Gerlando Falauto reported that when HRTICK is enabled, it is
possible to trigger system deadlocks. These were hard to
reproduce, as HRTICK has been broken in the past, but seemed
to be connected to the timekeeping_seq lock.
Since seqlock/seqcount's aren't supported w/ lockdep, I added
some extra spinlock based locking and triggered the following
lockdep output:
[ 15.849182] ntpd/4062 is trying to acquire lock:
[ 15.849765] (&(&pool->lock)->rlock){..-...}, at: [<ffffffff810aa9b5>] __queue_work+0x145/0x480
[ 15.850051]
[ 15.850051] but task is already holding lock:
[ 15.850051] (timekeeper_lock){-.-.-.}, at: [<ffffffff810df6df>] do_adjtimex+0x7f/0x100
<snip>
[ 15.850051] Chain exists of: &(&pool->lock)->rlock --> &p->pi_lock --> timekeeper_lock
[ 15.850051] Possible unsafe locking scenario:
[ 15.850051]
[ 15.850051] CPU0 CPU1
[ 15.850051] ---- ----
[ 15.850051] lock(timekeeper_lock);
[ 15.850051] lock(&p->pi_lock);
[ 15.850051] lock(timekeeper_lock);
[ 15.850051] lock(&(&pool->lock)->rlock);
[ 15.850051]
[ 15.850051] *** DEADLOCK ***
The deadlock was introduced by 06c017fdd4 ("timekeeping:
Hold timekeepering locks in do_adjtimex and hardpps") in 3.10
This patch avoids this deadlock, by moving the call to
schedule_delayed_work() outside of the timekeeper lock
critical section.
Reported-by: Gerlando Falauto <gerlando.falauto@keymile.com>
Tested-by: Lin Ming <minggr@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable <stable@vger.kernel.org> #3.11, 3.10
Link: http://lkml.kernel.org/r/1378943457-27314-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timers/nohz changes from Ingo Molnar:
"It mostly contains fixes and full dynticks off-case optimizations, by
Frederic Weisbecker"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
nohz: Include local CPU in full dynticks global kick
nohz: Optimize full dynticks's sched hooks with static keys
nohz: Optimize full dynticks state checks with static keys
nohz: Rename a few state variables
vtime: Always debug check snapshot source _before_ updating it
vtime: Always scale generic vtime accounting results
vtime: Optimize full dynticks accounting off case with static keys
vtime: Describe overriden functions in dedicated arch headers
m68k: hardirq_count() only need preempt_mask.h
hardirq: Split preempt count mask definitions
context_tracking: Split low level state headers
vtime: Fix racy cputime delta update
vtime: Remove a few unneeded generic vtime state checks
context_tracking: User/kernel broundary cross trace events
context_tracking: Optimize context switch off case with static keys
context_tracking: Optimize guest APIs off case with static key
context_tracking: Optimize main APIs off case with static key
context_tracking: Ground setup for static key use
context_tracking: Remove full dynticks' hacky dependency on wide context tracking
nohz: Only enable context tracking on full dynticks CPUs
...
Pull RCU updates from Paul E. McKenney:
"
* Update RCU documentation. These were posted to LKML at
https://lkml.org/lkml/2013/8/19/611.
* Miscellaneous fixes. These were posted to LKML at
https://lkml.org/lkml/2013/8/19/619.
* Full-system idle detection. This is for use by Frederic
Weisbecker's adaptive-ticks mechanism. Its purpose is
to allow the timekeeping CPU to shut off its tick when
all other CPUs are idle. These were posted to LKML at
https://lkml.org/lkml/2013/8/19/648.
* Improve rcutorture test coverage. These were posted to LKML at
https://lkml.org/lkml/2013/8/19/675.
"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit adds the state machine that takes the per-CPU idle data
as input and produces a full-system-idle indication as output. This
state machine is driven out of RCU's quiescent-state-forcing
mechanism, which invokes rcu_sysidle_check_cpu() to collect per-CPU
idle state and then rcu_sysidle_report() to drive the state machine.
The full-system-idle state is sampled using rcu_sys_is_idle(), which
also drives the state machine if RCU is idle (and does so by forcing
RCU to become non-idle). This function returns true if all but the
timekeeping CPU (tick_do_timer_cpu) are idle and have been idle long
enough to avoid memory contention on the full_sysidle_state state
variable. The rcu_sysidle_force_exit() may be called externally
to reset the state machine back into non-idle state.
For large systems the state machine is driven out of RCU's
force-quiescent-state logic, which provides good scalability at the price
of millisecond-scale latencies on the transition to full-system-idle
state. This is not so good for battery-powered systems, which are usually
small enough that they don't need to care about scalability, but which
do care deeply about energy efficiency. Small systems therefore drive
the state machine directly out of the idle-entry code. The number of
CPUs in a "small" system is defined by a new NO_HZ_FULL_SYSIDLE_SMALL
Kconfig parameter, which defaults to 8. Note that this is a build-time
definition.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
[ paulmck: Use true and false for boolean constants per Lai Jiangshan. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
[ paulmck: Simplify logic and provide better comments for memory barriers,
based on review comments and questions by Lai Jiangshan. ]
Correct an issue with /proc/timer_list reported by Holger.
When reading from the proc file with a sufficiently small buffer, 2k so
not really that small, there was one could get hung trying to read the
file a chunk at a time.
The timer_list_start function failed to account for the possibility that
the offset was adjusted outside the timer_list_next.
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Reported-by: Holger Hans Peter Freyther <holger@freyther.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Berke Durak <berke.durak@xiphos.com>
Cc: Jeff Layton <jlayton@redhat.com>
Tested-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org> # 3.10.x
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code requires that the scheduled update of the RTC happens
in the closest tick to the half of the second. This seems to be
difficult to achieve reliably. The scheduled work may be missing the
target time by a tick or two and be constantly rescheduled every second.
Relax the limit to 10 ticks. As a typical RTC drifts in the 11-minute
update interval by several milliseconds, this shouldn't affect the
overall accuracy of the RTC much.
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Pull timer fixes from Ingo Molnar:
"Three small fixlets"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: fix compile warning in tick_nohz_init()
nohz: Do not warn about unstable tsc unless user uses nohz_full
sched_clock: Fix integer overflow
At least one CPU must keep the scheduling-clock tick running for
timekeeping purposes whenever there is a non-idle CPU. However, with
the new nohz_full adaptive-idle machinery, it is difficult to distinguish
between all CPUs really being idle as opposed to all non-idle CPUs being
in adaptive-ticks mode. This commit therefore adds a Kconfig parameter
as a first step towards enabling a scalable detection of full-system
idle state.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
[ paulmck: Update help text per Frederic Weisbecker. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
tick_nohz_full_kick_all() is useful to notify all full dynticks
CPUs that there is a system state change to checkout before
re-evaluating the need for the tick.
Unfortunately this is implemented using smp_call_function_many()
that ignores the local CPU. This CPU also needs to re-evaluate
the tick.
on_each_cpu_mask() is not useful either because we don't want to
re-evaluate the tick state in place but asynchronously from an IPI
to avoid messing up with any random locking scenario.
So lets call tick_nohz_full_kick() from tick_nohz_full_kick_all()
so that the usual irq work takes care of it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1375460996-16329-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull nohz improvements from Frederic Weisbecker:
" It mostly contains fixes and full dynticks off-case optimizations. I believe that
distros want to enable this feature so it seems important to optimize the case
where the "nohz_full=" parameter is empty. ie: I'm trying to remove any performance
regression that comes with NO_HZ_FULL=y when the feature is not used.
This patchset improves the current situation a lot (off-case appears to be around 11% faster
with hackbench, although I guess it may vary depending on the configuration but it should be
significantly faster in any case) now there is still some work to do: I can still observe a
remaining loss of 1.6% throughput seen with hackbench compared to CONFIG_NO_HZ_FULL=n. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Scheduler IPIs and task context switches are serious fast path.
Let's try to hide as much as we can the impact of full
dynticks APIs' off case that are called on these sites
through the use of static keys.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
These APIs are frequenctly accessed and priority is given
to optimize the full dynticks off-case in order to let
distros enable this feature without suffering from
significant performance regressions.
Let's inline these APIs and optimize them with static keys.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Rename the full dynticks's cpumask and cpumask state variables
to some more exportable names.
These will be used later from global headers to optimize
the main full dynticks APIs in conjunction with static keys.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Now that the full dynticks subsystem only enables the context tracking
on full dynticks CPUs, lets remove the dependency on CONTEXT_TRACKING_FORCE
This dependency was a hack to enable the context tracking widely for the
full dynticks susbsystem until the latter becomes able to enable it in a
more CPU-finegrained fashion.
Now CONTEXT_TRACKING_FORCE only stands for testing on archs that
work on support for the context tracking while full dynticks can't be
used yet due to unmet dependencies. It simulates a system where all CPUs
are full dynticks so that RCU user extended quiescent states and dynticks
cputime accounting can be tested on the given arch.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
The context tracking subsystem has the ability to selectively
enable the tracking on any defined subset of CPU. This means that
we can define a CPU range that doesn't run the context tracking
and another range that does.
Now what we want in practice is to enable the tracking on full
dynticks CPUs only. In order to perform this, we just need to pass
our full dynticks CPU range selection from the full dynticks
subsystem to the context tracking.
This way we can spare the overhead of RCU user extended quiescent
state and vtime maintainance on the CPUs that are outside the
full dynticks range. Just keep in mind the raw context tracking
itself is still necessary everywhere.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
The ARM architected system counter has at least 56 usable bits.
Add support for counters with more than 32 bits to the generic
sched_clock implementation so we can increase the time between
wakeups due to dealing with wrap-around on these devices while
benefiting from the irqtime accounting and suspend/resume
handling that the generic sched_clock code already has. On my
system using 56 bits over 32 bits changes the wraparound time
from a few minutes to an hour. For faster running counters (GHz
range) this is even more important because we may not be able to
execute the timer in time to deal with the wraparound if only 32
bits are used.
We choose a maxsec value of 3600 seconds because we assume no
system will go idle for more than an hour. In the future we may
need to increase this value.
Note: All users should switch over to the 64-bit read function so
we can remove setup_sched_clock() in favor of sched_clock_register().
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In the next patch we're going to increase the number of bits that
the generic sched_clock can handle to be greater than 32. With
more than 32 bits the wraparound time can be larger than what can
fit into the units that msecs_to_jiffies takes (unsigned int).
Luckily, the wraparound is initially calculated in nanoseconds
which we can easily use with hrtimers, so switch to using an
hrtimer.
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
[jstultz: Fixup hrtimer intitialization order issue]
Signed-off-by: John Stultz <john.stultz@linaro.org>
We're going to increase the cyc value to 64 bits in the near
future. Doing that is going to break the custom seqcount
implementation in the sched_clock code because 64 bit numbers
aren't guaranteed to be atomic. Replace the cyc_copy with a
seqcount to avoid this problem.
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
We need to calculate the same number in the clocksource code and
the sched_clock code, so extract this code into its own function.
We also drop the min_t and just use min() because the two types
are the same.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
cpu is not used after commit 5b8621a68f
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
If the user enables CONFIG_NO_HZ_FULL and runs the kernel on a machine
with an unstable TSC, it will produce a WARN_ON dump as well as taint
the kernel. This is a bit extreme for a kernel that just enables a
feature but doesn't use it.
The warning should only happen if the user tries to use the feature by
either adding nohz_full to the kernel command line, or by enabling
CONFIG_NO_HZ_FULL_ALL that makes nohz used on all CPUs at boot up. Note,
this second feature should not (yet) be used by distros or anyone that
doesn't care if NO_HZ is used or not.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The expression '(1 << 32)' happens to evaluate as 0 on ARM, but
it evaluates as 1 on xtensa and x86_64. This zeros sched_clock_mask,
and breaks sched_clock().
Set the type of 1 to 'unsigned long long' to get the value we need.
Reported-by: Max Filippov <jcmvbkbc@gmail.com>
Tested-by: Max Filippov <jcmvbkbc@gmail.com>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Baruch Siach <baruch@tkos.co.il>
Signed-off-by: John Stultz <john.stultz@linaro.org>
If I explicitly disable the clocksource watchdog in the x86 Kconfig,
the x86 kernel will not compile unless this is properly defined.
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
On ARM systems the dummy clockevent is registered with the cpu
hotplug notifier chain before any other per-cpu clockevent. This
has the side-effect of causing the dummy clockevent to be
registered first in every hotplug sequence. Because the dummy is
first, we'll try to turn the broadcast source on but the code in
tick_device_uses_broadcast() assumes the broadcast source is in
periodic mode and calls tick_broadcast_start_periodic()
unconditionally.
On boot this isn't a problem because we typically haven't
switched into oneshot mode yet (if at all). During hotplug, if
the broadcast source isn't in periodic mode we'll replace the
broadcast oneshot handler with the broadcast periodic handler and
start emulating oneshot mode when we shouldn't. Due to the way
the broadcast oneshot handler programs the next_event it's
possible for it to contain KTIME_MAX and cause us to hang the
system when the periodic handler tries to program the next tick.
Fix this by using the appropriate function to start the broadcast
source.
Reported-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Mark Rutland <Mark.Rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: ARM kernel mailing list <linux-arm-kernel@lists.infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Joseph Lo <josephl@nvidia.com>
Link: http://lkml.kernel.org/r/20130711140059.GA27430@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull nohz updates/fixes from Frederic Weisbecker:
' Note that "watchdog: Boot-disable by default on full dynticks" is a temporary
solution to solve the issue with the watchdog that prevents the tick from
stopping. This is to make sure that 3.11 doesn't have that problem as several
people complained about it.
A proper and longer term solution has been proposed by Peterz:
http://lkml.kernel.org/r/20130618103632.GO3204@twins.programming.kicks-ass.net
'
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Up to commit 5d33b883a (clocksource: Always verify highres capability)
we had no sanity check when selecting a clocksource, which prevented
that a non highres capable clocksource is used when the system already
switched to highres/nohz mode.
The new sanity check works as Alex and Tim found out. It prevents the
TSC from being used. This happens because on x86 the boot process
looks like this:
tsc_start_freqency_validation(TSC);
clocksource_register(HPET);
clocksource_done_booting();
clocksource_select()
Selects HPET which is valid for high-res
switch_to_highres();
clocksource_register(TSC);
TSC is not selected, because it is not yet
flagged as VALID_HIGH_RES
clocksource_watchdog()
Validates TSC for highres, but that does not make TSC
the current clocksource.
Before the sanity check was added, we installed TSC unvalidated which
worked most of the time. If the TSC was really detected as unstable,
then the unstable logic removed it and installed HPET again.
The sanity check is correct and needed. So the watchdog needs to kick
a reselection of the clocksource, when it qualifies TSC as a valid
high res clocksource.
To solve this, we mark the clocksource which got the flag
CLOCK_SOURCE_VALID_FOR_HRES set by the watchdog with an new flag
CLOCK_SOURCE_RESELECT and trigger the watchdog thread. The watchdog
thread evaluates the flag and invokes clocksource_select() when set.
To avoid that the clocksource_done_booting() code, which is about to
install the first real clocksource anyway, needs to go through
clocksource_select and tick_oneshot_notify() pointlessly, split out
the clocksource_watchdog_kthread() list walk code and invoke the
select/notify only when called from clocksource_watchdog_kthread().
So clocksource_done_booting() can utilize the same splitout code
without the select/notify invocation and the clocksource_mutex
unlock/relock dance.
Reported-and-tested-by: Alex Shi <alex.shi@intel.com>
Cc: Hans Peter Anvin <hpa@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Tested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Davidlohr Bueso <davidlohr.bueso@hp.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307042239150.11637@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into timers/core
Frederic sayed: "Most of these patches have been hanging around for
several month now, in -mmotm for a significant chunk. They already
missed a few releases."
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The recent implementation of a generic dummy timer resulted in a
different registration order of per cpu local timers which made the
broadcast control logic go belly up.
If the dummy timer is the first clock event device which is registered
for a CPU, then it is installed, the broadcast timer is initialized
and the CPU is marked as broadcast target.
If a real clock event device is installed after that, we can fail to
take the CPU out of the broadcast mask. In the worst case we end up
with two periodic timer events firing for the same CPU. One from the
per cpu hardware device and one from the broadcast.
Now the problem is that we have no way to distinguish whether the
system is in a state which makes broadcasting necessary or the
broadcast bit was set due to the nonfunctional dummy timer
installment.
To solve this we need to keep track of the system state seperately and
provide a more detailed decision logic whether we keep the CPU in
broadcast mode or not.
The old decision logic only clears the broadcast mode, if the newly
installed clock event device is not affected by power states.
The new logic clears the broadcast mode if one of the following is
true:
- The new device is not affected by power states.
- The system is not in a power state affected mode
- The system has switched to oneshot mode. The oneshot broadcast is
controlled from the deep idle state. The CPU is not in idle at
this point, so it's safe to remove it from the mask.
If we clear the broadcast bit for the CPU when a new device is
installed, we also shutdown the broadcast device when this was the
last CPU in the broadcast mask.
If the broadcast bit is kept, then we leave the new device in shutdown
state and rely on the broadcast to deliver the timer interrupts via
the broadcast ipis.
Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>,
Cc: Mark Rutland <mark.rutland@arm.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When the system switches from periodic to oneshot mode, the broadcast
logic causes a possibility that a CPU which has not yet switched to
oneshot mode puts its own clock event device into oneshot mode without
updating the state and the timer handler.
CPU0 CPU1
per cpu tickdev is in periodic mode
and switched to broadcast
Switch to oneshot mode
tick_broadcast_switch_to_oneshot()
cpumask_copy(tick_oneshot_broacast_mask,
tick_broadcast_mask);
broadcast device mode = oneshot
Timer interrupt
irq_enter()
tick_check_oneshot_broadcast()
dev->set_mode(ONESHOT);
tick_handle_periodic()
if (dev->mode == ONESHOT)
dev->next_event += period;
FAIL.
We fail, because dev->next_event contains KTIME_MAX, if the device was
in periodic mode before the uncontrolled switch to oneshot happened.
We must copy the broadcast bits over to the oneshot mask, because
otherwise a CPU which relies on the broadcast would not been woken up
anymore after the broadcast device switched to oneshot mode.
So we need to verify in tick_check_oneshot_broadcast() whether the CPU
has already switched to oneshot mode. If not, leave the device
untouched and let the CPU switch controlled into oneshot mode.
This is a long standing bug, which was never noticed, because the main
user of the broadcast x86 cannot run into that scenario, AFAICT. The
nonarchitected timer mess of ARM creates a gazillion of differently
broken abominations which trigger the shortcomings of that broadcast
code, which better had never been necessary in the first place.
Reported-and-tested-by: Stehle Vincent-B46079 <B46079@freescale.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>,
Cc: Mark Rutland <mark.rutland@arm.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1307012153060.4013@ionos.tec.linutronix.de
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In periodic mode we remove offline cpus from the broadcast propagation
mask. In oneshot mode we fail to do so. This was not a problem so far,
but the recent changes to the broadcast propagation introduced a
constellation which can result in a NULL pointer dereference.
What happens is:
CPU0 CPU1
idle()
arch_idle()
tick_broadcast_oneshot_control(OFF);
set cpu1 in tick_broadcast_force_mask
if (cpu_offline())
arch_cpu_dead()
cpu_dead_cleanup(cpu1)
cpu1 tickdevice pointer = NULL
broadcast interrupt
dereference cpu1 tickdevice pointer -> OOPS
We dereference the pointer because cpu1 is still set in
tick_broadcast_force_mask and tick_do_broadcast() expects a valid
cpumask and therefor lacks any further checks.
Remove the cpu from the tick_broadcast_force_mask before we set the
tick device pointer to NULL. Also add a sanity check to the oneshot
broadcast function, so we can detect such issues w/o crashing the
machine.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: athorlton@sgi.com
Cc: CAI Qian <caiqian@redhat.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1306261303260.4013@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the clock was set (stepped), set the action parameter to functions
in the pvclock gtod notifier chain to non-zero. This allows the
callee to only do work if the clock was stepped.
This will be used on Xen as the synchronization of the Xen wallclock
to the control domain's (dom0) system time will be done with this
notifier and updating on every timer tick is unnecessary and too
expensive.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/1372329348-20841-4-git-send-email-david.vrabel@citrix.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Instead of passing multiple bools to timekeeping_updated(), define
flags and use a single 'action' parameter. It is then more obvious
what each timekeeping_update() call does.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/1372329348-20841-3-git-send-email-david.vrabel@citrix.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On an SMP system with only one global clockevent and a dummy
clockevent per CPU we run into problems. We want the dummy
clockevents to be registered as the per CPU tick devices, but
we can only achieve that if we register the dummy clockevents
before the global clockevent or if we artificially inflate the
rating of the dummy clockevents to be higher than the rating
of the global clockevent. Failure to do so leads to boot
hangs when the dummy timers are registered on all other CPUs
besides the CPU that accepted the global clockevent as its tick
device and there is no broadcast timer to poke the dummy
devices.
If we're registering multiple clockevents and one clockevent is
global and the other is local to a particular CPU we should
choose to use the local clockevent regardless of the rating of
the device. This way, if the clockevent is a dummy it will take
the tick device duty as long as there isn't a higher rated tick
device and any global clockevent will be bumped out into
broadcast mode, fixing the problem described above.
Reported-and-tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: soren.brinkmann@xilinx.com
Cc: John Stultz <john.stultz@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20130613183950.GA32061@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The recent modification in the cpuidle framework consolidated the
timer broadcast code across the different drivers by setting a new
flag in the idle state. It tells the cpuidle core code to enter/exit
the broadcast mode for the cpu when entering a deep idle state. The
broadcast timer enter/exit is no longer handled by the back-end
driver.
This change made the local interrupt to be enabled *before* calling
CLOCK_EVENT_NOTIFY_EXIT.
On a tegra114, a four cores system, when the flag has been introduced
in the driver, the following warning appeared:
WARNING: at kernel/time/tick-broadcast.c:578 tick_broadcast_oneshot_control
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 3.10.0-rc3-next-20130529+ #15
[<c00667f8>] (tick_broadcast_oneshot_control+0x1a4/0x1d0) from [<c0065cd0>] (tick_notify+0x240/0x40c)
[<c0065cd0>] (tick_notify+0x240/0x40c) from [<c0044724>] (notifier_call_chain+0x44/0x84)
[<c0044724>] (notifier_call_chain+0x44/0x84) from [<c0044828>] (raw_notifier_call_chain+0x18/0x20)
[<c0044828>] (raw_notifier_call_chain+0x18/0x20) from [<c00650cc>] (clockevents_notify+0x28/0x170)
[<c00650cc>] (clockevents_notify+0x28/0x170) from [<c033f1f0>] (cpuidle_idle_call+0x11c/0x168)
[<c033f1f0>] (cpuidle_idle_call+0x11c/0x168) from [<c000ea94>] (arch_cpu_idle+0x8/0x38)
[<c000ea94>] (arch_cpu_idle+0x8/0x38) from [<c005ea80>] (cpu_startup_entry+0x60/0x134)
[<c005ea80>] (cpu_startup_entry+0x60/0x134) from [<804fe9a4>] (0x804fe9a4)
I don't have the hardware, so I wasn't able to reproduce the warning
but after looking a while at the code, I deduced the following:
1. the CPU2 enters a deep idle state and sets the broadcast timer
2. the timer expires, the tick_handle_oneshot_broadcast function is
called, setting the tick_broadcast_pending_mask and waking up the
idle cpu CPU2
3. the CPU2 exits idle handles the interrupt and then invokes
tick_broadcast_oneshot_control with CLOCK_EVENT_NOTIFY_EXIT which
runs the following code:
[...]
if (dev->next_event.tv64 == KTIME_MAX)
goto out;
if (cpumask_test_and_clear_cpu(cpu,
tick_broadcast_pending_mask))
goto out;
[...]
So if there is no next event scheduled for CPU2, we fulfil the
first condition and jump out without clearing the
tick_broadcast_pending_mask.
4. CPU2 goes to deep idle again and calls
tick_broadcast_oneshot_control with CLOCK_NOTIFY_EVENT_ENTER but
with the tick_broadcast_pending_mask set for CPU2, triggering the
warning.
The issue only surfaced due to the modifications of the cpuidle
framework, which resulted in interrupts being enabled before the call
to the clockevents code. If the call happens before interrupts have
been enabled, the warning cannot trigger, because there is still the
event pending which caused the broadcast timer expiry.
Move the check for the next event below the check for the pending bit,
so the pending bit gets cleared whether an event is scheduled on the
cpu or not.
[ tglx: Massaged changelog ]
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Reported-and-tested-by: Joseph Lo <josephl@nvidia.com>
Cc: Stephen Warren <swarren@nvidia.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/r/1371485735-31249-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Building full dynticks now implies that all CPUs are forced
into RCU nocb mode through CONFIG_RCU_NOCB_CPU_ALL.
The dynamic check has become useless.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
If the user configures NO_HZ_FULL and defines nohz_full=XXX on the
kernel command line, or enables NO_HZ_FULL_ALL, but nohz fails
due to the machine having a unstable clock, warn about it.
We do not want users thinking that they are getting the benefit
of nohz when their machine can not support it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
There is a small race between when the cycle count is read from
the hardware and when the epoch stabilizes. Consider this
scenario:
CPU0 CPU1
---- ----
cyc = read_sched_clock()
cyc_to_sched_clock()
update_sched_clock()
...
cd.epoch_cyc = cyc;
epoch_cyc = cd.epoch_cyc;
...
epoch_ns + cyc_to_ns((cyc - epoch_cyc)
The cyc on cpu0 was read before the epoch changed. But we
calculate the nanoseconds based on the new epoch by subtracting
the new epoch from the old cycle count. Since epoch is most likely
larger than the old cycle count we calculate a large number that
will be converted to nanoseconds and added to epoch_ns, causing
time to jump forward too much.
Fix this problem by reading the hardware after the epoch has
stabilized.
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Nothing about the sched_clock implementation in the ARM port is
specific to the architecture. Generalize the code so that other
architectures can use it by selecting GENERIC_SCHED_CLOCK.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
[jstultz: Merge minor collisions with other patches in my tree]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Export symbols so they can be used by
drivers/staging/android/alarm-dev.c if it is built as a module.
So far alarm-dev is built-in but module support is planned (see
drivers/staging/android/TODO).
Signed-off-by: Marcus Gelderie <redmnic@gmail.com>
[jstultz: tweaked commit message, also export newly added functions]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since 7300711e ("clockevents: broadcast fixup possible waiters"),
the timekeeping duty is assigned to the CPU that handles the tick
broadcast clock device by the time it is set in one shot mode.
This is an issue in full dynticks mode where the timekeeping duty
must stay handled by the boot CPU for now. Otherwise it prevents
secondary CPUs from offlining and this breaks
suspend/shutdown/reboot/...
As it appears there is no reason for this timekeeping duty to be
moved to the broadcast CPU, besides nothing prevent it from being
later re-assigned to another target, let's simply remove it.
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In tick_nohz_cpu_down_callback() if the cpu is the one handling
timekeeping, we must return something that stops the CPU_DOWN_PREPARE
notifiers and then start notify CPU_DOWN_FAILED on the already called
notifier call backs.
However traditional errno values are not handled by the notifier unless
these are encapsulated using errno_to_notifier().
Hence the current -EINVAL is misinterpreted and converted to junk after
notifier_to_errno(), leaving the notifier subsystem to random behaviour
such as eventually allowing the cpu to go down.
Fix this by using the standard NOTIFY_BAD instead.
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Below is a patch from android kernel that maintains a histogram of
suspend times. Please review and provide feedback.
Statistices on the time spent in suspend are kept in
/sys/kernel/debug/sleep_time.
Cc: Android Kernel Team <kernel-team@android.com>
Cc: Colin Cross <ccross@android.com>
Cc: Todd Poynor <toddpoynor@google.com>
Cc: San Mehat <san@google.com>
Cc: Benoit Goby <benoit@android.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Todd Poynor <toddpoynor@google.com>
[zoran.markovic@linaro.org: Re-formatted suspend time table to better
fit expected values. Moved accounting of suspend time into timekeeping
core. Removed CONFIG_SUSPEND_TIME flag and made the feature conditional
on CONFIG_DEBUG_FS. Changed the file name to sleep_time to better fit
terminology in timekeeping core. Changed seq_printf to seq_puts. Tweaked
commit message]
Signed-off-by: Zoran Markovic <zoran.markovic@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Add functions needed for hooking up alarmtimer to timerfd:
* alarm_restart: Similar to hrtimer_restart, restart an alarmtimer after
the expires time has already been updated (as with alarm_forward).
* alarm_forward_now: Similar to hrtimer_forward_now, move the expires
time forward to an interval from the current time of the associated clock.
* alarm_start_relative: Start an alarmtimer with an expires time relative to
the current time of the associated clock.
* alarm_expires_remaining: Similar to hrtimer_expires_remaining, return the
amount of time remaining until alarm expiry.
Signed-off-by: Todd Poynor <toddpoynor@google.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since commit 31ade30692, timekeeping_init()
checks for presence of persistent clock by attempting to read a non-zero
time value. This is an issue on platforms where persistent_clock (instead
is implemented as a free-running counter (instead of an RTC) starting
from zero on each boot and running during suspend. Examples are some ARM
platforms (e.g. PandaBoard).
An attempt to read such a clock during timekeeping_init() may return zero
value and falsely declare persistent clock as missing. Additionally, in
the above case suspend times may be accounted twice (once from
timekeeping_resume() and once from rtc_resume()), resulting in a gradual
drift of system time.
This patch does a run-time correction of the issue by doing the same check
during timekeeping_suspend().
A better long-term solution would have to return error when trying to read
non-existing clock and zero when trying to read an uninitialized clock, but
that would require changing all persistent_clock implementations.
This patch addresses the immediate breakage, for now.
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Zoran Markovic <zoran.markovic@linaro.org>
[jstultz: Tweaked commit message and subject]
Signed-off-by: John Stultz <john.stultz@linaro.org>
kernel/time/ntp.c: In function ‘__hardpps’:
kernel/time/ntp.c:877: warning: unused variable ‘flags’
commit a076b2146f ("ntp: Remove ntp_lock,
using the timekeeping locks to protect ntp state") removed its users,
but not the actual variable.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
commit 7eaeb34305 (clocksource: Provide unbind interface in sysfs)
implemented clocksource_select_fallback() which is not defined for
CONFIG_ARCH_USES_GETTIMEOFFSET=y. Add an empty inline function for
that.
Reported-by: Ingo Molnar <mingo@kernel.org>
Reported-by: fengguang.wu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 26517f3e (tick: Avoid programming the local cpu timer if
broadcast pending) added a warning if the cpu enters broadcast mode
again while the pending bit is still set. Meelis reported that the
warning triggers. There are two corner cases which have been not
considered:
1) cpuidle calls clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER)
twice. That can result in the following scenario
CPU0 CPU1
cpuidle_idle_call()
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER)
set cpu in tick_broadcast_oneshot_mask
broadcast interrupt
event expired for cpu1
set pending bit
acpi_idle_enter_simple()
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER)
WARN_ON(pending bit)
Move the WARN_ON into the section where we enter broadcast mode so
it wont provide false positives on the second call.
2) safe_halt() enables interrupts, so a broadcast interrupt can be
delivered befor the broadcast mode is disabled. That sets the
pending bit for the CPU which receives the broadcast
interrupt. Though the interrupt is delivered right away from the
broadcast handler and leaves the pending bit stale.
Clear the pending bit for the current cpu in the broadcast handler.
Reported-and-tested-by: Meelis Roos <mroos@linux.ee>
Cc: Len Brown <lenb@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305271841130.4220@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Unbreak architectures which do not use clockevents, but require to
build some of the core timekeeping infrastructure
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Provide a sysfs interface to allow unbinding of clockevent
devices. The device is unbound if it is unused or if there is a
replacement device available. Unbinding of broadcast devices is not
supported as we don't want to foster that nonsense. If no replacement
device is available the unbind returns -EBUSY. Unbind is available
from the kernel and through sysfs, which is necessary to drop the
module refcount.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.499216659@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Split out the clockevent device selection logic. Preparatory patch to
allow unbinding active clockevent devices.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.431796247@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Provide a simple sysfs interface for the clockevent devices. Show the
current active clockevent device.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.371634778@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We want to be able to remove clockevent modules as well. Add a
refcount so we don't remove a module with an active clock event
device.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.307435149@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No need to call another function and have duplicated cases.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.235746557@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that the notifier chain is gone there are no other users and it's
pointless to nest tick_device_lock inside of clockevents_lock because
there is no other use case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.162888472@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
7+ years and still a single user. Kill it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.098520211@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The unregister call can fail, if the clocksource is the current one
and there is no replacement clocksource available. It can also fail,
if the clocksource is the watchdog clocksource and I'm not going to
provide support for this.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143436.029915527@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the module refcount held for the current clocksource there is no
way to unload the module.
Provide a sysfs interface which allows to unbind the clocksource. One
could argue that the clocksource override could be (ab)used to do so,
but the clocksource override cannot be used from the kernel itself,
while an unbind function can be used to programmatically check whether
a clocksource can be shutdown or not.
The unbind functionality uses the new skip current feature of
clocksource_select and verifies that a fallback clocksource has been
installed. If the clocksource which should be unbound is the current
clocksource and no fallback can be found, unbind returns -EBUSY.
This does not support the unbinding of a clocksource which is used as
the watchdog clocksource. No point in fostering crappy hardware.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143435.964218245@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Split out the user string input for clocksource override. Preparatory
patch for unbind.
[ jstultz: Fix an off by one error ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143435.895851338@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Preparatory patch for clocksource unbind support.
Split out code from clocksource_select and modify it, so it skips the
current clocksource on request and tries to find a fallback
clocksource. Convert all existing users. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143435.834965397@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add a module refcount, so the current clocksource cannot be removed
unconditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143435.762417789@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
timekeeping_notify() can fail due cs->enable() failure. Though the
caller does not notice and happily keeps the wrong clocksource as the
current one.
Let the caller know about failure, so the current clocksource will be
shown correctly in sysfs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143435.696321912@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If a clocksource has a (wrong) high rating, but can't be used as a
timebase for oneshot tick mode, it is unconditionally selected even
when the system is already in oneshot tick mode. This causes full
system failure.
Verify the clocksource selection against the oneshot mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130425143435.635040849@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer fixes from Thomas Gleixner:
- Cure for not using zalloc in the first place, which leads to random
crashes with CPUMASK_OFF_STACK.
- Revert a user space visible change which broke udev
- Add a missing cpu_online early return introduced by the new full
dyntick conversions
- Plug a long standing race in the timer wheel cpu hotplug code.
Sigh...
- Cleanup NOHZ per cpu data on cpu down to prevent stale data on cpu
up.
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Revert ALWAYS_USE_PERSISTENT_CLOCK compile time optimizaitons
timer: Don't reinitialize the cpu base lock during CPU_UP_PREPARE
tick: Don't invoke tick_nohz_stop_sched_tick() if the cpu is offline
tick: Cleanup NOHZ per cpu data on cpu down
tick: Use zalloc_cpumask_var for allocating offstack cpumasks
Kay Sievers noted that the ALWAYS_USE_PERSISTENT_CLOCK config,
which enables some minor compile time optimization to avoid
uncessary code in mostly the suspend/resume path could cause
problems for userland.
In particular, the dependency for RTC_HCTOSYS on
!ALWAYS_USE_PERSISTENT_CLOCK, which avoids setting the time
twice and simplifies suspend/resume, has the side effect
of causing the /sys/class/rtc/rtcN/hctosys flag to always be
zero, and this flag is commonly used by udev to setup the
/dev/rtc symlink to /dev/rtcN, which can cause pain for
older applications.
While the udev rules could use some work to be less fragile,
breaking userland should strongly be avoided. Additionally
the compile time optimizations are fairly minor, and the code
being optimized is likely to be reworked in the future, so
lets revert this change.
Reported-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: stable <stable@vger.kernel.org> #3.9
Cc: Feng Tang <feng.tang@intel.com>
Cc: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Link: http://lkml.kernel.org/r/1366828376-18124-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 5b39939a4 (nohz: Move ts->idle_calls incrementation into strict
idle logic) moved code out of tick_nohz_stop_sched_tick() and missed
to bail out when the cpu is offline. That's causing subsequent
failures as an offline CPU is supposed to die and not to fiddle with
nohz magic.
Return false in can_stop_idle_tick() if the cpu is offline.
Reported-and-tested-by: Jiri Kosina <jkosina@suse.cz>
Reported-and-tested-by: Prarit Bhargava <prarit@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305132138160.2863@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Prarit reported a crash on CPU offline/online. The reason is that on
CPU down the NOHZ related per cpu data of the dead cpu is not cleaned
up. If at cpu online an interrupt happens before the per cpu tick
device is registered the irq_enter() check potentially sees stale data
and dereferences a NULL pointer.
Cleanup the data after the cpu is dead.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Cc: Mike Galbraith <bitbucket@online.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305031451561.2886@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull 'full dynticks' support from Ingo Molnar:
"This tree from Frederic Weisbecker adds a new, (exciting! :-) core
kernel feature to the timer and scheduler subsystems: 'full dynticks',
or CONFIG_NO_HZ_FULL=y.
This feature extends the nohz variable-size timer tick feature from
idle to busy CPUs (running at most one task) as well, potentially
reducing the number of timer interrupts significantly.
This feature got motivated by real-time folks and the -rt tree, but
the general utility and motivation of full-dynticks runs wider than
that:
- HPC workloads get faster: CPUs running a single task should be able
to utilize a maximum amount of CPU power. A periodic timer tick at
HZ=1000 can cause a constant overhead of up to 1.0%. This feature
removes that overhead - and speeds up the system by 0.5%-1.0% on
typical distro configs even on modern systems.
- Real-time workload latency reduction: CPUs running critical tasks
should experience as little jitter as possible. The last remaining
source of kernel-related jitter was the periodic timer tick.
- A single task executing on a CPU is a pretty common situation,
especially with an increasing number of cores/CPUs, so this feature
helps desktop and mobile workloads as well.
The cost of the feature is mainly related to increased timer
reprogramming overhead when a CPU switches its tick period, and thus
slightly longer to-idle and from-idle latency.
Configuration-wise a third mode of operation is added to the existing
two NOHZ kconfig modes:
- CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named
as a config option. This is the traditional Linux periodic tick
design: there's a HZ tick going on all the time, regardless of
whether a CPU is idle or not.
- CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the
periodic tick when a CPU enters idle mode.
- CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the
tick when a CPU is idle, also slows the tick down to 1 Hz (one
timer interrupt per second) when only a single task is running on a
CPU.
The .config behavior is compatible: existing !CONFIG_NO_HZ and
CONFIG_NO_HZ=y settings get translated to the new values, without the
user having to configure anything. CONFIG_NO_HZ_FULL is turned off by
default.
This feature is based on a lot of infrastructure work that has been
steadily going upstream in the last 2-3 cycles: related RCU support
and non-periodic cputime support in particular is upstream already.
This tree adds the final pieces and activates the feature. The pull
request is marked RFC because:
- it's marked 64-bit only at the moment - the 32-bit support patch is
small but did not get ready in time.
- it has a number of fresh commits that came in after the merge
window. The overwhelming majority of commits are from before the
merge window, but still some aspects of the tree are fresh and so I
marked it RFC.
- it's a pretty wide-reaching feature with lots of effects - and
while the components have been in testing for some time, the full
combination is still not very widely used. That it's default-off
should reduce its regression abilities and obviously there are no
known regressions with CONFIG_NO_HZ_FULL=y enabled either.
- the feature is not completely idempotent: there is no 100%
equivalent replacement for a periodic scheduler/timer tick. In
particular there's ongoing work to map out and reduce its effects
on scheduler load-balancing and statistics. This should not impact
correctness though, there are no known regressions related to this
feature at this point.
- it's a pretty ambitious feature that with time will likely be
enabled by most Linux distros, and we'd like you to make input on
its design/implementation, if you dislike some aspect we missed.
Without flaming us to crisp! :-)
Future plans:
- there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off
the periodic tick altogether when there's a single busy task on a
CPU. We'd first like 1 Hz to be exposed more widely before we go
for the 0 Hz target though.
- once we reach 0 Hz we can remove the periodic tick assumption from
nr_running>=2 as well, by essentially interrupting busy tasks only
as frequently as the sched_latency constraints require us to do -
once every 4-40 msecs, depending on nr_running.
I am personally leaning towards biting the bullet and doing this in
v3.10, like the -rt tree this effort has been going on for too long -
but the final word is up to you as usual.
More technical details can be found in Documentation/timers/NO_HZ.txt"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
sched: Keep at least 1 tick per second for active dynticks tasks
rcu: Fix full dynticks' dependency on wide RCU nocb mode
nohz: Protect smp_processor_id() in tick_nohz_task_switch()
nohz_full: Add documentation.
cputime_nsecs: use math64.h for nsec resolution conversion helpers
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config
nohz: Reduce overhead under high-freq idling patterns
nohz: Remove full dynticks' superfluous dependency on RCU tree
nohz: Fix unavailable tick_stop tracepoint in dynticks idle
nohz: Add basic tracing
nohz: Select wide RCU nocb for full dynticks
nohz: Disable the tick when irq resume in full dynticks CPU
nohz: Re-evaluate the tick for the new task after a context switch
nohz: Prepare to stop the tick on irq exit
nohz: Implement full dynticks kick
nohz: Re-evaluate the tick from the scheduler IPI
sched: New helper to prevent from stopping the tick in full dynticks
sched: Kick full dynticks CPU that have more than one task enqueued.
perf: New helper to prevent full dynticks CPUs from stopping tick
perf: Kick full dynticks CPU if events rotation is needed
...
commit b352bc1cbc (tick: Convert broadcast cpu bitmaps to
cpumask_var_t) broke CONFIG_CPUMASK_OFFSTACK in a very subtle way.
Instead of allocating the cpumasks with zalloc_cpumask_var it uses
alloc_cpumask_var, so we can get random data there, which of course
confuses the logic completely and causes random failures.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Reported-and-tested-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305032015060.2990@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler doesn't yet fully support environments
with a single task running without a periodic tick.
In order to ensure we still maintain the duties of scheduler_tick(),
keep at least 1 tick per second.
This makes sure that we keep the progression of various scheduler
accounting and background maintainance even with a very low granularity.
Examples include cpu load, sched average, CFS entity vruntime,
avenrun and events such as load balancing, amongst other details
handled in sched_class::task_tick().
This limitation will be removed in the future once we get
these individual items to work in full dynticks CPUs.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Commit 0637e02939
("nohz: Select wide RCU nocb for full dynticks") intended
to force CONFIG_RCU_NOCB_CPU_ALL=y when full dynticks is
enabled.
However this option is part of a choice menu and Kconfig's
"select" instruction has no effect on such targets.
Fix this by using reverse dependencies on the targets we
don't want instead.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.
Merge a common upstream merge point that has these
updates.
Conflicts:
include/linux/perf_event.h
kernel/rcutree.h
kernel/rcutree_plugin.h
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull more full-dynticks updates from Frederic Weisbecker:
* Get rid of the passive dependency on VIRT_CPU_ACCOUNTING_GEN (finally!)
* Preparation patch to remove the dependency on CONFIG_64BITS
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Turn the full dynticks passive dependency on VIRT_CPU_ACCOUNTING_GEN
to an active one.
The full dynticks Kconfig is currently hidden behind the full dynticks
cputime accounting, which is an awkward and counter-intuitive layout:
the user first has to select the dynticks cputime accounting in order
to make the full dynticks feature to be visible.
We definetly want it the other way around. The usual way to perform
this kind of active dependency is use "select" on the depended target.
Now we can't use the Kconfig "select" instruction when the target is
a "choice".
So this patch inspires on how the RCU subsystem Kconfig interact
with its dependencies on SMP and PREEMPT: we make sure that cputime
accounting can't propose another option than VIRT_CPU_ACCOUNTING_GEN
when NO_HZ_FULL is selected by using the right "depends on" instruction
for each cputime accounting choices.
v2: Keep full dynticks cputime accounting available even without
full dynticks, as per Paul McKenney's suggestion.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
One testbox of mine (Intel Nehalem, 16-way) uses MWAIT for its idle routine,
which apparently can break out of its idle loop rather frequently, with
high frequency.
In that case NO_HZ_FULL=y kernels show high ksoftirqd overhead and constant
context switching, because tick_nohz_stop_sched_tick() will, if
delta_jiffies == 0, mis-identify this as a timer event - activating the
TIMER_SOFTIRQ, which wakes up ksoftirqd.
Fix this by treating delta_jiffies == 0 the same way we treat other short
wakeups, delta_jiffies == 1.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vitaliy reported that a per cpu HPET timer interrupt crashes the
system during hibernation. What happens is that the per cpu HPET timer
gets shut down when the nonboot cpus are stopped. When the nonboot
cpus are onlined again the HPET code sets up the MSI interrupt which
fires before the clock event device is registered. The event handler
is still set to hrtimer_interrupt, which then crashes the machine due
to highres mode not being active.
See http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=700333
There is no real good way to avoid that in the HPET code. The HPET
code alrady has a mechanism to detect spurious interrupts when event
handler == NULL for a similar reason.
We can handle that in the clockevent/tick layer and replace the
previous functional handler with a dummy handler like we do in
tick_setup_new_device().
The original clockevents code did this in clockevents_exchange_device(),
but that got removed by commit 7c1e76897 (clockevents: prevent
clockevent event_handler ending up handler_noop) which forgot to fix
it up in tick_shutdown(). Same issue with the broadcast device.
Reported-by: Vitaliy Fillipov <vitalif@yourcmc.ru>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: stable@vger.kernel.org
Cc: 700333@bugs.debian.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove the dependency on (TREE_RCU || TREE_PREEMPT_RCU). The full
dynticks option already depends on SMP which implies
(whatever flavour of) RCU tree config anyway.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
It's not obvious to find out why the full dynticks subsystem
doesn't always stop the tick: whether this is due to kthreads,
posix timers, perf events, etc...
These new tracepoints are here to help the user diagnose
the failures and test this feature.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
It makes testing and implementation much easier as we
know in advance that all CPUs are RCU nocbs.
Also this prepares to remove the dynamic check for
nohz_full= boot mask to be a subset of rcu_nocbs=
Eventually this should also help removing the requirement
for the boot CPU to be outside the full dynticks range.
Suggested-by: Christoph Lameter <cl@linux.com>
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
When a task is scheduled in, it may have some properties
of its own that could make the CPU reconsider the need for
the tick: posix cpu timers, perf events, ...
So notify the full dynticks subsystem when a task gets
scheduled in and re-check the tick dependency at this
stage. This is done through a self IPI to avoid messing
up with any current lock scenario.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Interrupt exit is a natural place to stop the tick: it happens
after all events happening before and during the irq which
are liable to update the dependency on the tick occured. Also
it makes sure that any check on tick dependency is well ordered
against dynticks kick IPIs.
Bring in the infrastructure that performs the tick dependency
checks on irq exit and shut it down if these checks show that we
can do it safely.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Implement the full dynticks kick that is performed from
IPIs sent by various subsystems (scheduler, posix timers, ...)
when they want to notify about a new event that may
reconsider the dependency on the tick.
Most of the time, such an event end up restarting the tick.
(Part of the design with subsystems providing *_can_stop_tick()
helpers suggested by Peter Zijlstra a while ago).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
commit 7ec98e15aa (timekeeping: Delay update of clock->cycle_last)
forgot to update tk->cycle_last in the resume path. This results in a
stale value versus clock->cycle_last and prevents resume in the worst
case.
Reported-by: Jiri Slaby <jslaby@suse.cz>
Reported-and-tested-by: Borislav Petkov <bp@alien8.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Linux-pm mailing list <linux-pm@lists.linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1304211648150.21884@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The scheduler IPI is used by the scheduler to kick
full dynticks CPUs asynchronously when more than one
task are running or when a new timer list timer is
enqueued. This way the destination CPU can decide
to restart the tick to handle this new situation.
Now let's call that kick in the scheduler IPI.
(Reusing the scheduler IPI rather than implementing
a new IPI was suggested by Peter Zijlstra a while ago)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Provide a new kernel config that defaults all CPUs to be part
of the full dynticks range, except the boot one for timekeeping.
This default setting is overriden by the nohz_full= boot option
if passed by the user.
This is helpful for those who don't need a finegrained range
of full dynticks CPU and also for automated testing.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We need full dynticks CPU to also be RCU nocb so
that we don't have to keep the tick to handle RCU
callbacks.
Make sure the range passed to nohz_full= boot
parameter is a subset of rcu_nocbs=
The CPUs that fail to meet this requirement will be
excluded from the nohz_full range. This is checked
early in boot time, before any CPU has the opportunity
to stop its tick.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The timekeeping job must be able to run early on boot
because there may be some pre-SMP (and thus pre-initcalls )
components that rely on it. The IO-APIC is one such users
as it tests the timer health by watching jiffies progression.
Given that it happens before we know the initial online
set, we can't rely on it to select a timekeeper. We need
one before SMP time otherwise we simply crash on boot.
To fix this and keep things simple for now, force the boot CPU
outside of the full dynticks range in any case and do this early
on kernel parameter parsing time.
We might want a trickier solution later, expecially for aSMP
architectures that need to assign housekeeping tasks to arbitrary
low power CPUs.
But it's still first pass KISS time for now.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Provide two new helpers in order to notify the full dynticks CPUs about
some internal system changes against which they may reconsider the state
of their tick. Some practical examples include: posix cpu timers, perf tick
and sched clock tick.
For now the notifying handler, implemented through IPIs, is a stub
that will be implemented when we get the tick stop/restart infrastructure
in.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
tick_oneshot_notify() is used to notify a particular CPU to try
to switch into oneshot mode after a oneshot capable tick device
is registered and tick_clock_notify() is used to notify all CPUs
to try to switch into oneshot mode after a high res clocksource
is registered. There is one caveat; if the tick devices suffer
from FEAT_C3_STOP we don't try to switch into oneshot mode unless
we have a oneshot capable broadcast device already registered.
If the broadcast device is registered after the tick devices that
have FEAT_C3_STOP we'll never try to switch into oneshot mode
again, causing us to be stuck in periodic mode forever. Avoid
this scenario by calling tick_clock_notify() after we register
the broadcast device so that we try to switch into oneshot mode
on all CPUs one more time.
[ tglx: Adopted to timers/core and added a comment ]
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Link: http://lkml.kernel.org/r/1366219566-29783-1-git-send-email-sboyd@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When running with 4096 cores attemping to read /proc/timer_list will fail
with an ENOMEM condition. On a sufficantly large systems the total amount
of data is more then 4mb, so it won't fit into a single buffer. The
failure can also occur on smaller systems when memory fragmentation is
high as reported by Dave Jones.
Convert /proc/timer_list to a proper seq_file with its own iterator. This
is a little more complex given that we have to make two passes with two
separate headers.
sysrq_timer_list_show also needed to be updated to reflect the fact that
now timer_list_show only does one cpu at at time.
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Reported-by: Dave Jones <davej@redhat.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Link: http://lkml.kernel.org/r/1364345790-14577-3-git-send-email-nzimmer@sgi.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Split timer_list_show_tickdevices() into the header printout and pull
the rest up to timer_list_show. This is a preparatory patch for
converting timer_list to a proper seqfile with its own iterator
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Reported-by: Dave Jones <davej@redhat.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Link: http://lkml.kernel.org/r/1364345790-14577-2-git-send-email-nzimmer@sgi.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove the "single task" statement from CONFIG_NO_HZ_FULL
title. The constraint can be invalidated when tasks from
other sched classes than SCHED_FAIR are running. Moreover
it's possible that hrtick join the party in the future.
Also add a line about the dependency on SMP.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Rename CONFIG_PERIODIC_HZ to CONFIG_HZ_PERIODIC in
order to stay consistent with other tick implementation
entries:
CONFIG_HZ_PERIODIC
CONFIG_NO_HZ_IDLE
CONFIG_NO_HZ_FULL
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
"Extended nohz" was used as a naming base for the full dynticks
API and Kconfig symbols. It reflects the fact the system tries
to stop the tick in more places than just idle.
But that "extended" name is a bit opaque and vague. Rename it to
"full" makes it clearer what the system tries to do under this
config: try to shutdown the tick anytime it can. The various
constraints that prevent that to happen shouldn't be considered
as fundamental properties of this feature but rather technical
issues that may be solved in the future.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
In order to enforce backward compatibility with older
config files, we want the new dynticks-idle Kconfig entry
to default its value to the one of the old CONFIG_NO_HZ symbol
if present.
Namely we want:
config NO_HZ # old obsolete dynticks idle symbol
bool
config NO_HZ_IDLE # new dynticks idle symbol
default NO_HZ
However Kconfig prevents this to work if the old symbol
is not visible. And this is currently the case because
NO_HZ lacks a title in order to show it in make oldconfig
and alike.
To fix this, bring a minimal title and help text to the
obsolete Kconfig entry that explains its purpose. This
makes the "defaulting" to work.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Shorten the seqcount write hold region to the actual update of the
timekeeper and the related data (e.g vsyscall).
On a contemporary x86 system this reduces the maximum latencies on
Preempt-RT from 8us to 4us on the non-timekeeping cores.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Use the shadow timekeeper to do the update_wall_time() adjustments and
then copy it over to the real timekeeper.
Keep the shadow timekeeper in sync when updating stuff outside of
update_wall_time().
This allows us to limit the timekeeper_seq hold time to the update of
the real timekeeper and the vsyscall data in the next patch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
For calculating the new timekeeper values store the new cycle_last
value in the timekeeper and update the clock->cycle_last just when we
actually update the new values.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
For implementing a shadow timekeeper and a split calculation/update
region we need to store the cycle_last value in the timekeeper and
update the value in the clocksource struct only in the update region.
Add the extra storage to the timekeeper.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to properly handle the NTP state in future changes to the
timekeeping lock management, this patch moves the management of
all of the ntp state under the timekeeping locks.
This allows us to remove the ntp_lock.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since we are taking the timekeeping locks, just go ahead
and update any tai change directly, rather then dropping
the lock and calling a function that will just take it again.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In moving the NTP state to be protected by the timekeeping locks,
be sure to acquire the timekeeping locks prior to calling
ntp functions.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since ADJ_SETOFFSET adjusts the timekeeping state, process
it as part of the top level do_adjtimex() function in
timekeeping.c.
This avoids deadlocks that could occur once we change the
ntp locking rules.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to change the locking rules, we need to provide
the timespec and tai values rather then having the ntp
logic acquire these values itself.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Move logic that does not need the ntp state to be done
in the timekeeping do_adjtimex() call.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In preparation for changing the ntp locking rules, move
do_adjtimex and hardpps accessor functions to timekeeping.c,
but keep the code logic in ntp.c.
This patch also introduces a ntp_internal.h file so timekeeping
specific interfaces of ntp.c can be more limitedly shared with
timekeeping.c.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Split out the timex validation done in do_adjtimex into a separate
function. This will help simplify logic in following patches.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Given that we apply a few restrictions on the full dynticks
CPUs range (keep an online timekeeper oustide the range,
then in the future have the range be an RCU nocb CPUs subset),
let's print the final resulting range of full dynticks CPUs to
the user so that he knows what's really going to run.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Now the user has the choice between three implementations of
the timer tick:
* Static periodic tick
* Idle dynticks
* Full dynticks
At least for now, these are mutually exclusive choices, so
let's rely on the proper Kconfig feature to display these
to the user.
A new entry CONFIG_NO_HZ_IDLE is created and the old
CONFIG_NO_HZ maps to it for config file backward compatibility.
The old name was too general now that we have more
granular dynticks implementations.
While at it, add some explanation to help the user on
his decision between the 3 entries.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The full dynticks feature only shows up when all its
Kconfig dependencies are met (RCU nocbs, RCU user mode, ...)
This is far from being user friendly as those who want to
activate this feature need to look into the Kconfig files
and iterate through each dependency then activate these
by hand in order to show and select the full dynticks
Kconfig option.
So process the other way around: show up the Kconfig option
if the minimal low level dependencies are met and activate
the high level ones when we enable the feature.
Note there is one exception in the picture:
CONFIG_VIRT_CPU_ACCOUNTING_GEN is part of a Kconfig choice
menu and it appears we can't select it from another Kconfig
selection when it's under such layout. So for now this
particular item stays as a passive dependency.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Yet again, the kbuild test robot saves the day, noting
I left out defining __timekeeping_set_tai_offset as
static. It even sent me this patch.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The "NOHZ: local_softirq_pending" message is a largely informational
message. This makes extra work for customers that have a policy of
investigating all kernel log messages logged at <= KERN_ERR log level.
This patch sets the message to a different log level.
[ tglx: Use pr_warn() ]
Signed-off-by: Rado Vrbovsky <rvrbovsk@redhat.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/r/2037057938.893524.1360345050772.JavaMail.root@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We want to shorten the seqcount write hold time. So split the seqlock
into a lock and a seqcount.
Open code the seqwrite_lock in the places which matter and drop the
sequence counter update where it's pointless.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[jstultz: Merge fixups from CLOCK_TAI collisions]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Make the lock a separate entity. Preparatory patch for shadow
timekeeper structure.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[Merged with CLOCK_TAI changes]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Nothing outside of the timekeeping core needs that lock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Calculate the cycle interval shifted value once. No functional change,
just makes the code more readable.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This add a CLOCK_TAI clockid and the needed accessors.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Currently NTP manages the TAI offset. Since there's plans for a
CLOCK_TAI clockid, push the TAI management into the timekeeping
core.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This way the full nohz CPUs can safely run with the tick
stopped with a guarantee that somebody else is taking
care of the jiffies and GTOD progression.
Once the duty is attributed to a CPU, it won't change. Also that
CPU can't enter into dyntick idle mode or be hot unplugged.
This may later be improved from a power consumption POV. At
least we should be able to share the duty amongst all CPUs
outside the full dynticks range. Then the duty could even be
shared with full dynticks CPUs when those can't stop their
tick for any reason.
But let's start with that very simple approach first.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[fix have_nohz_full_mask offcase]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
For extreme usecases such as Real Time or HPC, having
the ability to shutdown the tick when a single task runs
on a CPU is a desired feature:
* Reducing the amount of interrupts improves throughput
for CPU-bound tasks. The CPU is less distracted from its
real job, from an execution time and from the cache point
of views.
* This also improve latency response as we have less critical
sections.
Start with introducing a very simple interface to define
full dynticks CPU: use a boot time option defined cpumask
through the "nohz_extended=" kernel parameter. CPUs that
are part of this range will have their tick shutdown
whenever possible: provided they run a single task and
they don't do kernel activity that require the periodic
tick. These details will be later documented in
Documentation/*
An online CPU must be kept outside this range to handle the
timekeeping.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
There are some new processors whose TSC clocksource won't stop during
suspend. Currently, after system resumes, kernel will use persistent
clock or RTC to compensate the sleep time, but with these nonstop
clocksources, we could skip the special compensation from external
sources, and just use current clocksource for time recounting.
This can solve some time drift bugs caused by some not-so-accurate or
error-prone RTC devices.
The current way to count suspended time is first try to use the persistent
clock, and then try the RTC if persistent clock can't be used. This
patch will change the trying order to:
suspend-nonstop clocksource -> persistent clock -> RTC
When counting the sleep time with nonstop clocksource, use an accurate way
suggested by Jason Gunthorpe to cover very large delta cycles.
Signed-off-by: Feng Tang <feng.tang@intel.com>
[jstultz: Small optimization, avoiding re-reading the clocksource]
Signed-off-by: John Stultz <john.stultz@linaro.org>
On the CPU which gets woken along with the target CPU of the broadcast
the following happens:
deep_idle()
<-- spurious wakeup
broadcast_exit()
set forced bit
enable interrupts
<-- Nothing happens
disable interrupts
broadcast_enter()
<-- Here we observe the forced bit is set
deep_idle()
Now after that the target CPU of the broadcast runs the broadcast
handler and finds the other CPU in both the broadcast and the forced
mask, sends the IPI and stuff gets back to normal.
So it's not actually harmful, just more evidence for the theory, that
hardware designers have access to very special drug supplies.
Now there is no point in going back to deep idle just to wake up again
right away via an IPI. Provide a check which allows the idle code to
avoid the deep idle transition.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: LAK <linux-arm-kernel@lists.infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Arjan van de Veen <arjan@infradead.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Jason Liu <liu.h.jason@gmail.com>
Link: http://lkml.kernel.org/r/20130306111537.565418308@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some brilliant hardware implementations wake multiple cores when the
broadcast timer fires. This leads to the following interesting
problem:
CPU0 CPU1
wakeup from idle wakeup from idle
leave broadcast mode leave broadcast mode
restart per cpu timer restart per cpu timer
go back to idle
handle broadcast
(empty mask)
enter broadcast mode
programm broadcast device
enter broadcast mode
programm broadcast device
So what happens is that due to the forced reprogramming of the cpu
local timer, we need to set a event in the future. Now if we manage to
go back to idle before the timer fires, we switch off the timer and
arm the broadcast device with an already expired time (covered by
forced mode). So in the worst case we repeat the above ping pong
forever.
Unfortunately we have no information about what caused the wakeup, but
we can check current time against the expiry time of the local cpu. If
the local event is already in the past, we know that the broadcast
timer is about to fire and send an IPI. So we mark ourself as an IPI
target even if we left broadcast mode and avoid the reprogramming of
the local cpu timer.
This still leaves the possibility that a CPU which is not handling the
broadcast interrupt is going to reach idle again before the IPI
arrives. This can't be solved in the core code and will be handled in
follow up patches.
Reported-by: Jason Liu <liu.h.jason@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: LAK <linux-arm-kernel@lists.infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Arjan van de Veen <arjan@infradead.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Link: http://lkml.kernel.org/r/20130306111537.492045206@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the local cpu timer stops in deep idle, we arm the broadcast device
and get woken by an IPI. Now when we return from deep idle we reenable
the local cpu timer unconditionally before handling the IPI. But
that's a pointless exercise: the timer is already expired and the IPI
is on the way. And it's an expensive exercise as we use the forced
reprogramming mode so that we do not lose a timer event. This forced
reprogramming will loop at least once in the retry.
To avoid this reprogramming, we mark the cpu in a pending bit mask
before we send the IPI. Now when the IPI target cpu wakes up, it will
see the pending bit set and skip the reprogramming. The reprogramming
of the cpu local timer will happen in the IPI handler which runs the
cpu local timer interrupt function.
Reported-by: Jason Liu <liu.h.jason@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: LAK <linux-arm-kernel@lists.infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Arjan van de Veen <arjan@infradead.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Link: http://lkml.kernel.org/r/20130306111537.431082074@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently tick_check_broadcast_device doesn't reject clock_event_devices
with CLOCK_EVT_FEAT_DUMMY, and may select them in preference to real
hardware if they have a higher rating value. In this situation, the
dummy timer is responsible for broadcasting to itself, and the core
clockevents code may attempt to call non-existent callbacks for
programming the dummy, eventually leading to a panic.
This patch makes tick_check_broadcast_device always reject dummy timers,
preventing this problem.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Jon Medhurst (Tixy) <tixy@linaro.org>
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull thermal management updates from Zhang Rui:
"Highlights:
- introduction of Dove thermal sensor driver.
- introduction of Kirkwood thermal sensor driver.
- introduction of intel_powerclamp thermal cooling device driver.
- add interrupt and DT support for rcar thermal driver.
- add thermal emulation support which allows platform thermal driver
to do software/hardware emulation for thermal issues."
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux: (36 commits)
thermal: rcar: remove __devinitconst
thermal: return an error on failure to register thermal class
Thermal: rename thermal governor Kconfig option to avoid generic naming
thermal: exynos: Use the new thermal trend type for quick cooling action.
Thermal: exynos: Add support for temperature falling interrupt.
Thermal: Dove: Add Themal sensor support for Dove.
thermal: Add support for the thermal sensor on Kirkwood SoCs
thermal: rcar: add Device Tree support
thermal: rcar: remove machine_power_off() from rcar_thermal_notify()
thermal: rcar: add interrupt support
thermal: rcar: add read/write functions for common/priv data
thermal: rcar: multi channel support
thermal: rcar: use mutex lock instead of spin lock
thermal: rcar: enable CPCTL to use hardware TSC deciding
thermal: rcar: use parenthesis on macro
Thermal: fix a build warning when CONFIG_THERMAL_EMULATION cleared
Thermal: fix a wrong comment
thermal: sysfs: Add a new sysfs node emul_temp for thermal emulation
PM: intel_powerclamp: off by one in start_power_clamp()
thermal: exynos: Miscellaneous fixes to support falling threshold interrupt
...
Pull core locking changes from Ingo Molnar:
"The biggest change is the rwsem lock-steal improvements, both to the
assembly optimized and the spinlock based variants.
The other notable change is the clean up of the seqlock implementation
to be based on the seqcount infrastructure.
The rest is assorted smaller debuggability, cleanup and continued -rt
locking changes."
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rwsem-spinlock: Implement writer lock-stealing for better scalability
futex: Revert "futex: Mark get_robust_list as deprecated"
generic: Use raw local irq variant for generic cmpxchg
lockdep: Selftest: convert spinlock to raw spinlock
seqlock: Use seqcount infrastructure
seqlock: Remove unused functions
ntp: Make ntp_lock raw
intel_idle: Convert i7300_idle_lock to raw_spinlock
locking: Various static lock initializer fixes
lockdep: Print more info when MAX_LOCK_DEPTH is exceeded
rwsem: Implement writer lock-stealing for better scalability
lockdep: Silence warning if CONFIG_LOCKDEP isn't set
watchdog: Use local_clock for get_timestamp()
lockdep: Rename print_unlock_inbalance_bug() to print_unlock_imbalance_bug()
locking/stat: Fix a typo
A large number of cleanups, all over the platforms. This is dominated
largely by the Samsung platforms (s3c, s5p, exynos) and a few of the
others moving code out of arch/arm into more appropriate subsystems.
The clocksource and irqchip drivers are now abstracted to the point
where platforms that are already cleaned up do not need to even specify
the driver they use, it can all get configured from the device tree
as we do for normal device drivers. The clocksource changes basically
touch every single platform in the process.
We further clean up the use of platform specific header files here,
with the goal of turning more of the platforms over to being
"multiplatform" enabled, which implies that they cannot expose
their headers to architecture independent code any more.
It is expected that no functional changes are part of the cleanup.
The overall reduction in total code lines is mostly the result of
removing broken and obsolete code.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAUSUyKmCrR//JCVInAQIN8RAAnb/uPytmlMjn5yCksF4Mvb/FVbn/TVwz
KRIGpCHOzyKK1q7pM8NRUVWfjW2SZqbXJFqx6zBGKSlDPvFTOhsLyyupU+Tnyu5W
IX4eIUBwb+a6H7XDHw0X2YI8uHzi5RNLhne0A1QyDKcnuHs1LDAttXnJHaK4Ap6Y
NN2YFt3l3ld7DXWXJtMsw5v8lC10aeIFGTvXefaPDAdeMLivmI57qEUMDXknNr7W
Odz/Rc0/cw3BNBVl/zNHA0jw7FOjKAymCYYNUa4xDCJEr+JnIRTqizd0N/YIIC7x
aA2xjJ3oKUFyF51yiJE6nFuTyJznhwtehc+uiMOSIkjrPLym52LEHmd7G5Yqlmjz
oiei09qBb870q3lGxwfht9iaeIwYgQFYGfD0yW5QWArCO5pxhtCPLPH7YZNZtcQd
ZJRSGGqT/ljBz3bm0K9OLESeeTTN7+Nxvtpiz/CD+Piegz0gWJzDYJRTzkJ3UWpA
WTVhVQdWUeX2JrNkgM7Z3Tu8iXOe+LIEs7kVXGJZSREmIIZiRvR36UrODZtAkp9I
7YQ+srX/uaR832pgK0RrHK0zY0psU6MmIvhYxJZFbx7keiPA9eH6drb0x7tGqcUD
FzEUzvcZvyqppndfBi+R60H/YKAhJDEXdwxzo6dyCpPQaW1T9GnzIqXuE1zin+Aw
X7Y8YywMbHI=
=DvgJ
-----END PGP SIGNATURE-----
Merge tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC cleanups from Arnd Bergmann:
"A large number of cleanups, all over the platforms. This is dominated
largely by the Samsung platforms (s3c, s5p, exynos) and a few of the
others moving code out of arch/arm into more appropriate subsystems.
The clocksource and irqchip drivers are now abstracted to the point
where platforms that are already cleaned up do not need to even
specify the driver they use, it can all get configured from the device
tree as we do for normal device drivers. The clocksource changes
basically touch every single platform in the process.
We further clean up the use of platform specific header files here,
with the goal of turning more of the platforms over to being
"multiplatform" enabled, which implies that they cannot expose their
headers to architecture independent code any more.
It is expected that no functional changes are part of the cleanup.
The overall reduction in total code lines is mostly the result of
removing broken and obsolete code."
* tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (133 commits)
ARM: mvebu: correct gated clock documentation
ARM: kirkwood: add missing include for nsa310
ARM: exynos: move exynos4210-combiner to drivers/irqchip
mfd: db8500-prcmu: update resource passing
drivers/db8500-cpufreq: delete dangling include
ARM: at91: remove NEOCORE 926 board
sunxi: Cleanup the reset code and add meaningful registers defines
ARM: S3C24XX: header mach/regs-mem.h local
ARM: S3C24XX: header mach/regs-power.h local
ARM: S3C24XX: header mach/regs-s3c2412-mem.h local
ARM: S3C24XX: Remove plat-s3c24xx directory in arch/arm/
ARM: S3C24XX: transform s3c2443 subirqs into new structure
ARM: S3C24XX: modify s3c2443 irq init to initialize all irqs
ARM: S3C24XX: move s3c2443 irq code to irq.c
ARM: S3C24XX: transform s3c2416 irqs into new structure
ARM: S3C24XX: modify s3c2416 irq init to initialize all irqs
ARM: S3C24XX: move s3c2416 irq init to common irq code
ARM: S3C24XX: Modify s3c_irq_wake to use the hwirq property
ARM: S3C24XX: Move irq syscore-ops to irq-pm
clocksource: always define CLOCKSOURCE_OF_DECLARE
...
Pull timer changes from Ingo Molnar:
"Main changes:
- ntp: Add CONFIG_RTC_SYSTOHC: a generic RTC driver facility
complementing the existing CONFIG_RTC_HCTOSYS, which uses NTP to
keep the hardware clock updated.
- posix-timers: Fix clock_adjtime to always return timex data on
success. This is changing the ABI, but no breakage was expected
and found - caution is warranted nevertheless.
- platform persistent clock improvements/cleanups.
- clockevents: refactor timer broadcast handling to be more generic
and less duplicated with matching architecture code (mostly ARM
motivated.)
- various fixes and cleanups"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers/x86/hpet: Use HPET_COUNTER to specify the hpet counter in vread_hpet()
posix-cpu-timers: Fix nanosleep task_struct leak
clockevents: Fix generic broadcast for FEAT_C3STOP
time, Fix setting of hardware clock in NTP code
hrtimer: Prevent hrtimer_enqueue_reprogram race
clockevents: Add generic timer broadcast function
clockevents: Add generic timer broadcast receiver
timekeeping: Switch HAS_PERSISTENT_CLOCK to ALWAYS_USE_PERSISTENT_CLOCK
x86/time/rtc: Don't print extended CMOS year when reading RTC
x86: Select HAS_PERSISTENT_CLOCK on x86
timekeeping: Add CONFIG_HAS_PERSISTENT_CLOCK option
rtc: Skip the suspend/resume handling if persistent clock exist
timekeeping: Add persistent_clock_exist flag
posix-timers: Fix clock_adjtime to always return timex data on success
Round the calculated scale factor in set_cyc2ns_scale()
NTP: Add a CONFIG_RTC_SYSTOHC configuration
MAINTAINERS: Update John Stultz's email
time: create __getnstimeofday for WARNless calls
Pull scheduler changes from Ingo Molnar:
"Main changes:
- scheduler side full-dynticks (user-space execution is undisturbed
and receives no timer IRQs) preparation changes that convert the
cputime accounting code to be full-dynticks ready, from Frederic
Weisbecker.
- Initial sched.h split-up changes, by Clark Williams
- select_idle_sibling() performance improvement by Mike Galbraith:
" 1 tbench pair (worst case) in a 10 core + SMT package:
pre 15.22 MB/sec 1 procs
post 252.01 MB/sec 1 procs "
- sched_rr_get_interval() ABI fix/change. We think this detail is not
used by apps (so it's not an ABI in practice), but lets keep it
under observation.
- misc RT scheduling cleanups, optimizations"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
sched/rt: Add <linux/sched/rt.h> header to <linux/init_task.h>
cputime: Remove irqsave from seqlock readers
sched, powerpc: Fix sched.h split-up build failure
cputime: Restore CPU_ACCOUNTING config defaults for PPC64
sched/rt: Move rt specific bits into new header file
sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice
sched: Move sched.h sysctl bits into separate header
sched: Fix signedness bug in yield_to()
sched: Fix select_idle_sibling() bouncing cow syndrome
sched/rt: Further simplify pick_rt_task()
sched/rt: Do not account zero delta_exec in update_curr_rt()
cputime: Safely read cputime of full dynticks CPUs
kvm: Prepare to add generic guest entry/exit callbacks
cputime: Use accessors to read task cputime stats
cputime: Allow dynamic switch between tick/virtual based cputime accounting
cputime: Generic on-demand virtual cputime accounting
cputime: Move default nsecs_to_cputime() to jiffies based cputime file
cputime: Librarize per nsecs resolution cputime definitions
cputime: Avoid multiplication overflow on utime scaling
context_tracking: Export context state for generic vtime
...
Fix up conflict in kernel/context_tracking.c due to comment additions.
seconds_overflow() is called from hard interrupt context even on
Preempt-RT. This requires the lock to be a raw_spinlock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 12ad100046: "clockevents: Add generic timer broadcast function"
made tick_device_uses_broadcast set up the generic broadcast function
for dummy devices (where !tick_device_is_functional(dev)), but neglected
to set up the broadcast function for devices that stop in low power
states (with the CLOCK_EVT_FEAT_C3STOP flag).
When these devices enter low power states they will not have the generic
broadcast function assigned, and will bring down the system when an
attempt is made to broadcast to them.
This patch ensures that the broadcast function is also assigned for
devices which require broadcast in low power states.
Reported-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Stephen Warren <swarren@nvidia.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: nico@linaro.org
Cc: Marc.Zyngier@arm.com
Cc: Will.Deacon@arm.com
Cc: santosh.shilimkar@ti.com
Cc: john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
At init time, if the system time is "warped" forward in warp_clock()
it will differ from the hardware clock by sys_tz.tz_minuteswest. This time
difference is not taken into account when ntp updates the hardware clock,
and this causes the system time to jump forward by this offset every reboot.
The kernel must take this offset into account when writing the system time
to the hardware clock in the ntp code. This patch adds
persistent_clock_is_local which indicates that an offset has been applied
in warp_clock() and accounts for the "warp" before writing the hardware
clock.
x86 does not have this problem as rtc writes are software limited to a
+/-15 minute window relative to the current rtc time. Other arches, such
as powerpc, however do a full synchronization of the system time to the
rtc and will see this problem.
[v2]: generated against tip/timers/core
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Conflicts:
kernel/irq_work.c
Add support for printk in full dynticks CPU.
* Don't stop tick with irq works pending. This
fix is generally useful and concerns archs that
can't raise self IPIs.
* Flush irq works before CPU offlining.
* Introduce "lazy" irq works that can wait for the
next tick to be executed, unless it's stopped.
* Implement klogd wake up using irq work. This
removes the ad-hoc printk_tick()/printk_needs_cpu()
hooks and make it working even in dynticks mode.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>