Commit Graph

1459 Commits

Author SHA1 Message Date
Sage Weil
2f2dc05340 ceph: MDS client
The MDS (metadata server) client is responsible for submitting
requests to the MDS cluster and parsing the response.  We decide which
MDS to submit each request to based on cached information about the
current partition of the directory hierarchy across the cluster.  A
stateful session is opened with each MDS before we submit requests to
it, and a mutex is used to control the ordering of messages within
each session.

An MDS request may generate two responses.  The first indicates the
operation was a success and returns any result.  A second reply is
sent when the operation commits to disk.  Note that locking on the MDS
ensures that the results of updates are visible only to the updating
client before the operation commits.  Requests are linked to the
containing directory so that an fsync will wait for them to commit.

If an MDS fails and/or recovers, we resubmit requests as needed.  We
also reconnect existing capabilities to a recovering MDS to
reestablish that shared session state.  Old dentry leases are
invalidated.

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:09 -07:00
Sage Weil
1d3576fd10 ceph: address space operations
The ceph address space methods are concerned primarily with managing
the dirty page accounting in the inode, which (among other things)
must keep track of which snapshot context each page was dirtied in,
and ensure that dirty data is written out to the OSDs in snapshort
order.

A writepage() on a page that is not currently writeable due to
snapshot writeback ordering constraints is ignored (it was presumably
called from kswapd).

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:09 -07:00
Sage Weil
124e68e740 ceph: file operations
File open and close operations, and read and write methods that ensure
we have obtained the proper capabilities from the MDS cluster before
performing IO on a file.  We take references on held capabilities for
the duration of the read/write to avoid prematurely releasing them
back to the MDS.

We implement two main paths for read and write: one that is buffered
(and uses generic_aio_{read,write}), and one that is fully synchronous
and blocking (operating either on a __user pointer or, if O_DIRECT,
directly on user pages).

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:08 -07:00
Sage Weil
2817b000b0 ceph: directory operations
Directory operations, including lookup, are defined here.  We take
advantage of lookup intents when possible.  For the most part, we just
need to build the proper requests for the metadata server(s) and
pass things off to the mds_client.

The results of most operations are normally incorporated into the
client's cache when the reply is parsed by ceph_fill_trace().
However, if the MDS replies without a trace (e.g., when retrying an
update after an MDS failure recovery), some operation-specific cleanup
may be needed.

We can validate cached dentries in two ways.  A per-dentry lease may
be issued by the MDS, or a per-directory cap may be issued that acts
as a lease on the entire directory.  In the latter case, a 'gen' value
is used to determine which dentries belong to the currently leased
directory contents.

We normally prepopulate the dcache and icache with readdir results.
This makes subsequent lookups and getattrs avoid any server
interaction.  It also lets us satisfy readdir operation by peeking at
the dcache IFF we hold the per-directory cap/lease, previously
performed a readdir, and haven't dropped any of the resulting
dentries.

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:08 -07:00
Sage Weil
355da1eb7a ceph: inode operations
Inode cache and inode operations.  We also include routines to
incorporate metadata structures returned by the MDS into the client
cache, and some helpers to deal with file capabilities and metadata
leases.  The bulk of that work is done by fill_inode() and
fill_trace().

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:08 -07:00
Sage Weil
16725b9d2a ceph: super.c
Mount option parsing, client setup and teardown, and a few odds and
ends (e.g., statfs).

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:07 -07:00
Sage Weil
c30dbb9cc7 ceph: ref counted buffer
struct ceph_buffer is a simple ref-counted buffer.  We transparently
choose between kmalloc for small buffers and vmalloc for large ones.

This is currently used only for allocating memory for xattr data.

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:07 -07:00
Sage Weil
de57606c23 ceph: client types
We first define constants, types, and prototypes for the kernel client
proper.

A few subsystems are defined separately later: the MDS, OSD, and
monitor clients, and the messaging layer.

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:07 -07:00
Sage Weil
0dee3c28af ceph: on-wire types
These headers describe the types used to exchange messages between the
Ceph client and various servers.  All types are little-endian and
packed.  These headers are shared between the kernel and userspace, so
all types are in terms of e.g. __u32.

Additionally, we define a few magic values to identify the current
version of the protocol(s) in use, so that discrepancies to be
detected on mount.

Signed-off-by: Sage Weil <sage@newdream.net>
2009-10-06 11:31:06 -07:00