When a process creates a new trigger by writing into /proc/pressure/*
files, permissions to write such a file should be used to determine whether
the process is allowed to do so or not. Current implementation would also
require such a process to have setsched capability. Setting of psi trigger
thread's scheduling policy is an implementation detail and should not be
exposed to the user level. Remove the permission check by using _nocheck
version of the function.
Suggested-by: Nick Kralevich <nnk@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: lizefan@huawei.com
Cc: mingo@redhat.com
Cc: akpm@linux-foundation.org
Cc: kernel-team@android.com
Cc: dennisszhou@gmail.com
Cc: dennis@kernel.org
Cc: hannes@cmpxchg.org
Cc: axboe@kernel.dk
Link: https://lkml.kernel.org/r/20190730013310.162367-1-surenb@google.com
PSI defaults to a FIFO-99 thread, reduce this to FIFO-1.
FIFO-99 is the very highest priority available to SCHED_FIFO and
it not a suitable default; it would indicate the psi work is the
most important work on the machine.
Since Real-Time tasks will have pre-allocated memory and locked it in
place, Real-Time tasks do not care about PSI. All it needs is to be
above OTHER.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
The old code used RCU annotations and accessors inconsistently for
->numa_group, which can lead to use-after-frees and NULL dereferences.
Let all accesses to ->numa_group use proper RCU helpers to prevent such
issues.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes: 8c8a743c50 ("sched/numa: Use {cpu, pid} to create task groups for shared faults")
Link: https://lkml.kernel.org/r/20190716152047.14424-3-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When going through execve(), zero out the NUMA fault statistics instead of
freeing them.
During execve, the task is reachable through procfs and the scheduler. A
concurrent /proc/*/sched reader can read data from a freed ->numa_faults
allocation (confirmed by KASAN) and write it back to userspace.
I believe that it would also be possible for a use-after-free read to occur
through a race between a NUMA fault and execve(): task_numa_fault() can
lead to task_numa_compare(), which invokes task_weight() on the currently
running task of a different CPU.
Another way to fix this would be to make ->numa_faults RCU-managed or add
extra locking, but it seems easier to wipe the NUMA fault statistics on
execve.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes: 82727018b0 ("sched/numa: Call task_numa_free() from do_execve()")
Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- s390 support for KVM selftests
- LAPIC timer offloading to housekeeping CPUs
- Extend an s390 optimization for overcommitted hosts to all architectures
- Debugging cleanups and improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdMr1FAAoJEL/70l94x66DvIkH/iVuUX9jO1NoQ7qhxeo04MnT
GP9mX3XnWoI/iN0zAIRfQSP2/9a6+KblgdiziABhju58j5dCfAZGb5793TQppweb
3ubl11vy7YkzaXJ0b35K7CFhOU9oSlHHGyi5Uh+yyje5qWNxwmHpizxjynbFTKb6
+/S7O2Ua1VrAVvx0i0IRtwanIK/jF4dStVButgVaVdUva3zLaQmeI71iaJl9ddXY
bh50xoYua5Ek6+ENi+nwCNVy4OF152AwDbXlxrU0QbeA1B888Qio7nIqb3bwwPpZ
/8wMVvPzQgL7RmgtY5E5Z4cCYuu7mK8wgGxhuk3oszlVwZJ5rmnaYwGEl4x1s7o=
=giag
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Paolo Bonzini:
"Mostly bugfixes, but also:
- s390 support for KVM selftests
- LAPIC timer offloading to housekeeping CPUs
- Extend an s390 optimization for overcommitted hosts to all
architectures
- Debugging cleanups and improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
KVM: x86: Add fixed counters to PMU filter
KVM: nVMX: do not use dangling shadow VMCS after guest reset
KVM: VMX: dump VMCS on failed entry
KVM: x86/vPMU: refine kvm_pmu err msg when event creation failed
KVM: s390: Use kvm_vcpu_wake_up in kvm_s390_vcpu_wakeup
KVM: Boost vCPUs that are delivering interrupts
KVM: selftests: Remove superfluous define from vmx.c
KVM: SVM: Fix detection of AMD Errata 1096
KVM: LAPIC: Inject timer interrupt via posted interrupt
KVM: LAPIC: Make lapic timer unpinned
KVM: x86/vPMU: reset pmc->counter to 0 for pmu fixed_counters
KVM: nVMX: Ignore segment base for VMX memory operand when segment not FS or GS
kvm: x86: ioapic and apic debug macros cleanup
kvm: x86: some tsc debug cleanup
kvm: vmx: fix coccinelle warnings
x86: kvm: avoid constant-conversion warning
x86: kvm: avoid -Wsometimes-uninitized warning
KVM: x86: expose AVX512_BF16 feature to guest
KVM: selftests: enable pgste option for the linker on s390
KVM: selftests: Move kvm_create_max_vcpus test to generic code
...
Dedicated instances are currently disturbed by unnecessary jitter due
to the emulated lapic timers firing on the same pCPUs where the
vCPUs reside. There is no hardware virtual timer on Intel for guest
like ARM, so both programming timer in guest and the emulated timer fires
incur vmexits. This patch tries to avoid vmexit when the emulated timer
fires, at least in dedicated instance scenario when nohz_full is enabled.
In that case, the emulated timers can be offload to the nearest busy
housekeeping cpus since APICv has been found for several years in server
processors. The guest timer interrupt can then be injected via posted interrupts,
which are delivered by the housekeeping cpu once the emulated timer fires.
The host should tuned so that vCPUs are placed on isolated physical
processors, and with several pCPUs surplus for busy housekeeping.
If disabled mwait/hlt/pause vmexits keep the vCPUs in non-root mode,
~3% redis performance benefit can be observed on Skylake server, and the
number of external interrupt vmexits drops substantially. Without patch
VM-EXIT Samples Samples% Time% Min Time Max Time Avg time
EXTERNAL_INTERRUPT 42916 49.43% 39.30% 0.47us 106.09us 0.71us ( +- 1.09% )
While with patch:
VM-EXIT Samples Samples% Time% Min Time Max Time Avg time
EXTERNAL_INTERRUPT 6871 9.29% 2.96% 0.44us 57.88us 0.72us ( +- 4.02% )
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
John reported a DEBUG_PREEMPT warning caused by commit:
aacedf26fb ("sched/core: Optimize try_to_wake_up() for local wakeups")
I overlooked that ttwu_stat() requires preemption disabled.
Reported-by: John Stultz <john.stultz@linaro.org>
Tested-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: aacedf26fb ("sched/core: Optimize try_to_wake_up() for local wakeups")
Link: https://lkml.kernel.org/r/20190710105736.GK3402@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with other
trees, unfortunately. He has a lot more of these waiting on the wings
that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos, and one
on Spectre vulnerabilities.
- Various improvements to the build system, including automatic markup of
function() references because some people, for reasons I will never
understand, were of the opinion that :c:func:``function()`` is
unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl0krAEPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yg98H/AuLqO9LpOgUjF4LhyjxGPdzJkY9RExSJ7km
gznyreLCZgFaJR+AY6YDsd4Jw6OJlPbu1YM/Qo3C3WrZVFVhgL/s2ebvBgCo50A8
raAFd8jTf4/mGCHnAqRotAPQ3mETJUk315B66lBJ6Oc+YdpRhwXWq8ZW2bJxInFF
3HDvoFgMf0KhLuMHUkkL0u3fxH1iA+KvDu8diPbJYFjOdOWENz/CV8wqdVkXRSEW
DJxIq89h/7d+hIG3d1I7Nw+gibGsAdjSjKv4eRKauZs4Aoxd1Gpl62z0JNk6aT3m
dtq4joLdwScydonXROD/Twn2jsu4xYTrPwVzChomElMowW/ZBBY=
=D0eO
-----END PGP SIGNATURE-----
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
Pull scheduler updates from Ingo Molnar:
- Remove the unused per rq load array and all its infrastructure, by
Dietmar Eggemann.
- Add utilization clamping support by Patrick Bellasi. This is a
refinement of the energy aware scheduling framework with support for
boosting of interactive and capping of background workloads: to make
sure critical GUI threads get maximum frequency ASAP, and to make
sure background processing doesn't unnecessarily move to cpufreq
governor to higher frequencies and less energy efficient CPU modes.
- Add the bare minimum of tracepoints required for LISA EAS regression
testing, by Qais Yousef - which allows automated testing of various
power management features, including energy aware scheduling.
- Restructure the former tsk_nr_cpus_allowed() facility that the -rt
kernel used to modify the scheduler's CPU affinity logic such as
migrate_disable() - introduce the task->cpus_ptr value instead of
taking the address of &task->cpus_allowed directly - by Sebastian
Andrzej Siewior.
- Misc optimizations, fixes, cleanups and small enhancements - see the
Git log for details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched/uclamp: Add uclamp support to energy_compute()
sched/uclamp: Add uclamp_util_with()
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
sched/uclamp: Set default clamps for RT tasks
sched/uclamp: Reset uclamp values on RESET_ON_FORK
sched/uclamp: Extend sched_setattr() to support utilization clamping
sched/core: Allow sched_setattr() to use the current policy
sched/uclamp: Add system default clamps
sched/uclamp: Enforce last task's UCLAMP_MAX
sched/uclamp: Add bucket local max tracking
sched/uclamp: Add CPU's clamp buckets refcounting
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
sched/debug: Export the newly added tracepoints
sched/debug: Add sched_overutilized tracepoint
sched/debug: Add new tracepoint to track PELT at se level
sched/debug: Add new tracepoints to track PELT at rq level
sched/debug: Add a new sched_trace_*() helper functions
sched/autogroup: Make autogroup_path() always available
sched/wait: Deduplicate code with do-while
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
...
Pull locking updates from Ingo Molnar:
"The main changes in this cycle are:
- rwsem scalability improvements, phase #2, by Waiman Long, which are
rather impressive:
"On a 2-socket 40-core 80-thread Skylake system with 40 reader
and writer locking threads, the min/mean/max locking operations
done in a 5-second testing window before the patchset were:
40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810
40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255
After the patchset, they became:
40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741
40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098"
There's a lot of changes to the locking implementation that makes
it similar to qrwlock, including owner handoff for more fair
locking.
Another microbenchmark shows how across the spectrum the
improvements are:
"With a locking microbenchmark running on 5.1 based kernel, the
total locking rates (in kops/s) on a 2-socket Skylake system
with equal numbers of readers and writers (mixed) before and
after this patchset were:
# of Threads Before Patch After Patch
------------ ------------ -----------
2 2,618 4,193
4 1,202 3,726
8 802 3,622
16 729 3,359
32 319 2,826
64 102 2,744"
The changes are extensive and the patch-set has been through
several iterations addressing various locking workloads. There
might be more regressions, but unless they are pathological I
believe we want to use this new implementation as the baseline
going forward.
- jump-label optimizations by Daniel Bristot de Oliveira: the primary
motivation was to remove IPI disturbance of isolated RT-workload
CPUs, which resulted in the implementation of batched jump-label
updates. Beyond the improvement of the real-time characteristics
kernel, in one test this patchset improved static key update
overhead from 57 msecs to just 1.4 msecs - which is a nice speedup
as well.
- atomic64_t cross-arch type cleanups by Mark Rutland: over the last
~10 years of atomic64_t existence the various types used by the
APIs only had to be self-consistent within each architecture -
which means they became wildly inconsistent across architectures.
Mark puts and end to this by reworking all the atomic64
implementations to use 's64' as the base type for atomic64_t, and
to ensure that this type is consistently used for parameters and
return values in the API, avoiding further problems in this area.
- A large set of small improvements to lockdep by Yuyang Du: type
cleanups, output cleanups, function return type and othr cleanups
all around the place.
- A set of percpu ops cleanups and fixes by Peter Zijlstra.
- Misc other changes - please see the Git log for more details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
locking/lockdep: increase size of counters for lockdep statistics
locking/atomics: Use sed(1) instead of non-standard head(1) option
locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
x86/jump_label: Make tp_vec_nr static
x86/percpu: Optimize raw_cpu_xchg()
x86/percpu, sched/fair: Avoid local_clock()
x86/percpu, x86/irq: Relax {set,get}_irq_regs()
x86/percpu: Relax smp_processor_id()
x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}()
locking/rwsem: Guard against making count negative
locking/rwsem: Adaptive disabling of reader optimistic spinning
locking/rwsem: Enable time-based spinning on reader-owned rwsem
locking/rwsem: Make rwsem->owner an atomic_long_t
locking/rwsem: Enable readers spinning on writer
locking/rwsem: Clarify usage of owner's nonspinaable bit
locking/rwsem: Wake up almost all readers in wait queue
locking/rwsem: More optimal RT task handling of null owner
locking/rwsem: Always release wait_lock before waking up tasks
locking/rwsem: Implement lock handoff to prevent lock starvation
locking/rwsem: Make rwsem_spin_on_owner() return owner state
...
The Energy Aware Scheduler (EAS) estimates the energy impact of waking
up a task on a given CPU. This estimation is based on:
a) an (active) power consumption defined for each CPU frequency
b) an estimation of which frequency will be used on each CPU
c) an estimation of the busy time (utilization) of each CPU
Utilization clamping can affect both b) and c).
A CPU is expected to run:
- on an higher than required frequency, but for a shorter time, in case
its estimated utilization will be smaller than the minimum utilization
enforced by uclamp
- on a smaller than required frequency, but for a longer time, in case
its estimated utilization is bigger than the maximum utilization
enforced by uclamp
While compute_energy() already accounts clamping effects on busy time,
the clamping effects on frequency selection are currently ignored.
Fix it by considering how CPU clamp values will be affected by a
task waking up and being RUNNABLE on that CPU.
Do that by refactoring schedutil_freq_util() to take an additional
task_struct* which allows EAS to evaluate the impact on clamp values of
a task being eventually queued in a CPU. Clamp values are applied to the
RT+CFS utilization only when a FREQUENCY_UTIL is required by
compute_energy().
Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the
computation of the cpu_util signal implies that we are more likely to
estimate the highest OPP when a RT task is running in another CPU of
the same performance domain. This can have an impact on energy
estimation but:
- it's not easy to say which approach is better, since it depends on
the use case
- the original approach could still be obtained by setting a smaller
task-specific util_min whenever required
Since we are at that:
- rename schedutil_freq_util() into schedutil_cpu_util(),
since it's not only used for frequency selection.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So far uclamp_util() allows to clamp a specified utilization considering
the clamp values requested by RUNNABLE tasks in a CPU. For the Energy
Aware Scheduler (EAS) it is interesting to test how clamp values will
change when a task is becoming RUNNABLE on a given CPU.
For example, EAS is interested in comparing the energy impact of
different scheduling decisions and the clamp values can play a role on
that.
Add uclamp_util_with() which allows to clamp a given utilization by
considering the possible impact on CPU clamp values of a specified task.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-11-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Each time a frequency update is required via schedutil, a frequency is
selected to (possibly) satisfy the utilization reported by each
scheduling class and irqs. However, when utilization clamping is in use,
the frequency selection should consider userspace utilization clamping
hints. This will allow, for example, to:
- boost tasks which are directly affecting the user experience
by running them at least at a minimum "requested" frequency
- cap low priority tasks not directly affecting the user experience
by running them only up to a maximum "allowed" frequency
These constraints are meant to support a per-task based tuning of the
frequency selection thus supporting a fine grained definition of
performance boosting vs energy saving strategies in kernel space.
Add support to clamp the utilization of RUNNABLE FAIR and RT tasks
within the boundaries defined by their aggregated utilization clamp
constraints.
Do that by considering the max(min_util, max_util) to give boosted tasks
the performance they need even when they happen to be co-scheduled with
other capped tasks.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By default FAIR tasks start without clamps, i.e. neither boosted nor
capped, and they run at the best frequency matching their utilization
demand. This default behavior does not fit RT tasks which instead are
expected to run at the maximum available frequency, if not otherwise
required by explicitly capping them.
Enforce the correct behavior for RT tasks by setting util_min to max
whenever:
1. the task is switched to the RT class and it does not already have a
user-defined clamp value assigned.
2. an RT task is forked from a parent with RESET_ON_FORK set.
NOTE: utilization clamp values are cross scheduling class attributes and
thus they are never changed/reset once a value has been explicitly
defined from user-space.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-9-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A forked tasks gets the same clamp values of its parent however, when
the RESET_ON_FORK flag is set on parent, e.g. via:
sys_sched_setattr()
sched_setattr()
__sched_setscheduler(attr::SCHED_FLAG_RESET_ON_FORK)
the new forked task is expected to start with all attributes reset to
default values.
Do that for utilization clamp values too by checking the reset request
from the existing uclamp_fork() call which already provides the required
initialization for other uclamp related bits.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-8-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SCHED_DEADLINE scheduling class provides an advanced and formal
model to define tasks requirements that can translate into proper
decisions for both task placements and frequencies selections. Other
classes have a more simplified model based on the POSIX concept of
priorities.
Such a simple priority based model however does not allow to exploit
most advanced features of the Linux scheduler like, for example, driving
frequencies selection via the schedutil cpufreq governor. However, also
for non SCHED_DEADLINE tasks, it's still interesting to define tasks
properties to support scheduler decisions.
Utilization clamping exposes to user-space a new set of per-task
attributes the scheduler can use as hints about the expected/required
utilization for a task. This allows to implement a "proactive" per-task
frequency control policy, a more advanced policy than the current one
based just on "passive" measured task utilization. For example, it's
possible to boost interactive tasks (e.g. to get better performance) or
cap background tasks (e.g. to be more energy/thermal efficient).
Introduce a new API to set utilization clamping values for a specified
task by extending sched_setattr(), a syscall which already allows to
define task specific properties for different scheduling classes. A new
pair of attributes allows to specify a minimum and maximum utilization
the scheduler can consider for a task.
Do that by validating the required clamp values before and then applying
the required changes using _the_ same pattern already in use for
__setscheduler(). This ensures that the task is re-enqueued with the new
clamp values.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sched_setattr() syscall mandates that a policy is always specified.
This requires to always know which policy a task will have when
attributes are configured and this makes it impossible to add more
generic task attributes valid across different scheduling policies.
Reading the policy before setting generic tasks attributes is racy since
we cannot be sure it is not changed concurrently.
Introduce the required support to change generic task attributes without
affecting the current task policy. This is done by adding an attribute flag
(SCHED_FLAG_KEEP_POLICY) to enforce the usage of the current policy.
Add support for the SETPARAM_POLICY policy, which is already used by the
sched_setparam() POSIX syscall, to the sched_setattr() non-POSIX
syscall.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-6-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tasks without a user-defined clamp value are considered not clamped
and by default their utilization can have any value in the
[0..SCHED_CAPACITY_SCALE] range.
Tasks with a user-defined clamp value are allowed to request any value
in that range, and the required clamp is unconditionally enforced.
However, a "System Management Software" could be interested in limiting
the range of clamp values allowed for all tasks.
Add a privileged interface to define a system default configuration via:
/proc/sys/kernel/sched_uclamp_util_{min,max}
which works as an unconditional clamp range restriction for all tasks.
With the default configuration, the full SCHED_CAPACITY_SCALE range of
values is allowed for each clamp index. Otherwise, the task-specific
clamp is capped by the corresponding system default value.
Do that by tracking, for each task, the "effective" clamp value and
bucket the task has been refcounted in at enqueue time. This
allows to lazy aggregate "requested" and "system default" values at
enqueue time and simplifies refcounting updates at dequeue time.
The cached bucket ids are used to avoid (relatively) more expensive
integer divisions every time a task is enqueued.
An active flag is used to report when the "effective" value is valid and
thus the task is actually refcounted in the corresponding rq's bucket.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task sleeps it removes its max utilization clamp from its CPU.
However, the blocked utilization on that CPU can be higher than the max
clamp value enforced while the task was running. This allows undesired
CPU frequency increases while a CPU is idle, for example, when another
CPU on the same frequency domain triggers a frequency update, since
schedutil can now see the full not clamped blocked utilization of the
idle CPU.
Fix this by using:
uclamp_rq_dec_id(p, rq, UCLAMP_MAX)
uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value)
to detect when a CPU has no more RUNNABLE clamped tasks and to flag this
condition.
Don't track any minimum utilization clamps since an idle CPU never
requires a minimum frequency. The decay of the blocked utilization is
good enough to reduce the CPU frequency.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because of bucketization, different task-specific clamp values are
tracked in the same bucket. For example, with 20% bucket size and
assuming to have:
Task1: util_min=25%
Task2: util_min=35%
both tasks will be refcounted in the [20..39]% bucket and always boosted
only up to 20% thus implementing a simple floor aggregation normally
used in histograms.
In systems with only few and well-defined clamp values, it would be
useful to track the exact clamp value required by a task whenever
possible. For example, if a system requires only 23% and 47% boost
values then it's possible to track the exact boost required by each
task using only 3 buckets of ~33% size each.
Introduce a mechanism to max aggregate the requested clamp values of
RUNNABLE tasks in the same bucket. Keep it simple by resetting the
bucket value to its base value only when a bucket becomes inactive.
Allow a limited and controlled overboosting margin for tasks recounted
in the same bucket.
In systems where the boost values are not known in advance, it is still
possible to control the maximum acceptable overboosting margin by tuning
the number of clamp groups. For example, 20 groups ensure a 5% maximum
overboost.
Remove the rq bucket initialization code since a correct bucket value
is now computed when a task is refcounted into a CPU's rq.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Utilization clamping allows to clamp the CPU's utilization within a
[util_min, util_max] range, depending on the set of RUNNABLE tasks on
that CPU. Each task references two "clamp buckets" defining its minimum
and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp
bucket is active if there is at least one RUNNABLE tasks enqueued on
that CPU and refcounting that bucket.
When a task is {en,de}queued {on,from} a rq, the set of active clamp
buckets on that CPU can change. If the set of active clamp buckets
changes for a CPU a new "aggregated" clamp value is computed for that
CPU. This is because each clamp bucket enforces a different utilization
clamp value.
Clamp values are always MAX aggregated for both util_min and util_max.
This ensures that no task can affect the performance of other
co-scheduled tasks which are more boosted (i.e. with higher util_min
clamp) or less capped (i.e. with higher util_max clamp).
A task has:
task_struct::uclamp[clamp_id]::bucket_id
to track the "bucket index" of the CPU's clamp bucket it refcounts while
enqueued, for each clamp index (clamp_id).
A runqueue has:
rq::uclamp[clamp_id]::bucket[bucket_id].tasks
to track how many RUNNABLE tasks on that CPU refcount each
clamp bucket (bucket_id) of a clamp index (clamp_id).
It also has a:
rq::uclamp[clamp_id]::bucket[bucket_id].value
to track the clamp value of each clamp bucket (bucket_id) of a clamp
index (clamp_id).
The rq::uclamp::bucket[clamp_id][] array is scanned every time it's
needed to find a new MAX aggregated clamp value for a clamp_id. This
operation is required only when it's dequeued the last task of a clamp
bucket tracking the current MAX aggregated clamp value. In this case,
the CPU is either entering IDLE or going to schedule a less boosted or
more clamped task.
The expected number of different clamp values configured at build time
is small enough to fit the full unordered array into a single cache
line, for configurations of up to 7 buckets.
Add to struct rq the basic data structures required to refcount the
number of RUNNABLE tasks for each clamp bucket. Add also the max
aggregation required to update the rq's clamp value at each
enqueue/dequeue event.
Use a simple linear mapping of clamp values into clamp buckets.
Pre-compute and cache bucket_id to avoid integer divisions at
enqueue/dequeue time.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The term 'weighted' is not needed since there is no 'unweighted' load.
Instead use the term 'runnable' to distinguish 'runnable' load
(avg.runnable_load_avg) used in load balance from load (avg.load_avg)
which is the sum of 'runnable' and 'blocked' load.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/57f27a7f-2775-d832-e965-0f4d51bb1954@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So that external modules can hook into them and extract the info they
need. Since these new tracepoints have no events associated with them
exporting these tracepoints make them useful for external modules to
perform testing and debugging. There's no other way otherwise to access
them.
BPF doesn't have infrastructure to access these bare tracepoints either.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-7-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new tracepoint allows us to track the changes in overutilized
status.
Overutilized status is associated with EAS. It indicates that the system
is in high performance state. EAS is disabled when the system is in this
state since there's not much energy savings while high performance tasks
are pushing the system to the limit and it's better to default to the
spreading behavior of the scheduler.
This tracepoint helps understanding and debugging the conditions under
which this happens.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-6-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new functions allow modules to access internal data structures of
unexported struct cfs_rq and struct rq to extract important information
from the tracepoints to be introduced in later patches.
While at it fix alphabetical order of struct declarations in sched.h
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the #ifdef CONFIG_SCHED_DEBUG.
Some of the tracepoints to be introduced in later patches need to access
this function. Hence make it always available since the tracepoints are
not protected by CONFIG_SCHED_DEBUG.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de>
Link: https://lkml.kernel.org/r/20190604111459.2862-2-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Statements in the loop's body and before it are identical.
Use do-while to not repeat it.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/43ffea6ee2152b90dedf962eac851609e4197218.1560256112.git.asml.silence@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Nadav reported that code-gen changed because of the this_cpu_*()
constraints, avoid this for select_idle_cpu() because that runs with
preemption (and IRQs) disabled anyway.
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a cfs_rq sleeps and returns its quota, we delay for 5ms before
waking any throttled cfs_rqs to coalesce with other cfs_rqs going to
sleep, as this has to be done outside of the rq lock we hold.
The current code waits for 5ms without any sleeps, instead of waiting
for 5ms from the first sleep, which can delay the unthrottle more than
we want. Switch this around so that we can't push this forward forever.
This requires an extra flag rather than using hrtimer_active, since we
need to start a new timer if the current one is in the process of
finishing.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com>
Acked-by: Phil Auld <pauld@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/xm26a7euy6iq.fsf_-_@bsegall-linux.svl.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jens reported that significant performance can be had on some block
workloads by special casing local wakeups. That is, wakeups on the
current task before it schedules out.
Given something like the normal wait pattern:
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (cond)
break;
schedule();
}
__set_current_state(TASK_RUNNING);
Any wakeup (on this CPU) after set_current_state() and before
schedule() would benefit from this.
Normal wakeups take p->pi_lock, which serializes wakeups to the same
task. By eliding that we gain concurrency on:
- ttwu_stat(); we already had concurrency on rq stats, this now also
brings it to task stats. -ENOCARE
- tracepoints; it is now possible to get multiple instances of
trace_sched_waking() (and possibly trace_sched_wakeup()) for the
same task. Tracers will have to learn to cope.
Furthermore, p->pi_lock is used by set_special_state(), to order
against TASK_RUNNING stores from other CPUs. But since this is
strictly CPU local, we don't need the lock, and set_special_state()'s
disabling of IRQs is sufficient.
After the normal wakeup takes p->pi_lock it issues
smp_mb__after_spinlock(), in order to ensure the woken task must
observe prior stores before we observe the p->state. If this is CPU
local, this will be satisfied with a compiler barrier, and we rely on
try_to_wake_up() being a funcation call, which implies such.
Since, when 'p == current', 'p->on_rq' must be true, the normal wakeup
would continue into the ttwu_remote() branch, which normally is
concerned with exactly this wakeup scenario, except from a remote CPU.
IOW we're waking a task that is still running. In this case, we can
trivially avoid taking rq->lock, all that's left from this is to set
p->state.
This then yields an extremely simple and fast path for 'p == current'.
Reported-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: gkohli@codeaurora.org
Cc: hch@lst.de
Cc: oleg@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
runnable_avg_yN_inv[] is only used in kernel/sched/pelt.c but was
included in several other places because they need other macros all
came from kernel/sched/sched-pelt.h which was generated by
Documentation/scheduler/sched-pelt. As the result, it causes compilation
a lot of warnings,
kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=]
kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=]
kernel/sched/sched-pelt.h:4:18: warning: 'runnable_avg_yN_inv' defined but not used [-Wunused-const-variable=]
...
Silence it by appending the __maybe_unused attribute for it, so all
generated variables and macros can still be kept in the same file.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1559596304-31581-1-git-send-email-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cfs_rq_has_blocked() and others_have_blocked() are only used within
update_blocked_averages(). The !CONFIG_FAIR_GROUP_SCHED version of the
latter calls them within a #define CONFIG_NO_HZ_COMMON block, whereas
the CONFIG_FAIR_GROUP_SCHED one calls them unconditionnally.
As reported by Qian, the above leads to this warning in
!CONFIG_NO_HZ_COMMON configs:
kernel/sched/fair.c: In function 'update_blocked_averages':
kernel/sched/fair.c:7750:7: warning: variable 'done' set but not used [-Wunused-but-set-variable]
It wouldn't be wrong to keep cfs_rq_has_blocked() and
others_have_blocked() as they are, but since their only current use is
to figure out when we can stop calling update_blocked_averages() on
fully decayed NOHZ idle CPUs, we can give them a new definition for
!CONFIG_NO_HZ_COMMON.
Change the definition of cfs_rq_has_blocked() and
others_have_blocked() for !CONFIG_NO_HZ_COMMON so that the
NOHZ-specific blocks of update_blocked_averages() become no-ops and
the 'done' variable gets optimised out.
While at it, remove the CONFIG_NO_HZ_COMMON block from the
!CONFIG_FAIR_GROUP_SCHED definition of update_blocked_averages() by
using the newly-introduced update_blocked_load_status() helper.
No change in functionality intended.
[ Additions by Peter Zijlstra. ]
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190603115424.7951-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Non-inline io_schedule() was introduced in:
commit 10ab56434f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()")
Keep in line with io_schedule_timeout(), otherwise "/proc/<pid>/wchan" will
report io_schedule() rather than its callers when waiting for IO.
Reported-by: Jilong Kou <koujilong@huawei.com>
Signed-off-by: Gao Xiang <gaoxiang25@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 10ab56434f ("sched/core: Separate out io_schedule_prepare() and io_schedule_finish()")
Link: https://lkml.kernel.org/r/20190603091338.2695-1-gaoxiang25@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to prepare to add them to the Kernel API book,
convert the files to ReST format.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 315 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since sg_lb_stats::sum_weighted_load is now identical with
sg_lb_stats::group_load remove it and replace its use case
(calculating load per task) with the latter.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20190527062116.11512-7-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts:
commit 201c373e8e ("sched/debug: Limit sd->*_idx range on sysctl")
Load indexes (sd->*_idx) are no longer needed without rq->cpu_load[].
The range check for load indexes can be removed as well. Get rid of it
before the rq->cpu_load[] since it uses CPU_LOAD_IDX_MAX.
At the same time, fix the following coding style issues detected by
scripts/checkpatch.pl:
ERROR: space prohibited before that ','
ERROR: space prohibited before that close parenthesis ')'
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-4-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With LB_BIAS disabled, source_load() & target_load() return
weighted_cpuload(). Replace both with calls to weighted_cpuload().
The function to obtain the load index (sd->*_idx) for an sd,
get_sd_load_idx(), can be removed as well.
Finally, get rid of the sched feature LB_BIAS.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-3-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With LB_BIAS disabled, there is no need to update the rq->cpu_load[idx]
any more.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20190527062116.11512-2-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CFS class is the only one maintaining and using the CPU wide load
(rq->load(.weight)). The last use case of the CPU wide load in CFS's
set_next_entity() can be replaced by using the load of the CFS class
(rq->cfs.load(.weight)) instead.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190424084556.604-1-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In commit:
4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>