Merge-reason: The tree was based 2.6.31. It's better to be up to date
with 2.6.32. Although no conflicting changes were made in between,
it gives benchmarking results closer to the lastest kernel behaviour.
There was confusion between the array size and the highest ISEL
value possible.
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-2.6-fscache: (31 commits)
FS-Cache: Provide nop fscache_stat_d() if CONFIG_FSCACHE_STATS=n
SLOW_WORK: Fix GFS2 to #include <linux/module.h> before using THIS_MODULE
SLOW_WORK: Fix CIFS to pass THIS_MODULE to slow_work_register_user()
CacheFiles: Don't log lookup/create failing with ENOBUFS
CacheFiles: Catch an overly long wait for an old active object
CacheFiles: Better showing of debugging information in active object problems
CacheFiles: Mark parent directory locks as I_MUTEX_PARENT to keep lockdep happy
CacheFiles: Handle truncate unlocking the page we're reading
CacheFiles: Don't write a full page if there's only a partial page to cache
FS-Cache: Actually requeue an object when requested
FS-Cache: Start processing an object's operations on that object's death
FS-Cache: Make sure FSCACHE_COOKIE_LOOKING_UP cleared on lookup failure
FS-Cache: Add a retirement stat counter
FS-Cache: Handle pages pending storage that get evicted under OOM conditions
FS-Cache: Handle read request vs lookup, creation or other cache failure
FS-Cache: Don't delete pending pages from the page-store tracking tree
FS-Cache: Fix lock misorder in fscache_write_op()
FS-Cache: The object-available state can't rely on the cookie to be available
FS-Cache: Permit cache retrieval ops to be interrupted in the initial wait phase
FS-Cache: Use radix tree preload correctly in tracking of pages to be stored
...
As this struct is exposed to user space and the API was added for this
release it's a bit of a pain for the C++ world and we still have time to
fix it. Rename the fields before we end up with that pain in an actual
release.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Reported-by: Olivier Goffart
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Catch an overly long wait for an old, dying active object when we want to
replace it with a new one. The probability is that all the slow-work threads
are hogged, and the delete can't get a look in.
What we do instead is:
(1) if there's nothing in the slow work queue, we sleep until either the dying
object has finished dying or there is something in the slow work queue
behind which we can queue our object.
(2) if there is something in the slow work queue, we return ETIMEDOUT to
fscache_lookup_object(), which then puts us back on the slow work queue,
presumably behind the deletion that we're blocked by. We are then
deferred for a while until we work our way back through the queue -
without blocking a slow-work thread unnecessarily.
A backtrace similar to the following may appear in the log without this patch:
INFO: task kslowd004:5711 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kslowd004 D 0000000000000000 0 5711 2 0x00000080
ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
Call Trace:
[<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles]
[<ffffffff81353153>] __wait_on_bit+0x43/0x76
[<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270
[<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e
[<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
[<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
[<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles]
[<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache]
[<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache]
[<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
1 lock held by kslowd004/5711:
#0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]
Signed-off-by: David Howells <dhowells@redhat.com>
cachefiles_write_page() writes a full page to the backing file for the last
page of the netfs file, even if the netfs file's last page is only a partial
page.
This causes the EOF on the backing file to be extended beyond the EOF of the
netfs, and thus the backing file will be truncated by cachefiles_attr_changed()
called from cachefiles_lookup_object().
So we need to limit the write we make to the backing file on that last page
such that it doesn't push the EOF too far.
Also, if a backing file that has a partial page at the end is expanded, we
discard the partial page and refetch it on the basis that we then have a hole
in the file with invalid data, and should the power go out... A better way to
deal with this could be to record a note that the partial page contains invalid
data until the correct data is written into it.
This isn't a problem for netfs's that discard the whole backing file if the
file size changes (such as NFS).
Signed-off-by: David Howells <dhowells@redhat.com>
Start processing an object's operations when that object moves into the DYING
state as the object cannot be destroyed until all its outstanding operations
have completed.
Furthermore, make sure that read and allocation operations handle being woken
up on a dead object. Such events are recorded in the Allocs.abt and
Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.
The code for waiting for object activation for the read and allocation
operations is also extracted into its own function as it is much the same in
all cases, differing only in the stats incremented.
Signed-off-by: David Howells <dhowells@redhat.com>
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
under OOM conditions, but that are waiting for write to the cache. Under these
conditions, vmscan calls the releasepage() function of the netfs, asking if a
page can be discarded.
The problem is typified by the following trace of a stuck process:
kslowd005 D 0000000000000000 0 4253 2 0x00000080
ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
Call Trace:
[<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
[<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
[<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff810885d3>] try_to_release_page+0x32/0x3b
[<ffffffff81093203>] shrink_page_list+0x316/0x4ac
[<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
[<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
[<ffffffff81093aa2>] shrink_list+0x8d/0x8f
[<ffffffff81093d1c>] shrink_zone+0x278/0x33c
[<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
[<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
[<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
[<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
[<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
[<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
[<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
[<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
[<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
[<ffffffff810b2e82>] do_sync_write+0xe3/0x120
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
[<ffffffff810b1a76>] ? dentry_open+0x82/0x89
[<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
[<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
[<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
In the above backtrace, the following is happening:
(1) A page storage operation is being executed by a slow-work thread
(fscache_write_op()).
(2) FS-Cache farms the operation out to the cache to perform
(cachefiles_write_page()).
(3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
standard write (do_sync_write()) under KERNEL_DS directly from the netfs
page.
(4) However, for Ext3 to perform the write, it must allocate some memory, in
particular, it must allocate at least one page cache page into which it
can copy the data from the netfs page.
(5) Under OOM conditions, the memory allocator can't immediately come up with
a page, so it uses vmscan to find something to discard
(try_to_free_pages()).
(6) vmscan finds a clean netfs page it might be able to discard (possibly the
one it's trying to write out).
(7) The netfs is called to throw the page away (nfs_release_page()) - but it's
called with __GFP_WAIT, so the netfs decides to wait for the store to
complete (__fscache_wait_on_page_write()).
(8) This blocks a slow-work processing thread - possibly against itself.
The system ends up stuck because it can't write out any netfs pages to the
cache without allocating more memory.
To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
actually being performed. This means that some data won't make it into the
cache this time. To support this, a new FS-Cache function is added
fscache_maybe_release_page() that replaces what the netfs releasepage()
functions used to do with respect to the cache.
The decisions fscache_maybe_release_page() makes are counted and displayed
through /proc/fs/fscache/stats on a line labelled "VmScan". There are four
counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
pages that were pending storage when we first looked, but weren't by the time
we got the object lock; "bsy=N" - pages that we ignored as they were actively
being written when we looked; and "can=N" - pages that we cancelled the storage
of.
What I'd really like to do is alter the behaviour of the cancellation
heuristics, depending on how necessary it is to expel pages. If there are
plenty of other pages that aren't waiting to be written to the cache that
could be ejected first, then it would be nice to hold up on immediate
cancellation of cache writes - but I don't see a way of doing that.
Signed-off-by: David Howells <dhowells@redhat.com>
FS-Cache has two structs internally for keeping track of the internal state of
a cached file: the fscache_cookie struct, which represents the netfs's state,
and fscache_object struct, which represents the cache's state. Each has a
pointer that points to the other (when both are in existence), and each has a
spinlock for pointer maintenance.
Since netfs operations approach these structures from the cookie side, they get
the cookie lock first, then the object lock. Cache operations, on the other
hand, approach from the object side, and get the object lock first. It is not
then permitted for a cache operation to get the cookie lock whilst it is
holding the object lock lest deadlock occur; instead, it must do one of two
things:
(1) increment the cookie usage counter, drop the object lock and then get both
locks in order, or
(2) simply hold the object lock as certain parts of the cookie may not be
altered whilst the object lock is held.
It is also not permitted to follow either pointer without holding the lock at
the end you start with. To break the pointers between the cookie and the
object, both locks must be held.
fscache_write_op(), however, violates the locking rules: It attempts to get the
cookie lock without (a) checking that the cookie pointer is a valid pointer,
and (b) holding the object lock to protect the cookie pointer whilst it follows
it. This is so that it can access the pending page store tree without
interference from __fscache_write_page().
This is fixed by splitting the cookie lock, such that the page store tracking
tree is protected by its own lock, and checking that the cookie pointer is
non-NULL before we attempt to follow it whilst holding the object lock.
The new lock is subordinate to both the cookie lock and the object lock, and so
should be taken after those.
Signed-off-by: David Howells <dhowells@redhat.com>
Allow the current state of all fscache objects to be dumped by doing:
cat /proc/fs/fscache/objects
By default, all objects and all fields will be shown. This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):
keyctl add user fscache:objlist "<restrictions>" @s
The <restrictions> are:
K Show hexdump of object key (don't show if not given)
A Show hexdump of object aux data (don't show if not given)
And paired restrictions:
C Show objects that have a cookie
c Show objects that don't have a cookie
B Show objects that are busy
b Show objects that aren't busy
W Show objects that have pending writes
w Show objects that don't have pending writes
R Show objects that have outstanding reads
r Show objects that don't have outstanding reads
S Show objects that have slow work queued
s Show objects that don't have slow work queued
If neither side of a restriction pair is given, then both are implied. For
example:
keyctl add user fscache:objlist KB @s
shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.
Signed-off-by: David Howells <dhowells@redhat.com>
Annotate slow-work runqueue proc lines for FS-Cache work items. Objects
include the object ID and the state. Operations include the object ID, the
operation ID and the operation type and state.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a function to allow a requeueable work item to sleep till the thread
processing it is needed by the slow-work facility to perform other work.
Sometimes a work item can't progress immediately, but must wait for the
completion of another work item that's currently being processed by another
slow-work thread.
In some circumstances, the waiting item could instead - theoretically - put
itself back on the queue and yield its thread back to the slow-work facility,
thus waiting till it gets processing time again before attempting to progress.
This would allow other work items processing time on that thread.
However, this only works if there is something on the queue for it to queue
behind - otherwise it will just get a thread again immediately, and will end
up cycling between the queue and the thread, eating up valuable CPU time.
So, slow_work_sleep_till_thread_needed() is provided such that an item can put
itself on a wait queue that will wake it up when the event it is actually
interested in occurs, then call this function in lieu of calling schedule().
This function will then sleep until either the item's event occurs or another
work item appears on the queue. If another work item is queued, but the
item's event hasn't occurred, then the work item should requeue itself and
yield the thread back to the slow-work facility by returning.
This can be used by CacheFiles for an object that is being created on one
thread to wait for an object being deleted on another thread where there is
nothing on the queue for the creation to go and wait behind. As soon as an
item appears on the queue that could be given thread time instead, CacheFiles
can stick the creating object back on the queue and return to the slow-work
facility - assuming the object deletion didn't also complete.
Signed-off-by: David Howells <dhowells@redhat.com>
Add a function (slow_work_is_queued()) to permit the owner of a work item to
determine if the item is queued or not.
The work item is counted as being queued if it is actually on the queue, not
just if it is pending. If it is executing and pending, then it is not on the
queue, but will rather be put back on the queue when execution finishes.
This permits a caller to quickly work out if it may be able to put another,
dependent work item on the queue behind it, or whether it will have to wait
till that is finished.
This can be used by CacheFiles to work out whether the creation a new object
can be immediately deferred when it has to wait for an old object to be
deleted, or whether a wait must take place. If a wait is necessary, then the
slow-work thread can otherwise get blocked, preventing the deletion from
taking place.
Signed-off-by: David Howells <dhowells@redhat.com>
This adds support for starting slow work with a delay, similar
to the functionality we have for workqueues.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Add support for cancellation of queued slow work and delayed slow work items.
The cancellation functions will wait for items that are pending or undergoing
execution to be discarded by the slow work facility.
Attempting to enqueue work that is in the process of being cancelled will
result in ECANCELED.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Wait for outstanding slow work items belonging to a module to clear when
unregistering that module as a user of the facility. This prevents the put_ref
code of a work item from being taken away before it returns.
Signed-off-by: David Howells <dhowells@redhat.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (42 commits)
cxgb3: fix premature page unmap
ibm_newemac: Fix EMACx_TRTR[TRT] bit shifts
vlan: Fix register_vlan_dev() error path
gro: Fix illegal merging of trailer trash
sungem: Fix Serdes detection.
net: fix mdio section mismatch warning
ppp: fix BUG on non-linear SKB (multilink receive)
ixgbe: Fixing EEH handler to handle more than one error
net: Fix the rollback test in dev_change_name()
Revert "isdn: isdn_ppp: Use SKB list facilities instead of home-grown implementation."
TI Davinci EMAC : Fix Console Hang when bringing the interface down
smsc911x: Fix Console Hang when bringing the interface down.
mISDN: fix error return in HFCmulti_init()
forcedeth: mac address fix
r6040: fix version printing
Bluetooth: Fix regression with L2CAP configuration in Basic Mode
Bluetooth: Select Basic Mode as default for SOCK_SEQPACKET
Bluetooth: Set general bonding security for ACL by default
r8169: Fix receive buffer length when MTU is between 1515 and 1536
can: add the missing netlink get_xstats_size callback
...
Allow memory hotplug and hibernation in the same kernel
Memory hotplug and hibernation were exclusive in Kconfig. This is
obviously a problem for distribution kernels who want to support both in
the same image.
After some discussions with Rafael and others the only problem is with
parallel memory hotadd or removal while a hibernation operation is in
process. It was also working for s390 before.
This patch removes the Kconfig level exclusion, and simply makes the
memory add / remove functions grab the pm_mutex to exclude against
hibernation.
Fixes a regression - old kernels didn't exclude memory hotadd and
hibernation.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct nilfs_dat_group_desc is not used both in kernel and user spaces.
struct nilfs_palloc_group_desc is used instead.
Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input:
Input: psmouse - remove unneeded '\n' from psmouse.proto parameter
Input: atkbd - restore LED state at reconnect
Input: force LED reset on resume
Input: fix locking in memoryless force-feedback devices
This seems to be a different model (with a different PCI ID) than the
"Quatro" card that is also in the list.
Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove fb_save_state() and fb_restore_state operations from frame buffer layer.
They are used only in two drivers:
1. savagefb - and cause bug #11248
2. uvesafb
Usage of these operations is misunderstood in both drivers so kill these
operations, fix the bug #11248 and avoid confusion in the future.
Tested on Savage 3D/MV card and the patch fixes the bug #11248.
The frame buffer layer uses these funtions during switch between graphics
and text mode of the console, but these drivers saves state before
switching of the frame buffer (in the fb_open) and after releasing it (in
the fb_release). This defeats the purpose of these operations.
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=11248
Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Reported-by: Jochen Hein <jochen@jochen.org>
Tested-by: Jochen Hein <jochen@jochen.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Januszewski <spock@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cannot rely on buffer dirty bits during fsync because pdflush can come
before fsync is called and clear dirty bits without forcing a transaction
commit. What we do is that we track which transaction has last changed
the inode and which transaction last changed allocation and force it to
disk on fsync.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Now that input core acquires dev->event_lock spinlock and disables
interrupts when propagating input events, using spin_lock_bh() in
ff-memless driver is not allowed. Actually, the timer_lock itself
is not needed anymore, we should simply use dev->event_lock
as well.
Also do a small cleanup in force-feedback core.
Reported-by: kerneloops.org
Reported-by: http://www.kerneloops.org/searchweek.php?search=ml_ff_set_gain
Reported-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Some drivers need to be able to prevent access to an I2C bus segment
for a specific period of time. Add an interface for them to do so
without twiddling with i2c-core internals.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Ben Hutchings <bhutchings@solarflare.com>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf tools: Remove -Wcast-align
perf tools: Fix compatibility with libelf 0.8 and autodetect
perf events: Don't generate events for the idle task when exclude_idle is set
perf events: Fix swevent hrtimer sampling by keeping track of remaining time when enabling/disabling swevent hrtimers
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Remove cpu arg from the rb_time_stamp() function
tracing: Fix comment typo and documentation example
tracing: Fix trace_seq_printf() return value
tracing: Update *ppos instead of filp->f_pos
Platform drivers registered via platform_driver_probe() can be bound
to devices only once, upon registration, because discard their probe()
routines to save memory. Unbinding the driver through sysfs 'unbind'
leaves the device stranded and confuses users so let's not create
bind and unbind attributes for such drivers.
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Cc: Éric Piel <eric.piel@tremplin-utc.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
On UDP sockets, we must call skb_free_datagram() with socket locked,
or risk sk_forward_alloc corruption. This requirement is not respected
in SUNRPC.
Add a convenient helper, skb_free_datagram_locked() and use it in SUNRPC
Reported-by: Francis Moreau <francis.moro@gmail.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
struct sk_buff kmemcheck annotations enlarged this structure by 8/16 bytes
Fix this by moving 'protocol' inside flags1 bitfield,
and queue_mapping inside flags2 bitfield.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-param-fixes:
param: fix setting arrays of bool
param: fix NULL comparison on oom
param: fix lots of bugs with writing charp params from sysfs, by leaking mem.
* 'hwpoison-2.6.32' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6:
HWPOISON: fix invalid page count in printk output
HWPOISON: Allow schedule_on_each_cpu() from keventd
HWPOISON: fix/proc/meminfo alignment
HWPOISON: fix oops on ksm pages
HWPOISON: Fix page count leak in hwpoison late kill in do_swap_page
HWPOISON: return early on non-LRU pages
HWPOISON: Add brief hwpoison description to Documentation
HWPOISON: Clean up PR_MCE_KILL interface
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
futex: Move drop_futex_key_refs out of spinlock'ed region
rcu: Fix TREE_PREEMPT_RCU CPU_HOTPLUG bad-luck hang
rcu: Stopgap fix for synchronize_rcu_expedited() for TREE_PREEMPT_RCU
rcu: Prevent RCU IPI storms in presence of high call_rcu() load
futex: Check for NULL keys in match_futex
futex: Handle spurious wake up
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Do less agressive buddy clearing
sched: Disable SD_PREFER_LOCAL for MC/CPU domains
The IBM Saturn serial card has only one port. Without that fixup,
the kernel thinks it has two, which confuses userland setup and
admin tools as well.
[akpm@linux-foundation.org: fix pci-ids.h layout]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Alan Cox <alan@linux.intel.com>
Cc: Michael Reed <mreed10@us.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
strstrip() can return a modified value of its input argument, when
removing elading whitesapce. So it is surely bug for this function's
return value to be ignored. The caller is probably going to use the
incorrect original pointer.
So mark it __must_check to prevent this frm happening (as it has before).
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_CPU_FREQ is disabled, cpufreq_get() needs a stub. Used by kvm
(although it looks like a bit of the kvm code could be omitted when
CONFIG_CPU_FREQ is disabled).
arch/x86/built-in.o: In function `kvm_arch_init':
(.text+0x10de7): undefined reference to `cpufreq_get'
(Needed in linux-next's KVM tree, but it's correct in 2.6.32).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Tested-by: Eric Paris <eparis@redhat.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
e180a6b775 "param: fix charp parameters set via sysfs" fixed the case
where charp parameters written via sysfs were freed, leaving drivers
accessing random memory.
Unfortunately, storing a flag in the kparam struct was a bad idea: it's
rodata so setting it causes an oops on some archs. But that's not all:
1) module_param_array() on charp doesn't work reliably, since we use an
uninitialized temporary struct kernel_param.
2) there's a fundamental race if a module uses this parameter and then
it's changed: they will still access the old, freed, memory.
The simplest fix (ie. for 2.6.32) is to never free the memory. This
prevents all these problems, at cost of a memory leak. In practice, there
are only 18 places where a charp is writable via sysfs, and all are
root-only writable.
Reported-by: Takashi Iwai <tiwai@suse.de>
Cc: Sitsofe Wheeler <sitsofe@yahoo.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christof Schmitt <christof.schmitt@de.ibm.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: stable@kernel.org
The cpu argument is not used inside the rb_time_stamp() function.
Plus fix a typo.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20091023233647.118547500@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make the hrtimer based events work for sysprof.
Whenever a swevent is scheduled out, the hrtimer is canceled.
When it is scheduled back in, the timer is restarted. This
happens every scheduler tick, which means the timer never
expired because it was getting repeatedly restarted over and
over with the same period.
To fix that, save the remaining time when disabling; when
reenabling, use that saved time as the period instead of the
user-specified sampling period.
Also, move the starting and stopping of the hrtimers to helper
functions instead of duplicating the code.
Signed-off-by: Søren Sandmann Pedersen <sandmann@redhat.com>
LKML-Reference: <ye8vdi7mluz.fsf@camel16.daimi.au.dk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>