" and "break".
While at it, swap the names of task_struct's (the argument and the
local). This cleans up the code a little bit and avoids the unnecessary
initialization.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change oom_kill.c to use for_each_thread() rather than the racy
while_each_thread() which can loop forever if we race with exit.
Note also that most users were buggy even if while_each_thread() was
fine, the task can exit even _before_ rcu_read_lock().
Fortunately the new for_each_thread() only requires the stable
task_struct, so this change fixes both problems.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") assumed that only a few places that can trigger a
memcg OOM situation do not return VM_FAULT_OOM, like optional page cache
readahead. But there are many more and it's impractical to annotate
them all.
First of all, we don't want to invoke the OOM killer when the failed
allocation is gracefully handled, so defer the actual kill to the end of
the fault handling as well. This simplifies the code quite a bit for
added bonus.
Second, since a failed allocation might not be the abrupt end of the
fault, the memcg OOM handler needs to be re-entrant until the fault
finishes for subsequent allocation attempts. If an allocation is
attempted after the task already OOMed, allow it to bypass the limit so
that it can quickly finish the fault and invoke the OOM killer.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM handling is incredibly fragile and can deadlock. When a
task fails to charge memory, it invokes the OOM killer and loops right
there in the charge code until it succeeds. Comparably, any other task
that enters the charge path at this point will go to a waitqueue right
then and there and sleep until the OOM situation is resolved. The problem
is that these tasks may hold filesystem locks and the mmap_sem; locks that
the selected OOM victim may need to exit.
For example, in one reported case, the task invoking the OOM killer was
about to charge a page cache page during a write(), which holds the
i_mutex. The OOM killer selected a task that was just entering truncate()
and trying to acquire the i_mutex:
OOM invoking task:
mem_cgroup_handle_oom+0x241/0x3b0
mem_cgroup_cache_charge+0xbe/0xe0
add_to_page_cache_locked+0x4c/0x140
add_to_page_cache_lru+0x22/0x50
grab_cache_page_write_begin+0x8b/0xe0
ext3_write_begin+0x88/0x270
generic_file_buffered_write+0x116/0x290
__generic_file_aio_write+0x27c/0x480
generic_file_aio_write+0x76/0xf0 # takes ->i_mutex
do_sync_write+0xea/0x130
vfs_write+0xf3/0x1f0
sys_write+0x51/0x90
system_call_fastpath+0x18/0x1d
OOM kill victim:
do_truncate+0x58/0xa0 # takes i_mutex
do_last+0x250/0xa30
path_openat+0xd7/0x440
do_filp_open+0x49/0xa0
do_sys_open+0x106/0x240
sys_open+0x20/0x30
system_call_fastpath+0x18/0x1d
The OOM handling task will retry the charge indefinitely while the OOM
killed task is not releasing any resources.
A similar scenario can happen when the kernel OOM killer for a memcg is
disabled and a userspace task is in charge of resolving OOM situations.
In this case, ALL tasks that enter the OOM path will be made to sleep on
the OOM waitqueue and wait for userspace to free resources or increase
the group's limit. But a userspace OOM handler is prone to deadlock
itself on the locks held by the waiting tasks. For example one of the
sleeping tasks may be stuck in a brk() call with the mmap_sem held for
writing but the userspace handler, in order to pick an optimal victim,
may need to read files from /proc/<pid>, which tries to acquire the same
mmap_sem for reading and deadlocks.
This patch changes the way tasks behave after detecting a memcg OOM and
makes sure nobody loops or sleeps with locks held:
1. When OOMing in a user fault, invoke the OOM killer and restart the
fault instead of looping on the charge attempt. This way, the OOM
victim can not get stuck on locks the looping task may hold.
2. When OOMing in a user fault but somebody else is handling it
(either the kernel OOM killer or a userspace handler), don't go to
sleep in the charge context. Instead, remember the OOMing memcg in
the task struct and then fully unwind the page fault stack with
-ENOMEM. pagefault_out_of_memory() will then call back into the
memcg code to check if the -ENOMEM came from the memcg, and then
either put the task to sleep on the memcg's OOM waitqueue or just
restart the fault. The OOM victim can no longer get stuck on any
lock a sleeping task may hold.
Debugged by Michal Hocko.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: azurIt <azurit@pobox.sk>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The normal expectation for ERR_PTR() is to put a negative errno into a
pointer. oom_kill puts the magic -1 in the result (and has since
pre-git), which is probably clearer with an explicit cast.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
out_of_memory() will already cause current to schedule if it has not been
killed, so doing it again in pagefault_out_of_memory() is redundant.
Remove it.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To lock the entire system from parallel oom killing, it's possible to pass
in a zonelist with all zones rather than using for_each_populated_zone()
for the iteration. This obsoletes try_set_system_oom() and
clear_system_oom() so that they can be removed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to
specify that current should be killed first if an oom condition occurs in
between the two calls.
The usage is
short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
...
compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
to store the thread's oom_score_adj, temporarily change it to the maximum
score possible, and then restore the old value if it is still the same.
This happens to still be racy, however, if the user writes
OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls.
The compare_swap_oom_score_adj() will then incorrectly reset the old value
prior to the write of OOM_SCORE_ADJ_MAX.
To fix this, introduce a new oom_flags_t member in struct signal_struct
that will be used for per-thread oom killer flags. KSM and swapoff can
now use a bit in this member to specify that threads should be killed
first in oom conditions without playing around with oom_score_adj.
This also allows the correct oom_score_adj to always be shown when reading
/proc/pid/oom_score.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The maximum oom_score_adj is 1000 and the minimum oom_score_adj is -1000,
so this range can be represented by the signed short type with no
functional change. The extra space this frees up in struct signal_struct
will be used for per-thread oom kill flags in the next patch.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Exiting threads, those with PF_EXITING set, can pagefault and require
memory before they can make forward progress. This happens, for instance,
when a process must fault task->robust_list, a userspace structure, before
detaching its memory.
These threads also aren't guaranteed to get access to memory reserves
unless oom killed or killed from userspace. The oom killer won't grant
memory reserves if other threads are also exiting other than current and
stalling at the same point. This prevents needlessly killing processes
when others are already exiting.
Instead of special casing all the possible situations between PF_EXITING
getting set and a thread detaching its mm where it may allocate memory,
which probably wouldn't get updated when a change is made to the exit
path, the solution is to give all exiting threads access to memory
reserves if they call the oom killer. This allows them to quickly
allocate, detach its mm, and free the memory it represents.
Summary of Luigi's bug report:
: He had an oom condition where threads were faulting on task->robust_list
: and repeatedly called the oom killer but it would defer killing a thread
: because it saw other PF_EXITING threads. This can happen anytime we need
: to allocate memory after setting PF_EXITING and before detaching our mm;
: if there are other threads in the same state then the oom killer won't do
: anything unless one of them happens to be killed from userspace.
:
: So instead of only deferring for PF_EXITING and !task->robust_list, it's
: better to just give them access to memory reserves to prevent a potential
: livelock so that any other faults that may be introduced in the future in
: the exit path don't cause the same problem (and hopefully we don't allow
: too many of those!).
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Tested-by: Luigi Semenzato <semenzato@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The deprecated /proc/<pid>/oom_adj is scheduled for removal this month.
Signed-off-by: Davidlohr Bueso <dave@gnu.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By globally defining check_panic_on_oom(), the memcg oom handler can be
moved entirely to mm/memcontrol.c. This removes the ugly #ifdef in the
oom killer and cleans up the code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since exiting tasks require write_lock_irq(&tasklist_lock) several times,
try to reduce the amount of time the readside is held for oom kills. This
makes the interface with the memcg oom handler more consistent since it
now never needs to take tasklist_lock unnecessarily.
The only time the oom killer now takes tasklist_lock is when iterating the
children of the selected task, everything else is protected by
rcu_read_lock().
This requires that a reference to the selected process, p, is grabbed
before calling oom_kill_process(). It may release it and grab a reference
on another one of p's threads if !p->mm, but it also guarantees that it
will release the reference before returning.
[hughd@google.com: fix duplicate put_task_struct()]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global oom killer is serialized by the per-zonelist
try_set_zonelist_oom() which is used in the page allocator. Concurrent
oom kills are thus a rare event and only occur in systems using
mempolicies and with a large number of nodes.
Memory controller oom kills, however, can frequently be concurrent since
there is no serialization once the oom killer is called for oom conditions
in several different memcgs in parallel.
This creates a massive contention on tasklist_lock since the oom killer
requires the readside for the tasklist iteration. If several memcgs are
calling the oom killer, this lock can be held for a substantial amount of
time, especially if threads continue to enter it as other threads are
exiting.
Since the exit path grabs the writeside of the lock with irqs disabled in
a few different places, this can cause a soft lockup on cpus as a result
of tasklist_lock starvation.
The kernel lacks unfair writelocks, and successful calls to the oom killer
usually result in at least one thread entering the exit path, so an
alternative solution is needed.
This patch introduces a seperate oom handler for memcgs so that they do
not require tasklist_lock for as much time. Instead, it iterates only
over the threads attached to the oom memcg and grabs a reference to the
selected thread before calling oom_kill_process() to ensure it doesn't
prematurely exit.
This still requires tasklist_lock for the tasklist dump, iterating
children of the selected process, and killing all other threads on the
system sharing the same memory as the selected victim. So while this
isn't a complete solution to tasklist_lock starvation, it significantly
reduces the amount of time that it is held.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces a helper function to process each thread during the
iteration over the tasklist. A new return type, enum oom_scan_t, is
defined to determine the future behavior of the iteration:
- OOM_SCAN_OK: continue scanning the thread and find its badness,
- OOM_SCAN_CONTINUE: do not consider this thread for oom kill, it's
ineligible,
- OOM_SCAN_ABORT: abort the iteration and return, or
- OOM_SCAN_SELECT: always select this thread with the highest badness
possible.
There is no functional change with this patch. This new helper function
will be used in the next patch in the memory controller.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of ptes and swap entries are used in the oom killer's badness
heuristic, so they should be shown in the tasklist dump.
This patch adds those fields and replaces cpu and oom_adj values that are
currently emitted. Cpu isn't interesting and oom_adj is deprecated and
will be removed later this year, the same information is already displayed
as oom_score_adj which is used internally.
At the same time, make the documentation a little more clear to state this
information is helpful to determine why the oom killer chose the task it
did to kill.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/sys/vm/oom_kill_allocating_task will immediately kill current when
the oom killer is called to avoid a potentially expensive tasklist scan
for large systems.
Currently, however, it is not checking current's oom_score_adj value which
may be OOM_SCORE_ADJ_MIN, meaning that it has been disabled from oom
killing.
This patch avoids killing current in such a condition and simply falls
back to the tasklist scan since memory still needs to be freed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer currently schedules away from current in an uninterruptible
sleep if it does not have access to memory reserves. It's possible that
current was killed because it shares memory with the oom killed thread or
because it was killed by the user in the interim, however.
This patch only schedules away from current if it does not have a pending
kill, i.e. if it does not share memory with the oom killed thread. It's
possible that it will immediately retry its memory allocation and fail,
but it will immediately be given access to memory reserves if it calls the
oom killer again.
This prevents the delay of memory freeing when threads that share memory
with the oom killed thread get unnecessarily scheduled.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc warnings such as
Warning(../mm/page_cgroup.c:432): No description found for parameter 'id'
Warning(../mm/page_cgroup.c:432): Excess function parameter 'mem' description in 'swap_cgroup_record'
Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The divide in p->signal->oom_score_adj * totalpages / 1000 within
oom_badness() was causing an overflow of the signed long data type.
This adds both the root bias and p->signal->oom_score_adj before doing the
normalization which fixes the issue and also cleans up the calculation.
Tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the privileges given to root threads (3% of allowable memory) or a
negative value of /proc/pid/oom_score_adj happen to exceed the amount of
rss of a thread, its badness score overflows as a result of commit
a7f638f999 ("mm, oom: normalize oom scores to oom_score_adj scale only
for userspace").
Fix this by making the type signed and return 1, meaning the thread is
still eligible for kill, if the value is negative.
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom_score_adj scale ranges from -1000 to 1000 and represents the
proportion of memory available to the process at allocation time. This
means an oom_score_adj value of 300, for example, will bias a process as
though it was using an extra 30.0% of available memory and a value of
-350 will discount 35.0% of available memory from its usage.
The oom killer badness heuristic also uses this scale to report the oom
score for each eligible process in determining the "best" process to
kill. Thus, it can only differentiate each process's memory usage by
0.1% of system RAM.
On large systems, this can end up being a large amount of memory: 256MB
on 256GB systems, for example.
This can be fixed by having the badness heuristic to use the actual
memory usage in scoring threads and then normalizing it to the
oom_score_adj scale for userspace. This results in better comparison
between eligible threads for kill and no change from the userspace
perspective.
Suggested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cred.h and a few trivial users of struct cred are changed. The rest of the users
of struct cred are left for other patches as there are too many changes to make
in one go and leave the change reviewable. If the user namespace is disabled and
CONFIG_UIDGID_STRICT_TYPE_CHECKS are disabled the code will contiue to compile
and behave correctly.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Change oom_kill_task() to use do_send_sig_info(SEND_SIG_FORCED) instead
of force_sig(SIGKILL). With the recent changes we do not need force_ to
kill the CLONE_NEWPID tasks.
And this is more correct. force_sig() can race with the exiting thread
even if oom_kill_task() checks p->mm != NULL, while
do_send_sig_info(group => true) kille the whole process.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer typically displays the allocation order at the time of oom
as a part of its diangostic messages (for global, cpuset, and mempolicy
ooms).
The memory controller may also pass the charge order to the oom killer so
it can emit the same information. This is useful in determining how large
the memory allocation is that triggered the oom killer.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer chooses not to kill a thread if:
- an eligible thread has already been oom killed and has yet to exit,
and
- an eligible thread is exiting but has yet to free all its memory and
is not the thread attempting to currently allocate memory.
SysRq+F manually invokes the global oom killer to kill a memory-hogging
task. This is normally done as a last resort to free memory when no
progress is being made or to test the oom killer itself.
For both uses, we always want to kill a thread and never defer. This
patch causes SysRq+F to always kill an eligible thread and can be used to
force a kill even if another oom killed thread has failed to exit.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk_ratelimit() uses the global ratelimit state for all printks. The
oom killer should not be subjected to this state just because another
subsystem or driver may be flooding the kernel log.
This patch introduces printk ratelimiting specifically for the oom killer.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a thread is chosen for oom kill and is already PF_EXITING, then the oom
killer simply sets TIF_MEMDIE and returns. This allows the thread to have
access to memory reserves so that it may quickly exit. This logic is
preceeded with a comment saying there's no need to alarm the sysadmin.
This patch adds truth to that statement.
There's no need to emit any warning about the oom condition if the thread
is already exiting since it will not be killed. In this condition, just
silently return the oom killer since its only giving access to memory
reserves and is otherwise a no-op.
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_task() has a single caller, so fold it into its parent function,
oom_kill_process(). Slightly reduces the number of lines in the oom
killer.
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_task() returns non-zero iff the chosen process does not have any
threads with an attached ->mm.
In such a case, it's better to just return to the page allocator and retry
the allocation because memory could have been freed in the interim and the
oom condition may no longer exist. It's unnecessary to loop in the oom
killer and find another thread to kill.
This allows both oom_kill_task() and oom_kill_process() to be converted to
void functions. If the oom condition persists, the oom killer will be
recalled.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg argument of oom_kill_task() hasn't been used since 341aea2
'oom-kill: remove boost_dying_task_prio()'. Kill it.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_score_adj is used for guarding processes from OOM-Killer. One of
problem is that it's inherited at fork(). When a daemon set oom_score_adj
and make children, it's hard to know where the value is set.
This patch adds some tracepoints useful for debugging. This patch adds
3 trace points.
- creating new task
- renaming a task (exec)
- set oom_score_adj
To debug, users need to enable some trace pointer. Maybe filtering is useful as
# EVENT=/sys/kernel/debug/tracing/events/task/
# echo "oom_score_adj != 0" > $EVENT/task_newtask/filter
# echo "oom_score_adj != 0" > $EVENT/task_rename/filter
# echo 1 > $EVENT/enable
# EVENT=/sys/kernel/debug/tracing/events/oom/
# echo 1 > $EVENT/enable
output will be like this.
# grep oom /sys/kernel/debug/tracing/trace
bash-7699 [007] d..3 5140.744510: oom_score_adj_update: pid=7699 comm=bash oom_score_adj=-1000
bash-7699 [007] ...1 5151.818022: task_newtask: pid=7729 comm=bash clone_flags=1200011 oom_score_adj=-1000
ls-7729 [003] ...2 5151.818504: task_rename: pid=7729 oldcomm=bash newcomm=ls oom_score_adj=-1000
bash-7699 [002] ...1 5175.701468: task_newtask: pid=7730 comm=bash clone_flags=1200011 oom_score_adj=-1000
grep-7730 [007] ...2 5175.701993: task_rename: pid=7730 oldcomm=bash newcomm=grep oom_score_adj=-1000
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* master: (848 commits)
SELinux: Fix RCU deref check warning in sel_netport_insert()
binary_sysctl(): fix memory leak
mm/vmalloc.c: remove static declaration of va from __get_vm_area_node
ipmi_watchdog: restore settings when BMC reset
oom: fix integer overflow of points in oom_badness
memcg: keep root group unchanged if creation fails
nilfs2: potential integer overflow in nilfs_ioctl_clean_segments()
nilfs2: unbreak compat ioctl
cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemask
evm: prevent racing during tfm allocation
evm: key must be set once during initialization
mmc: vub300: fix type of firmware_rom_wait_states module parameter
Revert "mmc: enable runtime PM by default"
mmc: sdhci: remove "state" argument from sdhci_suspend_host
x86, dumpstack: Fix code bytes breakage due to missing KERN_CONT
IB/qib: Correct sense on freectxts increment and decrement
RDMA/cma: Verify private data length
cgroups: fix a css_set not found bug in cgroup_attach_proc
oprofile: Fix uninitialized memory access when writing to writing to oprofilefs
Revert "xen/pv-on-hvm kexec: add xs_reset_watches to shutdown watches from old kernel"
...
Conflicts:
kernel/cgroup_freezer.c
An integer overflow will happen on 64bit archs if task's sum of rss,
swapents and nr_ptes exceeds (2^31)/1000 value. This was introduced by
commit
f755a04 oom: use pte pages in OOM score
where the oom score computation was divided into several steps and it's no
longer computed as one expression in unsigned long(rss, swapents, nr_pte
are unsigned long), where the result value assigned to points(int) is in
range(1..1000). So there could be an int overflow while computing
176 points *= 1000;
and points may have negative value. Meaning the oom score for a mem hog task
will be one.
196 if (points <= 0)
197 return 1;
For example:
[ 3366] 0 3366 35390480 24303939 5 0 0 oom01
Out of memory: Kill process 3366 (oom01) score 1 or sacrifice child
Here the oom1 process consumes more than 24303939(rss)*4096~=92GB physical
memory, but it's oom score is one.
In this situation the mem hog task is skipped and oom killer kills another and
most probably innocent task with oom score greater than one.
The points variable should be of type long instead of int to prevent the
int overflow.
Signed-off-by: Frantisek Hrbata <fhrbata@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
thaw_process() now has only internal users - system and cgroup
freezers. Remove the unnecessary return value, rename, unexport and
collapse __thaw_process() into it. This will help further updates to
the freezer code.
-v3: oom_kill grew a use of thaw_process() while this patch was
pending. Convert it to use __thaw_task() for now. In the longer
term, this should be handled by allowing tasks to die if killed
even if it's frozen.
-v2: minor style update as suggested by Matt.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Paul Menage <menage@google.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Commit c9f01245 ("oom: remove oom_disable_count") has removed the
oom_disable_count counter which has been used for early break out from
oom_badness so we could never select a task with oom_score_adj set to
OOM_SCORE_ADJ_MIN (oom disabled).
Now that the counter is gone we are always going through heuristics
calculation and we always return a non zero positive value. This means
that we can end up killing a task with OOM disabled because it is
indistinguishable from regular tasks with 1% resp. CAP_SYS_ADMIN tasks
with 3% usage of memory or tasks with oom_score_adj set but OOM enabled.
Let's break out early if the task should have OOM disabled.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
test_set_oom_score_adj() was introduced in 72788c3856 ("oom: replace
PF_OOM_ORIGIN with toggling oom_score_adj") to temporarily elevate
current's oom_score_adj for ksm and swapoff without requiring an
additional per-process flag.
Using that function to both set oom_score_adj to OOM_SCORE_ADJ_MAX and
then reinstate the previous value is racy since it's possible that
userspace can set the value to something else itself before the old value
is reinstated. That results in userspace setting current's oom_score_adj
to a different value and then the kernel immediately setting it back to
its previous value without notification.
To fix this, a new compare_swap_oom_score_adj() function is introduced
with the same semantics as the compare and swap CAS instruction, or
CMPXCHG on x86. It is used to reinstate the previous value of
oom_score_adj if and only if the present value is the same as the old
value.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This removes mm->oom_disable_count entirely since it's unnecessary and
currently buggy. The counter was intended to be per-process but it's
currently decremented in the exit path for each thread that exits, causing
it to underflow.
The count was originally intended to prevent oom killing threads that
share memory with threads that cannot be killed since it doesn't lead to
future memory freeing. The counter could be fixed to represent all
threads sharing the same mm, but it's better to remove the count since:
- it is possible that the OOM_DISABLE thread sharing memory with the
victim is waiting on that thread to exit and will actually cause
future memory freeing, and
- there is no guarantee that a thread is disabled from oom killing just
because another thread sharing its mm is oom disabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ying Han <yinghan@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After selecting a task to kill, the oom killer iterates all processes and
kills all other threads that share the same mm_struct in different thread
groups. It would not otherwise be helpful to kill a thread if its memory
would not be subsequently freed.
A kernel thread, however, may assume a user thread's mm by using
use_mm(). This is only temporary and should not result in sending a
SIGKILL to that kthread.
This patch ensures that only user threads and not kthreads are sent a
SIGKILL if they share the same mm_struct as the oom killed task.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a thread has been oom killed and is frozen, thaw it before returning to
the page allocator. Otherwise, it can stay frozen indefinitely and no
memory will be freed.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The files changed within are only using the EXPORT_SYMBOL
macro variants. They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
exit_mm() sets ->mm == NULL then it does mmput()->exit_mmap() which
frees the memory.
However select_bad_process() checks ->mm != NULL before TIF_MEMDIE,
so it continues to kill other tasks even if we have the oom-killed
task freeing its memory.
Change select_bad_process() to check ->mm after TIF_MEMDIE, but skip
the tasks which have already passed exit_notify() to ensure a zombie
with TIF_MEMDIE set can't block oom-killer. Alternatively we could
probably clear TIF_MEMDIE after exit_mmap().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The badness() function in the oom killer was renamed to oom_badness() in
a63d83f427 ("oom: badness heuristic rewrite") since it is a globally
exported function for clarity.
The prototype for the old function still existed in linux/oom.h, so remove
it. There are no existing users.
Also fixes documentation and comment references to badness() and adjusts
them accordingly.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_ptrace(task) simply dereferences task->ptrace and isn't even used
consistently only adding confusion. Kill it and directly access
->ptrace instead.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
There's a kernel-wide shortage of per-process flags, so it's always
helpful to trim one when possible without incurring a significant penalty.
It's even more important when you're planning on adding a per- process
flag yourself, which I plan to do shortly for transparent hugepages.
PF_OOM_ORIGIN is used by ksm and swapoff to prefer current since it has a
tendency to allocate large amounts of memory and should be preferred for
killing over other tasks. We'd rather immediately kill the task making
the errant syscall rather than penalizing an innocent task.
This patch removes PF_OOM_ORIGIN since its behavior is equivalent to
setting the process's oom_score_adj to OOM_SCORE_ADJ_MAX.
The process's old oom_score_adj is stored and then set to
OOM_SCORE_ADJ_MAX during the time it used to have PF_OOM_ORIGIN. The old
value is then reinstated when the process should no longer be considered a
high priority for oom killing.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PTE pages eat up memory just like anything else, but we do not account for
them in any way in the OOM scores. They are also _guaranteed_ to get
freed up when a process is OOM killed, while RSS is not.
Reported-by: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an almost-revert of commit 93b43fa ("oom: give the dying task a
higher priority").
That commit dramatically improved oom killer logic when a fork-bomb
occurs. But I've found that it has nasty corner case. Now cpu cgroup has
strange default RT runtime. It's 0! That said, if a process under cpu
cgroup promote RT scheduling class, the process never run at all.
If an admin inserts a !RT process into a cpu cgroup by setting
rtruntime=0, usually it runs perfectly because a !RT task isn't affected
by the rtruntime knob. But if it promotes an RT task via an explicit
setscheduler() syscall or an OOM, the task can't run at all. In short,
the oom killer doesn't work at all if admins are using cpu cgroup and don't
touch the rtruntime knob.
Eventually, kernel may hang up when oom kill occur. I and the original
author Luis agreed to disable this logic.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Luis Claudio R. Goncalves <lclaudio@uudg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ddd588b5dd ("oom: suppress nodes that are not allowed from
meminfo on oom kill") moved lib/show_mem.o out of lib/lib.a, which
resulted in build warnings on all architectures that implement their own
versions of show_mem():
lib/lib.a(show_mem.o): In function `show_mem':
show_mem.c:(.text+0x1f4): multiple definition of `show_mem'
arch/sparc/mm/built-in.o:(.text+0xd70): first defined here
The fix is to remove __show_mem() and add its argument to show_mem() in
all implementations to prevent this breakage.
Architectures that implement their own show_mem() actually don't do
anything with the argument yet, but they could be made to filter nodes
that aren't allowed in the current context in the future just like the
generic implementation.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: James Bottomley <James.Bottomley@hansenpartnership.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a memcg is oom and current has already received a SIGKILL, then give
it access to memory reserves with a higher scheduling priority so that it
may quickly exit and free its memory.
This is identical to the global oom killer and is done even before
checking for panic_on_oom: a pending SIGKILL here while panic_on_oom is
selected is guaranteed to have come from userspace; the thread only needs
access to memory reserves to exit and thus we don't unnecessarily panic
the machine until the kernel has no last resort to free memory.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer is extremely verbose for machines with a large number of
cpus and/or nodes. This verbosity can often be harmful if it causes other
important messages to be scrolled from the kernel log and incurs a
signicant time delay, specifically for kernels with CONFIG_NODES_SHIFT >
8.
This patch causes only memory information to be displayed for nodes that
are allowed by current's cpuset when dumping the VM state. Information
for all other nodes is irrelevant to the oom condition; we don't care if
there's an abundance of memory elsewhere if we can't access it.
This only affects the behavior of dumping memory information when an oom
is triggered. Other dumps, such as for sysrq+m, still display the
unfiltered form when using the existing show_mem() interface.
Additionally, the per-cpu pageset statistics are extremely verbose in oom
killer output, so it is now suppressed. This removes
nodes_weight(current->mems_allowed) * (1 + nr_cpus)
lines from the oom killer output.
Callers may use __show_mem(SHOW_MEM_FILTER_NODES) to filter disallowed
nodes.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer naturally defers killing anything if it finds an eligible
task that is already exiting and has yet to detach its ->mm. This avoids
unnecessarily killing tasks when one is already in the exit path and may
free enough memory that the oom killer is no longer needed. This is
detected by PF_EXITING since threads that have already detached its ->mm
are no longer considered at all.
The problem with always deferring when a thread is PF_EXITING, however, is
that it may never actually exit when being traced, specifically if another
task is tracing it with PTRACE_O_TRACEEXIT. The oom killer does not want
to defer in this case since there is no guarantee that thread will ever
exit without intervention.
This patch will now only defer the oom killer when a thread is PF_EXITING
and no ptracer has stopped its progress in the exit path. It also ensures
that a child is sacrificed for the chosen parent only if it has a
different ->mm as the comment implies: this ensures that the thread group
leader is always targeted appropriately.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrey Vagin <avagin@openvz.org>
Cc: <stable@kernel.org> [2.6.38.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We shouldn't defer oom killing if a thread has already detached its ->mm
and still has TIF_MEMDIE set. Memory needs to be freed, so find kill
other threads that pin the same ->mm or find another task to kill.
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@kernel.org> [2.6.38.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch prevents unnecessary oom kills or kernel panics by reverting
two commits:
495789a5 (oom: make oom_score to per-process value)
cef1d352 (oom: multi threaded process coredump don't make deadlock)
First, 495789a5 (oom: make oom_score to per-process value) ignores the
fact that all threads in a thread group do not necessarily exit at the
same time.
It is imperative that select_bad_process() detect threads that are in the
exit path, specifically those with PF_EXITING set, to prevent needlessly
killing additional tasks. If a process is oom killed and the thread group
leader exits, select_bad_process() cannot detect the other threads that
are PF_EXITING by iterating over only processes. Thus, it currently
chooses another task unnecessarily for oom kill or panics the machine when
nothing else is eligible.
By iterating over threads instead, it is possible to detect threads that
are exiting and nominate them for oom kill so they get access to memory
reserves.
Second, cef1d352 (oom: multi threaded process coredump don't make
deadlock) erroneously avoids making the oom killer a no-op when an
eligible thread other than current isfound to be exiting. We want to
detect this situation so that we may allow that exiting thread time to
exit and free its memory; if it is able to exit on its own, that should
free memory so current is no loner oom. If it is not able to exit on its
own, the oom killer will nominate it for oom kill which, in this case,
only means it will get access to memory reserves.
Without this change, it is easy for the oom killer to unnecessarily target
tasks when all threads of a victim don't exit before the thread group
leader or, in the worst case, panic the machine.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrey Vagin <avagin@openvz.org>
Cc: <stable@kernel.org> [2.6.38.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts the parent commit. I hate doing that, but it's generating
some discussion ("half of it is right"), and since I am planning on
doing the 2.6.38 release later today we can punt it to stable if
required. Let's not rock the boat right now.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_process() starts with victim_points == 0. This means that
(most likely) any child has more points and can be killed erroneously.
Also, "children has a different mm" doesn't match the reality, we should
check child->mm != t->mm. This check is not exactly correct if t->mm ==
NULL but this doesn't really matter, oom_kill_task() will kill them
anyway.
Note: "Kill all processes sharing p->mm" in oom_kill_task() is wrong
too.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's necessary to kill all threads that share an oom killed task's mm if
the goal is to lead to future memory freeing.
This patch reintroduces the code removed in 8c5cd6f3 (oom: oom_kill
doesn't kill vfork parent (or child)) since it is obsoleted.
It's now guaranteed that any task passed to oom_kill_task() does not share
an mm with any thread that is unkillable. Thus, we're safe to issue a
SIGKILL to any thread sharing the same mm.
This is especially necessary to solve an mm->mmap_sem livelock issue
whereas an oom killed thread must acquire the lock in the exit path while
another thread is holding it in the page allocator while trying to
allocate memory itself (and will preempt the oom killer since a task was
already killed). Since tasks with pending fatal signals are now granted
access to memory reserves, the thread holding the lock may quickly
allocate and release the lock so that the oom killed task may exit.
This mainly is for threads that are cloned with CLONE_VM but not
CLONE_THREAD, so they are in a different thread group. Non-NPTL threads
exist in the wild and this change is necessary to prevent the livelock in
such cases. We care more about preventing the livelock than incurring the
additional tasklist in the oom killer when a task has been killed.
Systems that are sufficiently large to not want the tasklist scan in the
oom killer in the first place already have the option of enabling
/proc/sys/vm/oom_kill_allocating_task, which was designed specifically for
that purpose.
This code had existed in the oom killer for over eight years dating back
to the 2.4 kernel.
[akpm@linux-foundation.org: add nice comment]
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer's goal is to kill a memory-hogging task so that it may
exit, free its memory, and allow the current context to allocate the
memory that triggered it in the first place. Thus, killing a task is
pointless if other threads sharing its mm cannot be killed because of its
/proc/pid/oom_adj or /proc/pid/oom_score_adj value.
This patch checks whether any other thread sharing p->mm has an
oom_score_adj of OOM_SCORE_ADJ_MIN. If so, the thread cannot be killed
and oom_badness(p) returns 0, meaning it's unkillable.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/sys/vm/oom_dump_tasks is enabled by default, so it's necessary to
limit as much information as possible that it should emit.
The tasklist dump should be filtered to only those tasks that are eligible
for oom kill. This is already done for memcg ooms, but this patch extends
it to both cpuset and mempolicy ooms as well as init.
In addition to suppressing irrelevant information, this also reduces
confusion since users currently don't know which tasks in the tasklist
aren't eligible for kill (such as those attached to cpusets or bound to
mempolicies with a disjoint set of mems or nodes, respectively) since that
information is not shown.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A task's badness score is roughly a proportion of its rss and swap
compared to the system's capacity. The scale ranges from 0 to 1000 with
the highest score chosen for kill. Thus, this scale operates on a
resolution of 0.1% of RAM + swap. Admin tasks are also given a 3% bonus,
so the badness score of an admin task using 3% of memory, for example,
would still be 0.
It's possible that an exceptionally large number of tasks will combine to
exhaust all resources but never have a single task that uses more than
0.1% of RAM and swap (or 3.0% for admin tasks).
This patch ensures that the badness score of any eligible task is never 0
so the machine doesn't unnecessarily panic because it cannot find a task
to kill.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_tasks() needs to hold the RCU read lock around its access of the
target task's UID. To this end it should use task_uid() as it only needs
that one thing from the creds.
The fact that dump_tasks() holds tasklist_lock is insufficient to prevent the
target process replacing its credentials on another CPU.
Then, this patch change to call rcu_read_lock() explicitly.
===================================================
[ INFO: suspicious rcu_dereference_check() usage. ]
---------------------------------------------------
mm/oom_kill.c:410 invoked rcu_dereference_check() without protection!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 1
4 locks held by kworker/1:2/651:
#0: (events){+.+.+.}, at: [<ffffffff8106aae7>]
process_one_work+0x137/0x4a0
#1: (moom_work){+.+...}, at: [<ffffffff8106aae7>]
process_one_work+0x137/0x4a0
#2: (tasklist_lock){.+.+..}, at: [<ffffffff810fafd4>]
out_of_memory+0x164/0x3f0
#3: (&(&p->alloc_lock)->rlock){+.+...}, at: [<ffffffff810fa48e>]
find_lock_task_mm+0x2e/0x70
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0aad4b3124 ("oom: fold __out_of_memory into out_of_memory")
introduced a tasklist_lock leak. Then it caused following obvious
danger warnings and panic.
================================================
[ BUG: lock held when returning to user space! ]
------------------------------------------------
rsyslogd/1422 is leaving the kernel with locks still held!
1 lock held by rsyslogd/1422:
#0: (tasklist_lock){.+.+.+}, at: [<ffffffff810faf64>] out_of_memory+0x164/0x3f0
BUG: scheduling while atomic: rsyslogd/1422/0x00000002
INFO: lockdep is turned off.
This patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the OOM killer scans task, it check a task is under memcg or
not when it's called via memcg's context.
But, as Oleg pointed out, a thread group leader may have NULL ->mm
and task_in_mem_cgroup() may do wrong decision. We have to use
find_lock_task_mm() in memcg as generic OOM-Killer does.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This a complete rewrite of the oom killer's badness() heuristic which is
used to determine which task to kill in oom conditions. The goal is to
make it as simple and predictable as possible so the results are better
understood and we end up killing the task which will lead to the most
memory freeing while still respecting the fine-tuning from userspace.
Instead of basing the heuristic on mm->total_vm for each task, the task's
rss and swap space is used instead. This is a better indication of the
amount of memory that will be freeable if the oom killed task is chosen
and subsequently exits. This helps specifically in cases where KDE or
GNOME is chosen for oom kill on desktop systems instead of a memory
hogging task.
The baseline for the heuristic is a proportion of memory that each task is
currently using in memory plus swap compared to the amount of "allowable"
memory. "Allowable," in this sense, means the system-wide resources for
unconstrained oom conditions, the set of mempolicy nodes, the mems
attached to current's cpuset, or a memory controller's limit. The
proportion is given on a scale of 0 (never kill) to 1000 (always kill),
roughly meaning that if a task has a badness() score of 500 that the task
consumes approximately 50% of allowable memory resident in RAM or in swap
space.
The proportion is always relative to the amount of "allowable" memory and
not the total amount of RAM systemwide so that mempolicies and cpusets may
operate in isolation; they shall not need to know the true size of the
machine on which they are running if they are bound to a specific set of
nodes or mems, respectively.
Root tasks are given 3% extra memory just like __vm_enough_memory()
provides in LSMs. In the event of two tasks consuming similar amounts of
memory, it is generally better to save root's task.
Because of the change in the badness() heuristic's baseline, it is also
necessary to introduce a new user interface to tune it. It's not possible
to redefine the meaning of /proc/pid/oom_adj with a new scale since the
ABI cannot be changed for backward compatability. Instead, a new tunable,
/proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may
be used to polarize the heuristic such that certain tasks are never
considered for oom kill while others may always be considered. The value
is added directly into the badness() score so a value of -500, for
example, means to discount 50% of its memory consumption in comparison to
other tasks either on the system, bound to the mempolicy, in the cpuset,
or sharing the same memory controller.
/proc/pid/oom_adj is changed so that its meaning is rescaled into the
units used by /proc/pid/oom_score_adj, and vice versa. Changing one of
these per-task tunables will rescale the value of the other to an
equivalent meaning. Although /proc/pid/oom_adj was originally defined as
a bitshift on the badness score, it now shares the same linear growth as
/proc/pid/oom_score_adj but with different granularity. This is required
so the ABI is not broken with userspace applications and allows oom_adj to
be deprecated for future removal.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg pointed out current PF_EXITING check is wrong. Because PF_EXITING
is per-thread flag, not per-process flag. He said,
Two threads, group-leader L and its sub-thread T. T dumps the code.
In this case both threads have ->mm != NULL, L has PF_EXITING.
The first problem is, select_bad_process() always return -1 in this
case (even if the caller is T, this doesn't matter).
The second problem is that we should add TIF_MEMDIE to T, not L.
I think we can remove this dubious PF_EXITING check. but as first step,
This patch add the protection of multi threaded issue.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a system under heavy load it was observed that even after the
oom-killer selects a task to die, the task may take a long time to die.
Right after sending a SIGKILL to the task selected by the oom-killer this
task has its priority increased so that it can exit() soon, freeing
memory. That is accomplished by:
/*
* We give our sacrificial lamb high priority and access to
* all the memory it needs. That way it should be able to
* exit() and clear out its resources quickly...
*/
p->rt.time_slice = HZ;
set_tsk_thread_flag(p, TIF_MEMDIE);
It sounds plausible giving the dying task an even higher priority to be
sure it will be scheduled sooner and free the desired memory. It was
suggested on LKML using SCHED_FIFO:1, the lowest RT priority so that this
task won't interfere with any running RT task.
If the dying task is already an RT task, leave it untouched. Another good
suggestion, implemented here, was to avoid boosting the dying task
priority in case of mem_cgroup OOM.
Signed-off-by: Luis Claudio R. Goncalves <lclaudio@uudg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current "child->mm == p->mm" check prevents selection of vfork()ed
task. But we don't have any reason to don't consider vfork().
Removed.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
presently has_intersects_mems_allowed() has own thread iterate logic, but
it should use while_each_thread().
It slightly improve the code readability.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently if oom_kill_allocating_task is enabled and current have
OOM_DISABLED, following printk in oom_kill_process is called twice.
pr_err("%s: Kill process %d (%s) score %lu or sacrifice child\n",
message, task_pid_nr(p), p->comm, points);
So, OOM_DISABLE check should be more early.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() and badness() have the same OOM_DISABLE check. This
patch kills one.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a kernel thread is using use_mm(), badness() returns a positive value.
This is not a big issue because caller take care of it correctly. But
there is one exception, /proc/<pid>/oom_score calls badness() directly and
doesn't care that the task is a regular process.
Another example, /proc/1/oom_score return !0 value. But it's unkillable.
This incorrectness makes administration a little confusing.
This patch fixes it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When oom_kill_allocating_task is enabled, an argument task of
oom_kill_process is not selected by select_bad_process(), It's just
out_of_memory() caller task. It mean the task can be unkillable. check
it first.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently we have the same task check in two places. Unify it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently select_bad_process() has a PF_KTHREAD check, but
oom_kill_process doesn't. It mean oom_kill_process() may choose wrong
task, especially, when the child are using use_mm().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, badness() doesn't care about either CPUSET nor mempolicy. Then
if the victim child process have disjoint nodemask, OOM Killer might kill
innocent process.
This patch fixes it.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__out_of_memory() only has a single caller, so fold it into
out_of_memory() and add a comment about locking for its call to
oom_kill_process().
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() and __out_of_memory() doe not need their enum
oom_constraint arguments: it's possible to pass a NULL nodemask if
constraint == CONSTRAINT_MEMORY_POLICY in the caller, out_of_memory().
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have been used naming try_set_zone_oom and clear_zonelist_oom.
The role of functions is to lock of zonelist for preventing parallel
OOM. So clear_zonelist_oom makes sense but try_set_zone_oome is rather
awkward and unmatched with clear_zonelist_oom.
Let's change it with try_set_zonelist_oom.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the redundancy in __oom_kill_task() since:
- init can never be passed to this function: it will never be PF_EXITING
or selectable from select_bad_process(), and
- it will never be passed a task from oom_kill_task() without an ->mm
and we're unconcerned about detachment from exiting tasks, there's no
reason to protect them against SIGKILL or access to memory reserves.
Also moves the kernel log message to a higher level since the verbosity is
not always emitted here; we need not print an error message if an exiting
task is given a longer timeslice.
__oom_kill_task() only has a single caller, so it can be merged into that
function at the same time.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is possible to remove the special pagefault oom handler by simply oom
locking all system zones and then calling directly into out_of_memory().
All populated zones must have ZONE_OOM_LOCKED set, otherwise there is a
parallel oom killing in progress that will lead to eventual memory freeing
so it's not necessary to needlessly kill another task. The context in
which the pagefault is allocating memory is unknown to the oom killer, so
this is done on a system-wide level.
If a task has already been oom killed and hasn't fully exited yet, this
will be a no-op since select_bad_process() recognizes tasks across the
system with TIF_MEMDIE set.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are various points in the oom killer where the kernel must determine
whether to panic or not. It's better to extract this to a helper function
to remove all the confusion as to its semantics.
Also fix a call to dump_header() where tasklist_lock is not read- locked,
as required.
There's no functional change with this patch.
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer tasklist dump, enabled with the oom_dump_tasks sysctl, is
very helpful information in diagnosing why a user's task has been killed.
It emits useful information such as each eligible thread's memory usage
that can determine why the system is oom, so it should be enabled by
default.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer presently kills current whenever there is no more memory
free or reclaimable on its mempolicy's nodes. There is no guarantee that
current is a memory-hogging task or that killing it will free any
substantial amount of memory, however.
In such situations, it is better to scan the tasklist for nodes that are
allowed to allocate on current's set of nodes and kill the task with the
highest badness() score. This ensures that the most memory-hogging task,
or the one configured by the user with /proc/pid/oom_adj, is always
selected in such scenarios.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a task is chosen for oom kill, the oom killer first attempts to
sacrifice a child not sharing its parent's memory instead. Unfortunately,
this often kills in a seemingly random fashion based on the ordering of
the selected task's child list. Additionally, it is not guaranteed at all
to free a large amount of memory that we need to prevent additional oom
killing in the very near future.
Instead, we now only attempt to sacrifice the worst child not sharing its
parent's memory, if one exists. The worst child is indicated with the
highest badness() score. This serves two advantages: we kill a
memory-hogging task more often, and we allow the configurable
/proc/pid/oom_adj value to be considered as a factor in which child to
kill.
Reviewers may observe that the previous implementation would iterate
through the children and attempt to kill each until one was successful and
then the parent if none were found while the new code simply kills the
most memory-hogging task or the parent. Note that the only time
oom_kill_task() fails, however, is when a child does not have an mm or has
a /proc/pid/oom_adj of OOM_DISABLE. badness() returns 0 for both cases,
so the final oom_kill_task() will always succeed.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tasks that do not share the same set of allowed nodes with the task that
triggered the oom should not be considered as candidates for oom kill.
Tasks in other cpusets with a disjoint set of mems would be unfairly
penalized otherwise because of oom conditions elsewhere; an extreme
example could unfairly kill all other applications on the system if a
single task in a user's cpuset sets itself to OOM_DISABLE and then uses
more memory than allowed.
Killing tasks outside of current's cpuset rarely would free memory for
current anyway. To use a sane heuristic, we must ensure that killing a
task would likely free memory for current and avoid needlessly killing
others at all costs just because their potential memory freeing is
unknown. It is better to kill current than another task needlessly.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unnecessary to SIGKILL a task that is already PF_EXITING and can
actually cause a NULL pointer dereference of the sighand if it has already
been detached. Instead, simply set TIF_MEMDIE so it has access to memory
reserves and can quickly exit as the comment implies.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's possible to livelock the page allocator if a thread has mm->mmap_sem
and fails to make forward progress because the oom killer selects another
thread sharing the same ->mm to kill that cannot exit until the semaphore
is dropped.
The oom killer will not kill multiple tasks at the same time; each oom
killed task must exit before another task may be killed. Thus, if one
thread is holding mm->mmap_sem and cannot allocate memory, all threads
sharing the same ->mm are blocked from exiting as well. In the oom kill
case, that means the thread holding mm->mmap_sem will never free
additional memory since it cannot get access to memory reserves and the
thread that depends on it with access to memory reserves cannot exit
because it cannot acquire the semaphore. Thus, the page allocators
livelocks.
When the oom killer is called and current happens to have a pending
SIGKILL, this patch automatically gives it access to memory reserves and
returns. Upon returning to the page allocator, its allocation will
hopefully succeed so it can quickly exit and free its memory. If not, the
page allocator will fail the allocation if it is not __GFP_NOFAIL.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When find_lock_task_mm() returns a thread other than p in dump_tasks(),
its name should be displayed instead. This is the thread that will be
targeted by the oom killer, not its mm-less parent.
This also allows us to safely dereference task->comm without needing
get_task_comm().
While we're here, remove the cast on task_cpu(task) as Andrew suggested.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comments in dump_tasks() should be updated to be more clear about why
tasks are filtered and how they are filtered by its argument.
An unnecessary comment concerning a check for is_global_init() is removed
since it isn't of importance.
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_task() should use find_lock_task_mm() too. It is necessary for
protecting task-exiting race.
dump_tasks() currently filters any task that does not have an attached
->mm since it incorrectly assumes that it must either be in the process of
exiting and has detached its memory or that it's a kernel thread;
multithreaded tasks may actually have subthreads that have a valid ->mm
pointer and thus those threads should actually be displayed. This change
finds those threads, if they exist, and emit their information along with
the rest of the candidate tasks for kill.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Almost all ->mm == NULL checks in oom_kill.c are wrong.
The current code assumes that the task without ->mm has already released
its memory and ignores the process. However this is not necessarily true
when this process is multithreaded, other live sub-threads can use this
->mm.
- Remove the "if (!p->mm)" check in select_bad_process(), it is
just wrong.
- Add the new helper, find_lock_task_mm(), which finds the live
thread which uses the memory and takes task_lock() to pin ->mm
- change oom_badness() to use this helper instead of just checking
->mm != NULL.
- As David pointed out, select_bad_process() must never choose the
task without ->mm, but no matter what oom_badness() returns the
task can be chosen if nothing else has been found yet.
Change oom_badness() to return int, change it to return -1 if
find_lock_task_mm() fails, and change select_bad_process() to
check points >= 0.
Note! This patch is not enough, we need more changes.
- oom_badness() was fixed, but oom_kill_task() still ignores
the task without ->mm
- oom_forkbomb_penalty() should use find_lock_task_mm() too,
and it also needs other changes to actually find the first
first-descendant children
This will be addressed later.
[kosaki.motohiro@jp.fujitsu.com: use in badness(), __oom_kill_task()]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() checks PF_EXITING to detect the task which is going
to release its memory, but the logic is very wrong.
- a single process P with the dead group leader disables
select_bad_process() completely, it will always return
ERR_PTR() while P can live forever
- if the PF_EXITING task has already released its ->mm
it doesn't make sense to expect it is goiing to free
more memory (except task_struct/etc)
Change the code to ignore the PF_EXITING tasks without ->mm.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
select_bad_process() thinks a kernel thread can't have ->mm != NULL, this
is not true due to use_mm().
Change the code to check PF_KTHREAD.
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's pointless to try to kill current if select_bad_process() did not find
an eligible task to kill in mem_cgroup_out_of_memory() since it's
guaranteed that current is a member of the memcg that is oom and it is, by
definition, unkillable.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
In current page-fault code,
handle_mm_fault()
-> ...
-> mem_cgroup_charge()
-> map page or handle error.
-> check return code.
If page fault's return code is VM_FAULT_OOM, page_fault_out_of_memory() is
called. But if it's caused by memcg, OOM should have been already
invoked.
Then, I added a patch: a636b327f7. That
patch records last_oom_jiffies for memcg's sub-hierarchy and prevents
page_fault_out_of_memory from being invoked in near future.
But Nishimura-san reported that check by jiffies is not enough when the
system is terribly heavy.
This patch changes memcg's oom logic as.
* If memcg causes OOM-kill, continue to retry.
* remove jiffies check which is used now.
* add memcg-oom-lock which works like perzone oom lock.
* If current is killed(as a process), bypass charge.
Something more sophisticated can be added but this pactch does
fundamental things.
TODO:
- add oom notifier
- add permemcg disable-oom-kill flag and freezer at oom.
- more chances for wake up oom waiter (when changing memory limit etc..)
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, if panic_on_oom=2, the whole system panics even if the oom
happend in some special situation (as cpuset, mempolicy....). Then,
panic_on_oom=2 means painc_on_oom_always.
Now, memcg doesn't check panic_on_oom flag. This patch adds a check.
BTW, how it's useful ?
kdump+panic_on_oom=2 is the last tool to investigate what happens in
oom-ed system. When a task is killed, the sysytem recovers and there will
be few hint to know what happnes. In mission critical system, oom should
never happen. Then, panic_on_oom=2+kdump is useful to avoid next OOM by
knowing precise information via snapshot.
TODO:
- For memcg, it's for isolate system's memory usage, oom-notiifer and
freeze_at_oom (or rest_at_oom) should be implemented. Then, management
daemon can do similar jobs (as kdump) or taking snapshot per cgroup.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently, per-mm statistics counter is defined by macro in sched.h
This patch modifies it to
- defined in mm.h as inlinf functions
- use array instead of macro's name creation.
This patch is for reducing patch size in future patch to modify
implementation of per-mm counter.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presently the oom-killer is memcg aware and it finds the worst process
from processes under memcg(s) in oom. Then, it kills victim's child
first.
It may kill a child in another cgroup and may not be any help for
recovery. And it will break the assumption users have.
This patch fixes it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_in_mem_cgroup(), which is called by select_bad_process() to check
whether a task can be a candidate for being oom-killed from memcg's limit,
checks "curr->use_hierarchy"("curr" is the mem_cgroup the task belongs
to).
But this check return true(it's false positive) when:
<some path>/aa use_hierarchy == 0 <- hitting limit
<some path>/aa/00 use_hierarchy == 1 <- the task belongs to
This leads to killing an innocent task in aa/00. This patch is a fix for
this bug. And this patch also fixes the arg for
mem_cgroup_print_oom_info(). We should print information of mem_cgroup
which the task being killed, not current, belongs to.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix node-oriented allocation handling in oom-kill.c I myself think of this
as a bugfix not as an ehnancement.
In these days, things are changed as
- alloc_pages() eats nodemask as its arguments, __alloc_pages_nodemask().
- mempolicy don't maintain its own private zonelists.
(And cpuset doesn't use nodemask for __alloc_pages_nodemask())
So, current oom-killer's check function is wrong.
This patch does
- check nodemask, if nodemask && nodemask doesn't cover all
node_states[N_HIGH_MEMORY], this is CONSTRAINT_MEMORY_POLICY.
- Scan all zonelist under nodemask, if it hits cpuset's wall
this faiulre is from cpuset.
And
- modifies the caller of out_of_memory not to call oom if __GFP_THISNODE.
This doesn't change "current" behavior. If callers use __GFP_THISNODE
it should handle "page allocation failure" by itself.
- handle __GFP_NOFAIL+__GFP_THISNODE path.
This is something like a FIXME but this gfpmask is not used now.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a typical oom analysis scenario, we frequently want to know whether the
killed process has a memory leak or not at the first step. This patch
adds vsz and rss information to the oom log to help this analysis. To
save time for the debugging.
example:
===================================================================
rsyslogd invoked oom-killer: gfp_mask=0x201da, order=0, oom_adj=0
Pid: 1308, comm: rsyslogd Not tainted 2.6.32-rc6 #24
Call Trace:
[<ffffffff8132e35b>] ?_spin_unlock+0x2b/0x40
[<ffffffff810f186e>] oom_kill_process+0xbe/0x2b0
(snip)
492283 pages non-shared
Out of memory: kill process 2341 (memhog) score 527276 or a child
Killed process 2341 (memhog) vsz:1054552kB, anon-rss:970588kB, file-rss:4kB
===========================================================================
^
|
here
[rientjes@google.com: fix race, add pid & comm to message]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer header, including information such as the allocation order
and gfp mask, current's cpuset and memory controller, call trace, and VM
state information is currently only shown when the oom killer has selected
a task to kill.
This information is omitted, however, when the oom killer panics either
because of panic_on_oom sysctl settings or when no killable task was
found. It is still relevant to know crucial pieces of information such as
the allocation order and VM state when diagnosing such issues, especially
at boot.
This patch displays the oom killer header whenever it panics so that bug
reports can include pertinent information to debug the issue, if possible.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current oom_kill doesn't only kill the victim process, but also kill all
thas shread the same mm. it mean vfork parent will be killed.
This is definitely incorrect. another process have another oom_adj. we
shouldn't ignore their oom_adj (it might have OOM_DISABLE).
following caller hit the minefield.
===============================
switch (constraint) {
case CONSTRAINT_MEMORY_POLICY:
oom_kill_process(current, gfp_mask, order, 0, NULL,
"No available memory (MPOL_BIND)");
break;
Note: force_sig(SIGKILL) send SIGKILL to all thread in the process.
We don't need to care multi thread in here.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom-killer kills a process, not task. Then oom_score should be calculated
as per-process too. it makes consistency more and makes speed up
select_bad_process().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, OOM logic callflow is here.
__out_of_memory()
select_bad_process() for each task
badness() calculate badness of one task
oom_kill_process() search child
oom_kill_task() kill target task and mm shared tasks with it
example, process-A have two thread, thread-A and thread-B and it have very
fat memory and each thread have following oom_adj and oom_score.
thread-A: oom_adj = OOM_DISABLE, oom_score = 0
thread-B: oom_adj = 0, oom_score = very-high
Then, select_bad_process() select thread-B, but oom_kill_task() refuse
kill the task because thread-A have OOM_DISABLE. Thus __out_of_memory()
call select_bad_process() again. but select_bad_process() select the same
task. It mean kernel fall in livelock.
The fact is, select_bad_process() must select killable task. otherwise
OOM logic go into livelock.
And root cause is, oom_adj shouldn't be per-thread value. it should be
per-process value because OOM-killer kill a process, not thread. Thus
This patch moves oomkilladj (now more appropriately named oom_adj) from
struct task_struct to struct signal_struct. it naturally prevent
select_bad_process() choose wrong task.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just as the swapoff system call allocates many pages of RAM to various
processes, perhaps triggering OOM, so "echo 2 >/sys/kernel/mm/ksm/run"
(unmerge) is liable to allocate many pages of RAM to various processes,
perhaps triggering OOM; and each is normally run from a modest admin
process (swapoff or shell), easily repeated until it succeeds.
So treat unmerge_and_remove_all_rmap_items() in the same way that we treat
try_to_unuse(): generalize PF_SWAPOFF to PF_OOM_ORIGIN, and bracket both
with that, to ask the OOM killer to kill them first, to prevent them from
spawning more and more OOM kills.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 2ff05b2b (oom: move oom_adj value) moveed the oom_adj value to
the mm_struct. It was a very good first step for sanitize OOM.
However Paul Menage reported the commit makes regression to his job
scheduler. Current OOM logic can kill OOM_DISABLED process.
Why? His program has the code of similar to the following.
...
set_oom_adj(OOM_DISABLE); /* The job scheduler never killed by oom */
...
if (vfork() == 0) {
set_oom_adj(0); /* Invoked child can be killed */
execve("foo-bar-cmd");
}
....
vfork() parent and child are shared the same mm_struct. then above
set_oom_adj(0) doesn't only change oom_adj for vfork() child, it's also
change oom_adj for vfork() parent. Then, vfork() parent (job scheduler)
lost OOM immune and it was killed.
Actually, fork-setting-exec idiom is very frequently used in userland program.
We must not break this assumption.
Then, this patch revert commit 2ff05b2b and related commit.
Reverted commit list
---------------------
- commit 2ff05b2b4e (oom: move oom_adj value from task_struct to mm_struct)
- commit 4d8b9135c3 (oom: avoid unnecessary mm locking and scanning for OOM_DISABLE)
- commit 8123681022 (oom: only oom kill exiting tasks with attached memory)
- commit 933b787b57 (mm: copy over oom_adj value at fork time)
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>