This patch defines and implements a new regset NT_ARM_SVE, which
describes a thread's SVE register state. This allows a debugger to
manipulate the SVE state, as well as being included in ELF
coredumps for post-mortem debugging.
Because the regset size and layout are dependent on the thread's
current vector length, it is not possible to define a C struct to
describe the regset contents as is done for existing regsets.
Instead, and for the same reasons, NT_ARM_SVE is based on the
freeform variable-layout approach used for the SVE signal frame.
Additionally, to reduce debug overhead when debugging threads that
might or might not have live SVE register state, NT_ARM_SVE may be
presented in one of two different formats: the old struct
user_fpsimd_state format is embedded for describing the state of a
thread with no live SVE state, whereas a new variable-layout
structure is embedded for describing live SVE state. This avoids a
debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and
allows existing userspace code to handle the non-SVE case without
too much modification.
For this to work, NT_ARM_SVE is defined with a fixed-format header
of type struct user_sve_header, which the recipient can use to
figure out the content, size and layout of the reset of the regset.
Accessor macros are defined to allow the vector-length-dependent
parts of the regset to be manipulated.
Signed-off-by: Alan Hayward <alan.hayward@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch uses the cpufeatures framework to determine common SVE
capabilities and vector lengths, and configures the runtime SVE
support code appropriately.
ZCR_ELx is not really a feature register, but it is convenient to
use it as a template for recording the maximum vector length
supported by a CPU, using the LEN field. This field is similar to
a feature field in that it is a contiguous bitfield for which we
want to determine the minimum system-wide value. This patch adds
ZCR as a pseudo-register in cpuinfo/cpufeatures, with appropriate
custom code to populate it. Finding the minimum supported value of
the LEN field is left to the cpufeatures framework in the usual
way.
The meaning of ID_AA64ZFR0_EL1 is not architecturally defined yet,
so for now we just require it to be zero.
Note that much of this code is dormant and SVE still won't be used
yet, since system_supports_sve() remains hardwired to false.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch implements the core logic for changing a task's vector
length on request from userspace. This will be used by the ptrace
and prctl frontends that are implemented in later patches.
The SVE architecture permits, but does not require, implementations
to support vector lengths that are not a power of two. To handle
this, logic is added to check a requested vector length against a
possibly sparse bitmap of available vector lengths at runtime, so
that the best supported value can be chosen.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch implements support for saving and restoring the SVE
registers around signals.
A fixed-size header struct sve_context is always included in the
signal frame encoding the thread's vector length at the time of
signal delivery, optionally followed by a variable-layout structure
encoding the SVE registers.
Because of the need to preserve backwards compatibility, the FPSIMD
view of the SVE registers is always dumped as a struct
fpsimd_context in the usual way, in addition to any sve_context.
The SVE vector registers are dumped in full, including bits 127:0
of each register which alias the corresponding FPSIMD vector
registers in the hardware. To avoid any ambiguity about which
alias to restore during sigreturn, the kernel always restores bits
127:0 of each SVE vector register from the fpsimd_context in the
signal frame (which must be present): userspace needs to take this
into account if it wants to modify the SVE vector register contents
on return from a signal.
FPSR and FPCR, which are used by both FPSIMD and SVE, are not
included in sve_context because they are always present in
fpsimd_context anyway.
For signal delivery, a new helper
fpsimd_signal_preserve_current_state() is added to update _both_
the FPSIMD and SVE views in the task struct, to make it easier to
populate this information into the signal frame. Because of the
redundancy between the two views of the state, only one is updated
otherwise.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds the core support for switching and managing the SVE
architectural state of user tasks.
Calls to the existing FPSIMD low-level save/restore functions are
factored out as new functions task_fpsimd_{save,load}(), since SVE
now dynamically may or may not need to be handled at these points
depending on the kernel configuration, hardware features discovered
at boot, and the runtime state of the task. To make these
decisions as fast as possible, const cpucaps are used where
feasible, via the system_supports_sve() helper.
The SVE registers are only tracked for threads that have explicitly
used SVE, indicated by the new thread flag TIF_SVE. Otherwise, the
FPSIMD view of the architectural state is stored in
thread.fpsimd_state as usual.
When in use, the SVE registers are not stored directly in
thread_struct due to their potentially large and variable size.
Because the task_struct slab allocator must be configured very
early during kernel boot, it is also tricky to configure it
correctly to match the maximum vector length provided by the
hardware, since this depends on examining secondary CPUs as well as
the primary. Instead, a pointer sve_state in thread_struct points
to a dynamically allocated buffer containing the SVE register data,
and code is added to allocate and free this buffer at appropriate
times.
TIF_SVE is set when taking an SVE access trap from userspace, if
suitable hardware support has been detected. This enables SVE for
the thread: a subsequent return to userspace will disable the trap
accordingly. If such a trap is taken without sufficient system-
wide hardware support, SIGILL is sent to the thread instead as if
an undefined instruction had been executed: this may happen if
userspace tries to use SVE in a system where not all CPUs support
it for example.
The kernel will clear TIF_SVE and disable SVE for the thread
whenever an explicit syscall is made by userspace. For backwards
compatibility reasons and conformance with the spirit of the base
AArch64 procedure call standard, the subset of the SVE register
state that aliases the FPSIMD registers is still preserved across a
syscall even if this happens. The remainder of the SVE register
state logically becomes zero at syscall entry, though the actual
zeroing work is currently deferred until the thread next tries to
use SVE, causing another trap to the kernel. This implementation
is suboptimal: in the future, the fastpath case may be optimised
to zero the registers in-place and leave SVE enabled for the task,
where beneficial.
TIF_SVE is also cleared in the following slowpath cases, which are
taken as reasonable hints that the task may no longer use SVE:
* exec
* fork and clone
Code is added to sync data between thread.fpsimd_state and
thread.sve_state whenever enabling/disabling SVE, in a manner
consistent with the SVE architectural programmer's model.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
[will: added #include to fix allnoconfig build]
[will: use enable_daif in do_sve_acc]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Manipulating the SVE architectural state, including the vector and
predicate registers, first-fault register and the vector length,
requires the use of dedicated instructions added by SVE.
This patch adds suitable assembly functions for saving and
restoring the SVE registers and querying the vector length.
Setting of the vector length is done as part of register restore.
Since people building kernels may not all get an SVE-enabled
toolchain for a while, this patch uses macros that generate
explicit opcodes in place of assembler mnemonics.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Support for kernel-mode NEON to be nested and/or used in hardirq
context adds significant complexity, and the benefits may be
marginal. In practice, kernel-mode NEON is not used in hardirq
context, and is rarely used in softirq context (by certain mac80211
drivers).
This patch implements an arm64 may_use_simd() function to allow
clients to check whether kernel-mode NEON is usable in the current
context, and simplifies kernel_neon_{begin,end}() to handle only
saving of the task FPSIMD state (if any). Without nesting, there
is no other state to save.
The partial fpsimd save/restore functions become redundant as a
result of these changes, so they are removed too.
The save/restore model is changed to operate directly on
task_struct without additional percpu storage. This simplifies the
code and saves a bit of memory, but means that softirqs must now be
disabled when manipulating the task fpsimd state from task context:
correspondingly, preempt_{en,dis}sable() calls are upgraded to
local_bh_{en,dis}able() as appropriate. fpsimd_thread_switch()
already runs with hardirqs disabled and so is already protected
from softirqs.
These changes should make it easier to support kernel-mode NEON in
the presence of the Scalable Vector extension in the future.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to be able to cope with kernel-mode NEON being unavailable
in hardirq/nmi context and non-nestable, we need special handling
for EFI runtime service calls that may be made during an interrupt
that interrupted a kernel_neon_begin()..._end() block. This will
occur if the kernel tries to write diagnostic data to EFI
persistent storage during a panic triggered by an NMI for example.
EFI runtime services specify an ABI that clobbers the FPSIMD state,
rather than being able to use it optionally as an accelerator.
This means that EFI is really a special case and can be handled
specially.
To enable EFI calls from interrupts, this patch creates dedicated
__efi_fpsimd_{begin,end}() helpers solely for this purpose, which
save/restore to a separate percpu buffer if called in a context
where kernel_neon_begin() is not usable.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch modifies kernel_neon_begin() and kernel_neon_end(), so
they may be called from any context. To address the case where only
a couple of registers are needed, kernel_neon_begin_partial(u32) is
introduced which takes as a parameter the number of bottom 'n' NEON
q-registers required. To mark the end of such a partial section, the
regular kernel_neon_end() should be used.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
If a task gets scheduled out and back in again and nothing has touched
its FPSIMD state in the mean time, there is really no reason to reload
it from memory. Similarly, repeated calls to kernel_neon_begin() and
kernel_neon_end() will preserve and restore the FPSIMD state every time.
This patch defers the FPSIMD state restore to the last possible moment,
i.e., right before the task returns to userland. If a task does not return to
userland at all (for any reason), the existing FPSIMD state is preserved
and may be reused by the owning task if it gets scheduled in again on the
same CPU.
This patch adds two more functions to abstract away from straight FPSIMD
register file saves and restores:
- fpsimd_restore_current_state -> ensure current's FPSIMD state is loaded
- fpsimd_flush_task_state -> invalidate live copies of a task's FPSIMD state
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
There are two tacit assumptions in the FPSIMD handling code that will no longer
hold after the next patch that optimizes away some FPSIMD state restores:
. the FPSIMD registers of this CPU contain the userland FPSIMD state of
task 'current';
. when switching to a task, its FPSIMD state will always be restored from
memory.
This patch adds the following functions to abstract away from straight FPSIMD
register file saves and restores:
- fpsimd_preserve_current_state -> ensure current's FPSIMD state is saved
- fpsimd_update_current_state -> replace current's FPSIMD state
Where necessary, the signal handling and fork code are updated to use the above
wrappers instead of poking into the FPSIMD registers directly.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
struct user_fp does not exist for arm64, so use struct user_fpsimd_state
instead for the ELF core dumping definitions. Furthermore, since we use
regset-based core dumping, we do not need definitions for dump_task_regs
and dump_fpu.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds support for FP/ASIMD register bank saving and restoring
during context switch and FP exception handling to generate SIGFPE.
There are 32 128-bit registers and the context switching is currently
done non-lazily. Benchmarks on real hardware are required before
implementing lazy FP state saving/restoring.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>