Commit Graph

8990 Commits

Author SHA1 Message Date
Linus Torvalds
3e08a95294 for-5.8-rc2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7yABEACgkQxWXV+ddt
 WDtGoQ//cBWRRWLlLTRgpaKnY6t8JgVUqNvPJISHHf45cNbOJh0yo8hUuKMW+440
 8ovYqtFoZD+JHcHDE2sMueHBFe38rG5eT/zh8j/ruhBzeJcTb3lSYz53d7sfl5kD
 cIVngPEVlGziDqW2PsWLlyh8ulBGzY3YmS6kAEkyP/6/uhE/B1dq6qn3GUibkbKI
 dfNjHTLwZVmwnqoxLu8ZE2/hHFbzhl0sm09snsXYSVu13g36+edp0Z+pF0MlKGVk
 G6YrnZcts8TWwneZ4nogD9f2CMvzMhYDDLyEjsX0Ouhb+Cu2WNxdfrJ2ZbPNU82w
 EGbo451mIt6Ht8wicEjh27LWLI7YMraF/Ig/ODMdvFBYDbhl4voX2t+4n+p5Czbg
 AW6Wtg/q5EaaNFqrTsqAAiUn0+R3sMiDWrE0AewcE7syPGqQ2XMwP4la5pZ36rz8
 8Vo5KIGo44PIJ1dMwcX+bg3HTtUnBJSxE5fUi0rJ3ZfHKGjLS79VonEeQjh3QD6W
 0UlK+jCjo6KZoe33XdVV2hVkHd63ZIlliXWv0LOR+gpmqqgW2b3wf181zTvo/5sI
 v0fDjstA9caqf68ChPE9jJi7rZPp/AL1yAQGEiNzjKm4U431TeZJl2cpREicMJDg
 FCDU51t9425h8BFkM4scErX2/53F1SNNNSlAsFBGvgJkx6rTENs=
 =/eCR
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:
 "A number of fixes, located in two areas, one performance fix and one
  fixup for better integration with another patchset.

   - bug fixes in nowait aio:
       - fix snapshot creation hang after nowait-aio was used
       - fix failure to write to prealloc extent past EOF
       - don't block when extent range is locked

   - block group fixes:
       - relocation failure when scrub runs in parallel
       - refcount fix when removing fails
       - fix race between removal and creation
       - space accounting fixes

   - reinstante fast path check for log tree at unlink time, fixes
     performance drop up to 30% in REAIM

   - kzfree/kfree fixup to ease treewide patchset renaming kzfree"

* tag 'for-5.8-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: use kfree() in btrfs_ioctl_get_subvol_info()
  btrfs: fix RWF_NOWAIT writes blocking on extent locks and waiting for IO
  btrfs: fix RWF_NOWAIT write not failling when we need to cow
  btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
  btrfs: fix hang on snapshot creation after RWF_NOWAIT write
  btrfs: check if a log root exists before locking the log_mutex on unlink
  btrfs: fix bytes_may_use underflow when running balance and scrub in parallel
  btrfs: fix data block group relocation failure due to concurrent scrub
  btrfs: fix race between block group removal and block group creation
  btrfs: fix a block group ref counter leak after failure to remove block group
2020-06-23 09:20:11 -07:00
Waiman Long
b091f7fede btrfs: use kfree() in btrfs_ioctl_get_subvol_info()
In btrfs_ioctl_get_subvol_info(), there is a classic case where kzalloc()
was incorrectly paired with kzfree(). According to David Sterba, there
isn't any sensitive information in the subvol_info that needs to be
cleared before freeing. So kzfree() isn't really needed, use kfree()
instead.

Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:24:03 +02:00
Filipe Manana
5dbb75ed69 btrfs: fix RWF_NOWAIT writes blocking on extent locks and waiting for IO
A RWF_NOWAIT write is not supposed to wait on filesystem locks that can be
held for a long time or for ongoing IO to complete.

However when calling check_can_nocow(), if the inode has prealloc extents
or has the NOCOW flag set, we can block on extent (file range) locks
through the call to btrfs_lock_and_flush_ordered_range(). Such lock can
take a significant amount of time to be available. For example, a fiemap
task may be running, and iterating through the entire file range checking
all extents and doing backref walking to determine if they are shared,
or a readpage operation may be in progress.

Also at btrfs_lock_and_flush_ordered_range(), called by check_can_nocow(),
after locking the file range we wait for any existing ordered extent that
is in progress to complete. Another operation that can take a significant
amount of time and defeat the purpose of RWF_NOWAIT.

So fix this by trying to lock the file range and if it's currently locked
return -EAGAIN to user space. If we are able to lock the file range without
waiting and there is an ordered extent in the range, return -EAGAIN as
well, instead of waiting for it to complete. Finally, don't bother trying
to lock the snapshot lock of the root when attempting a RWF_NOWAIT write,
as that is only important for buffered writes.

Fixes: edf064e7c6 ("btrfs: nowait aio support")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:45 +02:00
Filipe Manana
260a63395f btrfs: fix RWF_NOWAIT write not failling when we need to cow
If we attempt to do a RWF_NOWAIT write against a file range for which we
can only do NOCOW for a part of it, due to the existence of holes or
shared extents for example, we proceed with the write as if it were
possible to NOCOW the whole range.

Example:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ touch /mnt/sdj/bar
  $ chattr +C /mnt/sdj/bar

  $ xfs_io -d -c "pwrite -S 0xab -b 256K 0 256K" /mnt/bar
  wrote 262144/262144 bytes at offset 0
  256 KiB, 1 ops; 0.0003 sec (694.444 MiB/sec and 2777.7778 ops/sec)

  $ xfs_io -c "fpunch 64K 64K" /mnt/bar
  $ sync

  $ xfs_io -d -c "pwrite -N -V 1 -b 128K -S 0xfe 0 128K" /mnt/bar
  wrote 131072/131072 bytes at offset 0
  128 KiB, 1 ops; 0.0007 sec (160.051 MiB/sec and 1280.4097 ops/sec)

This last write should fail with -EAGAIN since the file range from 64K to
128K is a hole. On xfs it fails, as expected, but on ext4 it currently
succeeds because apparently it is expensive to check if there are extents
allocated for the whole range, but I'll check with the ext4 people.

Fix the issue by checking if check_can_nocow() returns a number of
NOCOW'able bytes smaller then the requested number of bytes, and if it
does return -EAGAIN.

Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:37 +02:00
Filipe Manana
4b1946284d btrfs: fix failure of RWF_NOWAIT write into prealloc extent beyond eof
If we attempt to write to prealloc extent located after eof using a
RWF_NOWAIT write, we always fail with -EAGAIN.

We do actually check if we have an allocated extent for the write at
the start of btrfs_file_write_iter() through a call to check_can_nocow(),
but later when we go into the actual direct IO write path we simply
return -EAGAIN if the write starts at or beyond EOF.

Trivial to reproduce:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ touch /mnt/foo
  $ chattr +C /mnt/foo

  $ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foo
  wrote 65536/65536 bytes at offset 0
  64 KiB, 16 ops; 0.0004 sec (135.575 MiB/sec and 34707.1584 ops/sec)

  $ xfs_io -c "falloc -k 64K 1M" /mnt/foo

  $ xfs_io -d -c "pwrite -N -V 1 -S 0xfe -b 64K 64K 64K" /mnt/foo
  pwrite: Resource temporarily unavailable

On xfs and ext4 the write succeeds, as expected.

Fix this by removing the wrong check at btrfs_direct_IO().

Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:31 +02:00
Filipe Manana
f2cb2f39cc btrfs: fix hang on snapshot creation after RWF_NOWAIT write
If we do a successful RWF_NOWAIT write we end up locking the snapshot lock
of the inode, through a call to check_can_nocow(), but we never unlock it.

This means the next attempt to create a snapshot on the subvolume will
hang forever.

Trivial reproducer:

  $ mkfs.btrfs -f /dev/sdb
  $ mount /dev/sdb /mnt

  $ touch /mnt/foobar
  $ chattr +C /mnt/foobar
  $ xfs_io -d -c "pwrite -S 0xab 0 64K" /mnt/foobar
  $ xfs_io -d -c "pwrite -N -V 1 -S 0xfe 0 64K" /mnt/foobar

  $ btrfs subvolume snapshot -r /mnt /mnt/snap
    --> hangs

Fix this by unlocking the snapshot lock if check_can_nocow() returned
success.

Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:27 +02:00
Filipe Manana
e7a79811d0 btrfs: check if a log root exists before locking the log_mutex on unlink
This brings back an optimization that commit e678934cbe ("btrfs:
Remove unnecessary check from join_running_log_trans") removed, but in
a different form. So it's almost equivalent to a revert.

That commit removed an optimization where we avoid locking a root's
log_mutex when there is no log tree created in the current transaction.
The affected code path is triggered through unlink operations.

That commit was based on the assumption that the optimization was not
necessary because we used to have the following checks when the patch
was authored:

  int btrfs_del_dir_entries_in_log(...)
  {
        (...)
        if (dir->logged_trans < trans->transid)
            return 0;

        ret = join_running_log_trans(root);
        (...)
   }

   int btrfs_del_inode_ref_in_log(...)
   {
        (...)
        if (inode->logged_trans < trans->transid)
            return 0;

        ret = join_running_log_trans(root);
        (...)
   }

However before that patch was merged, another patch was merged first which
replaced those checks because they were buggy.

That other patch corresponds to commit 803f0f64d1 ("Btrfs: fix fsync
not persisting dentry deletions due to inode evictions"). The assumption
that if the logged_trans field of an inode had a smaller value then the
current transaction's generation (transid) meant that the inode was not
logged in the current transaction was only correct if the inode was not
evicted and reloaded in the current transaction. So the corresponding bug
fix changed those checks and replaced them with the following helper
function:

  static bool inode_logged(struct btrfs_trans_handle *trans,
                           struct btrfs_inode *inode)
  {
        if (inode->logged_trans == trans->transid)
                return true;

        if (inode->last_trans == trans->transid &&
            test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
            !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
                return true;

        return false;
  }

So if we have a subvolume without a log tree in the current transaction
(because we had no fsyncs), every time we unlink an inode we can end up
trying to lock the log_mutex of the root through join_running_log_trans()
twice, once for the inode being unlinked (by btrfs_del_inode_ref_in_log())
and once for the parent directory (with btrfs_del_dir_entries_in_log()).

This means if we have several unlink operations happening in parallel for
inodes in the same subvolume, and the those inodes and/or their parent
inode were changed in the current transaction, we end up having a lot of
contention on the log_mutex.

The test robots from intel reported a -30.7% performance regression for
a REAIM test after commit e678934cbe ("btrfs: Remove unnecessary check
from join_running_log_trans").

So just bring back the optimization to join_running_log_trans() where we
check first if a log root exists before trying to lock the log_mutex. This
is done by checking for a bit that is set on the root when a log tree is
created and removed when a log tree is freed (at transaction commit time).

Commit e678934cbe ("btrfs: Remove unnecessary check from
join_running_log_trans") was merged in the 5.4 merge window while commit
803f0f64d1 ("Btrfs: fix fsync not persisting dentry deletions due to
inode evictions") was merged in the 5.3 merge window. But the first
commit was actually authored before the second commit (May 23 2019 vs
June 19 2019).

Reported-by: kernel test robot <rong.a.chen@intel.com>
Link: https://lore.kernel.org/lkml/20200611090233.GL12456@shao2-debian/
Fixes: e678934cbe ("btrfs: Remove unnecessary check from join_running_log_trans")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:22:23 +02:00
Filipe Manana
6bd335b469 btrfs: fix bytes_may_use underflow when running balance and scrub in parallel
When balance and scrub are running in parallel it is possible to end up
with an underflow of the bytes_may_use counter of the data space_info
object, which triggers a warning like the following:

   [134243.793196] BTRFS info (device sdc): relocating block group 1104150528 flags data
   [134243.806891] ------------[ cut here ]------------
   [134243.807561] WARNING: CPU: 1 PID: 26884 at fs/btrfs/space-info.h:125 btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
   [134243.808819] Modules linked in: btrfs blake2b_generic xor (...)
   [134243.815779] CPU: 1 PID: 26884 Comm: kworker/u8:8 Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
   [134243.816944] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
   [134243.818389] Workqueue: writeback wb_workfn (flush-btrfs-108483)
   [134243.819186] RIP: 0010:btrfs_add_reserved_bytes+0x1da/0x280 [btrfs]
   [134243.819963] Code: 0b f2 85 (...)
   [134243.822271] RSP: 0018:ffffa4160aae7510 EFLAGS: 00010287
   [134243.822929] RAX: 000000000000c000 RBX: ffff96159a8c1000 RCX: 0000000000000000
   [134243.823816] RDX: 0000000000008000 RSI: 0000000000000000 RDI: ffff96158067a810
   [134243.824742] RBP: ffff96158067a800 R08: 0000000000000001 R09: 0000000000000000
   [134243.825636] R10: ffff961501432a40 R11: 0000000000000000 R12: 000000000000c000
   [134243.826532] R13: 0000000000000001 R14: ffffffffffff4000 R15: ffff96158067a810
   [134243.827432] FS:  0000000000000000(0000) GS:ffff9615baa00000(0000) knlGS:0000000000000000
   [134243.828451] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   [134243.829184] CR2: 000055bd7e414000 CR3: 00000001077be004 CR4: 00000000003606e0
   [134243.830083] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
   [134243.830975] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
   [134243.831867] Call Trace:
   [134243.832211]  find_free_extent+0x4a0/0x16c0 [btrfs]
   [134243.832846]  btrfs_reserve_extent+0x91/0x180 [btrfs]
   [134243.833487]  cow_file_range+0x12d/0x490 [btrfs]
   [134243.834080]  fallback_to_cow+0x82/0x1b0 [btrfs]
   [134243.834689]  ? release_extent_buffer+0x121/0x170 [btrfs]
   [134243.835370]  run_delalloc_nocow+0x33f/0xa30 [btrfs]
   [134243.836032]  btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
   [134243.836725]  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
   [134243.837450]  writepage_delalloc+0xe8/0x150 [btrfs]
   [134243.838059]  __extent_writepage+0xe8/0x4c0 [btrfs]
   [134243.838674]  extent_write_cache_pages+0x237/0x530 [btrfs]
   [134243.839364]  extent_writepages+0x44/0xa0 [btrfs]
   [134243.839946]  do_writepages+0x23/0x80
   [134243.840401]  __writeback_single_inode+0x59/0x700
   [134243.841006]  writeback_sb_inodes+0x267/0x5f0
   [134243.841548]  __writeback_inodes_wb+0x87/0xe0
   [134243.842091]  wb_writeback+0x382/0x590
   [134243.842574]  ? wb_workfn+0x4a2/0x6c0
   [134243.843030]  wb_workfn+0x4a2/0x6c0
   [134243.843468]  process_one_work+0x26d/0x6a0
   [134243.843978]  worker_thread+0x4f/0x3e0
   [134243.844452]  ? process_one_work+0x6a0/0x6a0
   [134243.844981]  kthread+0x103/0x140
   [134243.845400]  ? kthread_create_worker_on_cpu+0x70/0x70
   [134243.846030]  ret_from_fork+0x3a/0x50
   [134243.846494] irq event stamp: 0
   [134243.846892] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
   [134243.847682] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134243.848687] softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134243.849913] softirqs last disabled at (0): [<0000000000000000>] 0x0
   [134243.850698] ---[ end trace bd7c03622e0b0a96 ]---
   [134243.851335] ------------[ cut here ]------------

When relocating a data block group, for each extent allocated in the
block group we preallocate another extent with the same size for the
data relocation inode (we do it at prealloc_file_extent_cluster()).
We reserve space by calling btrfs_check_data_free_space(), which ends
up incrementing the data space_info's bytes_may_use counter, and
then call btrfs_prealloc_file_range() to allocate the extent, which
always decrements the bytes_may_use counter by the same amount.

The expectation is that writeback of the data relocation inode always
follows a NOCOW path, by writing into the preallocated extents. However,
when starting writeback we might end up falling back into the COW path,
because the block group that contains the preallocated extent was turned
into RO mode by a scrub running in parallel. The COW path then calls the
extent allocator which ends up calling btrfs_add_reserved_bytes(), and
this function decrements the bytes_may_use counter of the data space_info
object by an amount corresponding to the size of the allocated extent,
despite we haven't previously incremented it. When the counter currently
has a value smaller then the allocated extent we reset the counter to 0
and emit a warning, otherwise we just decrement it and slowly mess up
with this counter which is crucial for space reservation, the end result
can be granting reserved space to tasks when there isn't really enough
free space, and having the tasks fail later in critical places where
error handling consists of a transaction abort or hitting a BUG_ON().

Fix this by making sure that if we fallback to the COW path for a data
relocation inode, we increment the bytes_may_use counter of the data
space_info object. The COW path will then decrement it at
btrfs_add_reserved_bytes() on success or through its error handling part
by a call to extent_clear_unlock_delalloc() (which ends up calling
btrfs_clear_delalloc_extent() that does the decrement operation) in case
of an error.

Test case btrfs/061 from fstests could sporadically trigger this.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:21:31 +02:00
Filipe Manana
432cd2a10f btrfs: fix data block group relocation failure due to concurrent scrub
When running relocation of a data block group while scrub is running in
parallel, it is possible that the relocation will fail and abort the
current transaction with an -EINVAL error:

   [134243.988595] BTRFS info (device sdc): found 14 extents, stage: move data extents
   [134243.999871] ------------[ cut here ]------------
   [134244.000741] BTRFS: Transaction aborted (error -22)
   [134244.001692] WARNING: CPU: 0 PID: 26954 at fs/btrfs/ctree.c:1071 __btrfs_cow_block+0x6a7/0x790 [btrfs]
   [134244.003380] Modules linked in: btrfs blake2b_generic xor raid6_pq (...)
   [134244.012577] CPU: 0 PID: 26954 Comm: btrfs Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
   [134244.014162] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
   [134244.016184] RIP: 0010:__btrfs_cow_block+0x6a7/0x790 [btrfs]
   [134244.017151] Code: 48 c7 c7 (...)
   [134244.020549] RSP: 0018:ffffa41607863888 EFLAGS: 00010286
   [134244.021515] RAX: 0000000000000000 RBX: ffff9614bdfe09c8 RCX: 0000000000000000
   [134244.022822] RDX: 0000000000000001 RSI: ffffffffb3d63980 RDI: 0000000000000001
   [134244.024124] RBP: ffff961589e8c000 R08: 0000000000000000 R09: 0000000000000001
   [134244.025424] R10: ffffffffc0ae5955 R11: 0000000000000000 R12: ffff9614bd530d08
   [134244.026725] R13: ffff9614ced41b88 R14: ffff9614bdfe2a48 R15: 0000000000000000
   [134244.028024] FS:  00007f29b63c08c0(0000) GS:ffff9615ba600000(0000) knlGS:0000000000000000
   [134244.029491] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   [134244.030560] CR2: 00007f4eb339b000 CR3: 0000000130d6e006 CR4: 00000000003606f0
   [134244.031997] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
   [134244.033153] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
   [134244.034484] Call Trace:
   [134244.034984]  btrfs_cow_block+0x12b/0x2b0 [btrfs]
   [134244.035859]  do_relocation+0x30b/0x790 [btrfs]
   [134244.036681]  ? do_raw_spin_unlock+0x49/0xc0
   [134244.037460]  ? _raw_spin_unlock+0x29/0x40
   [134244.038235]  relocate_tree_blocks+0x37b/0x730 [btrfs]
   [134244.039245]  relocate_block_group+0x388/0x770 [btrfs]
   [134244.040228]  btrfs_relocate_block_group+0x161/0x2e0 [btrfs]
   [134244.041323]  btrfs_relocate_chunk+0x36/0x110 [btrfs]
   [134244.041345]  btrfs_balance+0xc06/0x1860 [btrfs]
   [134244.043382]  ? btrfs_ioctl_balance+0x27c/0x310 [btrfs]
   [134244.045586]  btrfs_ioctl_balance+0x1ed/0x310 [btrfs]
   [134244.045611]  btrfs_ioctl+0x1880/0x3760 [btrfs]
   [134244.049043]  ? do_raw_spin_unlock+0x49/0xc0
   [134244.049838]  ? _raw_spin_unlock+0x29/0x40
   [134244.050587]  ? __handle_mm_fault+0x11b3/0x14b0
   [134244.051417]  ? ksys_ioctl+0x92/0xb0
   [134244.052070]  ksys_ioctl+0x92/0xb0
   [134244.052701]  ? trace_hardirqs_off_thunk+0x1a/0x1c
   [134244.053511]  __x64_sys_ioctl+0x16/0x20
   [134244.054206]  do_syscall_64+0x5c/0x280
   [134244.054891]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
   [134244.055819] RIP: 0033:0x7f29b51c9dd7
   [134244.056491] Code: 00 00 00 (...)
   [134244.059767] RSP: 002b:00007ffcccc1dd08 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
   [134244.061168] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f29b51c9dd7
   [134244.062474] RDX: 00007ffcccc1dda0 RSI: 00000000c4009420 RDI: 0000000000000003
   [134244.063771] RBP: 0000000000000003 R08: 00005565cea4b000 R09: 0000000000000000
   [134244.065032] R10: 0000000000000541 R11: 0000000000000202 R12: 00007ffcccc2060a
   [134244.066327] R13: 00007ffcccc1dda0 R14: 0000000000000002 R15: 00007ffcccc1dec0
   [134244.067626] irq event stamp: 0
   [134244.068202] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
   [134244.069351] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134244.070909] softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
   [134244.072392] softirqs last disabled at (0): [<0000000000000000>] 0x0
   [134244.073432] ---[ end trace bd7c03622e0b0a99 ]---

The -EINVAL error comes from the following chain of function calls:

  __btrfs_cow_block() <-- aborts the transaction
    btrfs_reloc_cow_block()
      replace_file_extents()
        get_new_location() <-- returns -EINVAL

When relocating a data block group, for each allocated extent of the block
group, we preallocate another extent (at prealloc_file_extent_cluster()),
associated with the data relocation inode, and then dirty all its pages.
These preallocated extents have, and must have, the same size that extents
from the data block group being relocated have.

Later before we start the relocation stage that updates pointers (bytenr
field of file extent items) to point to the the new extents, we trigger
writeback for the data relocation inode. The expectation is that writeback
will write the pages to the previously preallocated extents, that it
follows the NOCOW path. That is generally the case, however, if a scrub
is running it may have turned the block group that contains those extents
into RO mode, in which case writeback falls back to the COW path.

However in the COW path instead of allocating exactly one extent with the
expected size, the allocator may end up allocating several smaller extents
due to free space fragmentation - because we tell it at cow_file_range()
that the minimum allocation size can match the filesystem's sector size.
This later breaks the relocation's expectation that an extent associated
to a file extent item in the data relocation inode has the same size as
the respective extent pointed by a file extent item in another tree - in
this case the extent to which the relocation inode poins to is smaller,
causing relocation.c:get_new_location() to return -EINVAL.

For example, if we are relocating a data block group X that has a logical
address of X and the block group has an extent allocated at the logical
address X + 128KiB with a size of 64KiB:

1) At prealloc_file_extent_cluster() we allocate an extent for the data
   relocation inode with a size of 64KiB and associate it to the file
   offset 128KiB (X + 128KiB - X) of the data relocation inode. This
   preallocated extent was allocated at block group Z;

2) A scrub running in parallel turns block group Z into RO mode and
   starts scrubing its extents;

3) Relocation triggers writeback for the data relocation inode;

4) When running delalloc (btrfs_run_delalloc_range()), we try first the
   NOCOW path because the data relocation inode has BTRFS_INODE_PREALLOC
   set in its flags. However, because block group Z is in RO mode, the
   NOCOW path (run_delalloc_nocow()) falls back into the COW path, by
   calling cow_file_range();

5) At cow_file_range(), in the first iteration of the while loop we call
   btrfs_reserve_extent() to allocate a 64KiB extent and pass it a minimum
   allocation size of 4KiB (fs_info->sectorsize). Due to free space
   fragmentation, btrfs_reserve_extent() ends up allocating two extents
   of 32KiB each, each one on a different iteration of that while loop;

6) Writeback of the data relocation inode completes;

7) Relocation proceeds and ends up at relocation.c:replace_file_extents(),
   with a leaf which has a file extent item that points to the data extent
   from block group X, that has a logical address (bytenr) of X + 128KiB
   and a size of 64KiB. Then it calls get_new_location(), which does a
   lookup in the data relocation tree for a file extent item starting at
   offset 128KiB (X + 128KiB - X) and belonging to the data relocation
   inode. It finds a corresponding file extent item, however that item
   points to an extent that has a size of 32KiB, which doesn't match the
   expected size of 64KiB, resuling in -EINVAL being returned from this
   function and propagated up to __btrfs_cow_block(), which aborts the
   current transaction.

To fix this make sure that at cow_file_range() when we call the allocator
we pass it a minimum allocation size corresponding the desired extent size
if the inode belongs to the data relocation tree, otherwise pass it the
filesystem's sector size as the minimum allocation size.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:21:25 +02:00
Filipe Manana
ffcb9d4457 btrfs: fix race between block group removal and block group creation
There is a race between block group removal and block group creation
when the removal is completed by a task running fitrim or scrub. When
this happens we end up failing the block group creation with an error
-EEXIST since we attempt to insert a duplicate block group item key
in the extent tree. That results in a transaction abort.

The race happens like this:

1) Task A is doing a fitrim, and at btrfs_trim_block_group() it freezes
   block group X with btrfs_freeze_block_group() (until very recently
   that was named btrfs_get_block_group_trimming());

2) Task B starts removing block group X, either because it's now unused
   or due to relocation for example. So at btrfs_remove_block_group(),
   while holding the chunk mutex and the block group's lock, it sets
   the 'removed' flag of the block group and it sets the local variable
   'remove_em' to false, because the block group is currently frozen
   (its 'frozen' counter is > 0, until very recently this counter was
   named 'trimming');

3) Task B unlocks the block group and the chunk mutex;

4) Task A is done trimming the block group and unfreezes the block group
   by calling btrfs_unfreeze_block_group() (until very recently this was
   named btrfs_put_block_group_trimming()). In this function we lock the
   block group and set the local variable 'cleanup' to true because we
   were able to decrement the block group's 'frozen' counter down to 0 and
   the flag 'removed' is set in the block group.

   Since 'cleanup' is set to true, it locks the chunk mutex and removes
   the extent mapping representing the block group from the mapping tree;

5) Task C allocates a new block group Y and it picks up the logical address
   that block group X had as the logical address for Y, because X was the
   block group with the highest logical address and now the second block
   group with the highest logical address, the last in the fs mapping tree,
   ends at an offset corresponding to block group X's logical address (this
   logical address selection is done at volumes.c:find_next_chunk()).

   At this point the new block group Y does not have yet its item added
   to the extent tree (nor the corresponding device extent items and
   chunk item in the device and chunk trees). The new group Y is added to
   the list of pending block groups in the transaction handle;

6) Before task B proceeds to removing the block group item for block
   group X from the extent tree, which has a key matching:

   (X logical offset, BTRFS_BLOCK_GROUP_ITEM_KEY, length)

   task C while ending its transaction handle calls
   btrfs_create_pending_block_groups(), which finds block group Y and
   tries to insert the block group item for Y into the exten tree, which
   fails with -EEXIST since logical offset is the same that X had and
   task B hasn't yet deleted the key from the extent tree.
   This failure results in a transaction abort, producing a stack like
   the following:

------------[ cut here ]------------
 BTRFS: Transaction aborted (error -17)
 WARNING: CPU: 2 PID: 19736 at fs/btrfs/block-group.c:2074 btrfs_create_pending_block_groups+0x1eb/0x260 [btrfs]
 Modules linked in: btrfs blake2b_generic xor raid6_pq (...)
 CPU: 2 PID: 19736 Comm: fsstress Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 RIP: 0010:btrfs_create_pending_block_groups+0x1eb/0x260 [btrfs]
 Code: ff ff ff 48 8b 55 50 f0 48 (...)
 RSP: 0018:ffffa4160a1c7d58 EFLAGS: 00010286
 RAX: 0000000000000000 RBX: ffff961581909d98 RCX: 0000000000000000
 RDX: 0000000000000001 RSI: ffffffffb3d63990 RDI: 0000000000000001
 RBP: ffff9614f3356a58 R08: 0000000000000000 R09: 0000000000000001
 R10: ffff9615b65b0040 R11: 0000000000000000 R12: ffff961581909c10
 R13: ffff9615b0c32000 R14: ffff9614f3356ab0 R15: ffff9614be779000
 FS:  00007f2ce2841e80(0000) GS:ffff9615bae00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000555f18780000 CR3: 0000000131d34005 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  btrfs_start_dirty_block_groups+0x398/0x4e0 [btrfs]
  btrfs_commit_transaction+0xd0/0xc50 [btrfs]
  ? btrfs_attach_transaction_barrier+0x1e/0x50 [btrfs]
  ? __ia32_sys_fdatasync+0x20/0x20
  iterate_supers+0xdb/0x180
  ksys_sync+0x60/0xb0
  __ia32_sys_sync+0xa/0x10
  do_syscall_64+0x5c/0x280
  entry_SYSCALL_64_after_hwframe+0x49/0xbe
 RIP: 0033:0x7f2ce1d4d5b7
 Code: 83 c4 08 48 3d 01 (...)
 RSP: 002b:00007ffd8b558c58 EFLAGS: 00000202 ORIG_RAX: 00000000000000a2
 RAX: ffffffffffffffda RBX: 000000000000002c RCX: 00007f2ce1d4d5b7
 RDX: 00000000ffffffff RSI: 00000000186ba07b RDI: 000000000000002c
 RBP: 0000555f17b9e520 R08: 0000000000000012 R09: 000000000000ce00
 R10: 0000000000000078 R11: 0000000000000202 R12: 0000000000000032
 R13: 0000000051eb851f R14: 00007ffd8b558cd0 R15: 0000555f1798ec20
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
 softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace bd7c03622e0b0a9c ]---

Fix this simply by making btrfs_remove_block_group() remove the block
group's item from the extent tree before it flags the block group as
removed. Also make the free space deletion from the free space tree
before flagging the block group as removed, to avoid a similar race
with adding and removing free space entries for the free space tree.

Fixes: 04216820fe ("Btrfs: fix race between fs trimming and block group remove/allocation")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:20:58 +02:00
Filipe Manana
9fecd13202 btrfs: fix a block group ref counter leak after failure to remove block group
When removing a block group, if we fail to delete the block group's item
from the extent tree, we jump to the 'out' label and end up decrementing
the block group's reference count once only (by 1), resulting in a counter
leak because the block group at that point was already removed from the
block group cache rbtree - so we have to decrement the reference count
twice, once for the rbtree and once for our lookup at the start of the
function.

There is a second bug where if removing the free space tree entries (the
call to remove_block_group_free_space()) fails we end up jumping to the
'out_put_group' label but end up decrementing the reference count only
once, when we should have done it twice, since we have already removed
the block group from the block group cache rbtree. This happens because
the reference count decrement for the rbtree reference happens after
attempting to remove the free space tree entries, which is far away from
the place where we remove the block group from the rbtree.

To make things less error prone, decrement the reference count for the
rbtree immediately after removing the block group from it. This also
eleminates the need for two different exit labels on error, renaming
'out_put_label' to just 'out' and removing the old 'out'.

Fixes: f6033c5e33 ("btrfs: fix block group leak when removing fails")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 19:20:51 +02:00
Linus Torvalds
9d645db853 for-5.8-part2-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7lZwgACgkQxWXV+ddt
 WDuj6g/9E2JtqeO8zRMLb+Do/n5YX0dFHt+dM1AGY+nw8hb3U9Vlgc8KJa7UpZFX
 opl1i9QL+cJLoZMZL5xZhDouMQlum5cGVV3hLwqEPYetRF/ytw/kunWAg5o8OW1R
 sJxGcjyiiKpZLVx6nMjGnYjsrbOJv0HlaWfY3NCon4oQ8yQTzTPMPBevPWRM7Iqw
 Ssi8pA8zXCc2QoLgyk6Pe/IGeox8+z9RA2akHkJIdMWiPHm43RDF4Yx3Yl9NHHZA
 M+pLVKjZoejqwVaai8osBqWVw4Ypax1+CJit6iHGwJDkQyFPcMXMsOc5ZYBnT5or
 k/ceVMCs+ejvCK1+L30u7FQRiDqf5Fwhf/SGfq7+y83KbEjMfWOya3Lyk47fbDD4
 776rSaS6ejqVklWppbaPhntSrBtPR1NaDOfi55bc9TOe+yW7Du+AsQMlEE0bTJaW
 eHl+A4AP/nDlo8Etn1jTWd023bzzO+iySMn3YZfK0vw3vkj3JfrCGXx6DEYipOou
 uEUj0jDo/rdiB5S3GdUCujjaPgm/f0wkPudTRB9lpxJas2qFU+qo2TLJhEleELwj
 m4laz7W7S+nUFP0LRl8O82AzBfjm+oHjWTpfdloT6JW9Da8/iuZ/x9VBWQ8mFJwX
 U0cR3zVqUuWcK78fZa/FFgGPBxlwUv2j+OhRGsS0/orDRlrwcXo=
 =5S0s
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "This reverts the direct io port to iomap infrastructure of btrfs
  merged in the first pull request. We found problems in invalidate page
  that don't seem to be fixable as regressions or without changing iomap
  code that would not affect other filesystems.

  There are four reverts in total, but three of them are followup
  cleanups needed to revert a43a67a2d7 cleanly. The result is the
  buffer head based implementation of direct io.

  Reverts are not great, but under current circumstances I don't see
  better options"

* tag 'for-5.8-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  Revert "btrfs: switch to iomap_dio_rw() for dio"
  Revert "fs: remove dio_end_io()"
  Revert "btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK"
  Revert "btrfs: split btrfs_direct_IO to read and write part"
2020-06-14 09:47:25 -07:00
David Sterba
55e20bd12a Revert "btrfs: switch to iomap_dio_rw() for dio"
This reverts commit a43a67a2d7.

This patch reverts the main part of switching direct io implementation
to iomap infrastructure. There's a problem in invalidate page that
couldn't be solved as regression in this development cycle.

The problem occurs when buffered and direct io are mixed, and the ranges
overlap. Although this is not recommended, filesystems implement
measures or fallbacks to make it somehow work. In this case, fallback to
buffered IO would be an option for btrfs (this already happens when
direct io is done on compressed data), but the change would be needed in
the iomap code, bringing new semantics to other filesystems.

Another problem arises when again the buffered and direct ios are mixed,
invalidation fails, then -EIO is set on the mapping and fsync will fail,
though there's no real error.

There have been discussions how to fix that, but revert seems to be the
least intrusive option.

Link: https://lore.kernel.org/linux-btrfs/20200528192103.xm45qoxqmkw7i5yl@fiona/
Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-14 01:19:02 +02:00
David Sterba
8e0fa5d7b3 Revert "btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK"
This reverts commit 5f008163a5.

The patch is a simplification after direct IO port to iomap
infrastructure, which gets reverted.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-09 19:21:48 +02:00
David Sterba
f4c48b4408 Revert "btrfs: split btrfs_direct_IO to read and write part"
This reverts commit d8f3e73587.

The patch is a cleanup of direct IO port to iomap infrastructure,
which gets reverted.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-09 19:19:27 +02:00
Linus Torvalds
0b166a57e6 A lot of bug fixes and cleanups for ext4, including:
* Fix performance problems found in dioread_nolock now that it is the
   default, caused by transaction leaks.
 * Clean up fiemap handling in ext4
 * Clean up and refactor multiple block allocator (mballoc) code
 * Fix a problem with mballoc with a smaller file systems running out
   of blocks because they couldn't properly use blocks that had been
   reserved by inode preallocation.
 * Fixed a race in ext4_sync_parent() versus rename()
 * Simplify the error handling in the extent manipulation code
 * Make sure all metadata I/O errors are felected to ext4_ext_dirty()'s and
   ext4_make_inode_dirty()'s callers.
 * Avoid passing an error pointer to brelse in ext4_xattr_set()
 * Fix race which could result to freeing an inode on the dirty last
   in data=journal mode.
 * Fix refcount handling if ext4_iget() fails
 * Fix a crash in generic/019 caused by a corrupted extent node
 -----BEGIN PGP SIGNATURE-----
 
 iQEyBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAl7Ze8kACgkQ8vlZVpUN
 gaNChAf4xn0ytFSrweI/S2Sp05G/2L/ocZ2TZZk2ZdGeN1E+ABdSIv/zIF9zuFgZ
 /pY/C+fyEZWt4E3FlNO8gJzoEedkzMCMnUhSIfI+wZbcclyTOSNMJtnrnJKAEtVH
 HOvGZJmg357jy407RCGhZpJ773nwU2xhBTr5OFxvSf9mt/vzebxIOnw5D7HPlC1V
 Fgm6Du8q+tRrPsyjv1Yu4pUEVXMJ7qUcvt326AXVM3kCZO1Aa5GrURX0w3J4mzW1
 tc1tKmtbLcVVYTo9CwHXhk/edbxrhAydSP2iACand3tK6IJuI6j9x+bBJnxXitnr
 vsxsfTYMG18+2SxrJ9LwmagqmrRq
 =HMTs
 -----END PGP SIGNATURE-----

Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4

Pull ext4 updates from Ted Ts'o:
 "A lot of bug fixes and cleanups for ext4, including:

   - Fix performance problems found in dioread_nolock now that it is the
     default, caused by transaction leaks.

   - Clean up fiemap handling in ext4

   - Clean up and refactor multiple block allocator (mballoc) code

   - Fix a problem with mballoc with a smaller file systems running out
     of blocks because they couldn't properly use blocks that had been
     reserved by inode preallocation.

   - Fixed a race in ext4_sync_parent() versus rename()

   - Simplify the error handling in the extent manipulation code

   - Make sure all metadata I/O errors are felected to
     ext4_ext_dirty()'s and ext4_make_inode_dirty()'s callers.

   - Avoid passing an error pointer to brelse in ext4_xattr_set()

   - Fix race which could result to freeing an inode on the dirty last
     in data=journal mode.

   - Fix refcount handling if ext4_iget() fails

   - Fix a crash in generic/019 caused by a corrupted extent node"

* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
  ext4: avoid unnecessary transaction starts during writeback
  ext4: don't block for O_DIRECT if IOCB_NOWAIT is set
  ext4: remove the access_ok() check in ext4_ioctl_get_es_cache
  fs: remove the access_ok() check in ioctl_fiemap
  fs: handle FIEMAP_FLAG_SYNC in fiemap_prep
  fs: move fiemap range validation into the file systems instances
  iomap: fix the iomap_fiemap prototype
  fs: move the fiemap definitions out of fs.h
  fs: mark __generic_block_fiemap static
  ext4: remove the call to fiemap_check_flags in ext4_fiemap
  ext4: split _ext4_fiemap
  ext4: fix fiemap size checks for bitmap files
  ext4: fix EXT4_MAX_LOGICAL_BLOCK macro
  add comment for ext4_dir_entry_2 file_type member
  jbd2: avoid leaking transaction credits when unreserving handle
  ext4: drop ext4_journal_free_reserved()
  ext4: mballoc: use lock for checking free blocks while retrying
  ext4: mballoc: refactor ext4_mb_good_group()
  ext4: mballoc: introduce pcpu seqcnt for freeing PA to improve ENOSPC handling
  ext4: mballoc: refactor ext4_mb_discard_preallocations()
  ...
2020-06-05 16:19:28 -07:00
Christoph Hellwig
45dd052e67 fs: handle FIEMAP_FLAG_SYNC in fiemap_prep
By moving FIEMAP_FLAG_SYNC handling to fiemap_prep we ensure it is
handled once instead of duplicated, but can still be done under fs locks,
like xfs/iomap intended with its duplicate handling.  Also make sure the
error value of filemap_write_and_wait is propagated to user space.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-8-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-06-03 23:16:55 -04:00
Christoph Hellwig
cddf8a2c4a fs: move fiemap range validation into the file systems instances
Replace fiemap_check_flags with a fiemap_prep helper that also takes the
inode and mapped range, and performs the sanity check and truncation
previously done in fiemap_check_range.  This way the validation is inside
the file system itself and thus properly works for the stacked overlayfs
case as well.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-7-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-06-03 23:16:55 -04:00
Christoph Hellwig
10c5db2864 fs: move the fiemap definitions out of fs.h
No need to pull the fiemap definitions into almost every file in the
kernel build.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lore.kernel.org/r/20200523073016.2944131-5-hch@lst.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2020-06-03 23:16:55 -04:00
Linus Torvalds
f3cdc8ae11 for-5.8-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
 WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
 ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
 V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
 o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
 ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
 NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
 UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
 ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
 miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
 VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
 eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
 =qTt8
 -----END PGP SIGNATURE-----

Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "Highlights:

   - speedup dead root detection during orphan cleanup, eg. when there
     are many deleted subvolumes waiting to be cleaned, the trees are
     now looked up in radix tree instead of a O(N^2) search

   - snapshot creation with inherited qgroup will mark the qgroup
     inconsistent, requires a rescan

   - send will emit file capabilities after chown, this produces a
     stream that does not need postprocessing to set the capabilities
     again

   - direct io ported to iomap infrastructure, cleaned up and simplified
     code, notably removing last use of struct buffer_head in btrfs code

  Core changes:

   - factor out backreference iteration, to be used by ordinary
     backreferences and relocation code

   - improved global block reserve utilization
      * better logic to serialize requests
      * increased maximum available for unlink
      * improved handling on large pages (64K)

   - direct io cleanups and fixes
      * simplify layering, where cloned bios were unnecessarily created
        for some cases
      * error handling fixes (submit, endio)
      * remove repair worker thread, used to avoid deadlocks during
        repair

   - refactored block group reading code, preparatory work for new type
     of block group storage that should improve mount time on large
     filesystems

  Cleanups:

   - cleaned up (and slightly sped up) set/get helpers for metadata data
     structure members

   - root bit REF_COWS got renamed to SHAREABLE to reflect the that the
     blocks of the tree get shared either among subvolumes or with the
     relocation trees

  Fixes:

   - when subvolume deletion fails due to ENOSPC, the filesystem is not
     turned read-only

   - device scan deals with devices from other filesystems that changed
     ownership due to overwrite (mkfs)

   - fix a race between scrub and block group removal/allocation

   - fix long standing bug of a runaway balance operation, printing the
     same line to the syslog, caused by a stale status bit on a reloc
     tree that prevented progress

   - fix corrupt log due to concurrent fsync of inodes with shared
     extents

   - fix space underflow for NODATACOW and buffered writes when it for
     some reason needs to fallback to COW mode"

* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
  btrfs: fix space_info bytes_may_use underflow during space cache writeout
  btrfs: fix space_info bytes_may_use underflow after nocow buffered write
  btrfs: fix wrong file range cleanup after an error filling dealloc range
  btrfs: remove redundant local variable in read_block_for_search
  btrfs: open code key_search
  btrfs: split btrfs_direct_IO to read and write part
  btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
  fs: remove dio_end_io()
  btrfs: switch to iomap_dio_rw() for dio
  iomap: remove lockdep_assert_held()
  iomap: add a filesystem hook for direct I/O bio submission
  fs: export generic_file_buffered_read()
  btrfs: turn space cache writeout failure messages into debug messages
  btrfs: include error on messages about failure to write space/inode caches
  btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
  btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
  btrfs: make checksum item extension more efficient
  btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
  btrfs: unexport btrfs_compress_set_level()
  btrfs: simplify iget helpers
  ...
2020-06-02 19:59:25 -07:00
Linus Torvalds
94709049fb Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:
 "A few little subsystems and a start of a lot of MM patches.

  Subsystems affected by this patch series: squashfs, ocfs2, parisc,
  vfs. With mm subsystems: slab-generic, slub, debug, pagecache, gup,
  swap, memcg, pagemap, memory-failure, vmalloc, kasan"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (128 commits)
  kasan: move kasan_report() into report.c
  mm/mm_init.c: report kasan-tag information stored in page->flags
  ubsan: entirely disable alignment checks under UBSAN_TRAP
  kasan: fix clang compilation warning due to stack protector
  x86/mm: remove vmalloc faulting
  mm: remove vmalloc_sync_(un)mappings()
  x86/mm/32: implement arch_sync_kernel_mappings()
  x86/mm/64: implement arch_sync_kernel_mappings()
  mm/ioremap: track which page-table levels were modified
  mm/vmalloc: track which page-table levels were modified
  mm: add functions to track page directory modifications
  s390: use __vmalloc_node in stack_alloc
  powerpc: use __vmalloc_node in alloc_vm_stack
  arm64: use __vmalloc_node in arch_alloc_vmap_stack
  mm: remove vmalloc_user_node_flags
  mm: switch the test_vmalloc module to use __vmalloc_node
  mm: remove __vmalloc_node_flags_caller
  mm: remove both instances of __vmalloc_node_flags
  mm: remove the prot argument to __vmalloc_node
  mm: remove the pgprot argument to __vmalloc
  ...
2020-06-02 12:21:36 -07:00
Guoqing Jiang
d1b89bc042 btrfs: use attach/detach_page_private
Since the new pair function is introduced, we can call them to clean the
code in btrfs.

Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Link: http://lkml.kernel.org/r/20200517214718.468-4-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:07 -07:00
Matthew Wilcox (Oracle)
ba206a026f btrfs: convert from readpages to readahead
Implement the new readahead method in btrfs using the new
readahead_page_batch() function.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-18-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:07 -07:00
Linus Torvalds
e0cd920687 Merge branch 'uaccess.access_ok' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull uaccess/access_ok updates from Al Viro:
 "Removals of trivially pointless access_ok() calls.

  Note: the fiemap stuff was removed from the series, since they are
  duplicates with part of ext4 series carried in Ted's tree"

* 'uaccess.access_ok' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  vmci_host: get rid of pointless access_ok()
  hfi1: get rid of pointless access_ok()
  usb: get rid of pointless access_ok() calls
  lpfc_debugfs: get rid of pointless access_ok()
  efi_test: get rid of pointless access_ok()
  drm_read(): get rid of pointless access_ok()
  via-pmu: don't bother with access_ok()
  drivers/crypto/ccp/sev-dev.c: get rid of pointless access_ok()
  omapfb: get rid of pointless access_ok() calls
  amifb: get rid of pointless access_ok() calls
  drivers/fpga/dfl-afu-dma-region.c: get rid of pointless access_ok()
  drivers/fpga/dfl-fme-pr.c: get rid of pointless access_ok()
  cm4000_cs.c cmm_ioctl(): get rid of pointless access_ok()
  nvram: drop useless access_ok()
  n_hdlc_tty_read(): remove pointless access_ok()
  tomoyo_write_control(): get rid of pointless access_ok()
  btrfs_ioctl_send(): don't bother with access_ok()
  fat_dir_ioctl(): hadn't needed that access_ok() for more than a decade...
  dlmfs_file_write(): get rid of pointless access_ok()
2020-06-01 16:09:43 -07:00
Filipe Manana
2166e5edce btrfs: fix space_info bytes_may_use underflow during space cache writeout
We always preallocate a data extent for writing a free space cache, which
causes writeback to always try the nocow path first, since the free space
inode has the prealloc bit set in its flags.

However if the block group that contains the data extent for the space
cache has been turned to RO mode due to a running scrub or balance for
example, we have to fallback to the cow path. In that case once a new data
extent is allocated we end up calling btrfs_add_reserved_bytes(), which
decrements the counter named bytes_may_use from the data space_info object
with the expection that this counter was previously incremented with the
same amount (the size of the data extent).

However when we started writeout of the space cache at cache_save_setup(),
we incremented the value of the bytes_may_use counter through a call to
btrfs_check_data_free_space() and then decremented it through a call to
btrfs_prealloc_file_range_trans() immediately after. So when starting the
writeback if we fallback to cow mode we have to increment the counter
bytes_may_use of the data space_info again to compensate for the extent
allocation done by the cow path.

When this issue happens we are incorrectly decrementing the bytes_may_use
counter and when its current value is smaller then the amount we try to
subtract we end up with the following warning:

 ------------[ cut here ]------------
 WARNING: CPU: 3 PID: 657 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
 CPU: 3 PID: 657 Comm: kworker/u8:7 Tainted: G        W         5.6.0-rc7-btrfs-next-58 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 Workqueue: writeback wb_workfn (flush-btrfs-1591)
 RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Code: ff ff 48 (...)
 RSP: 0000:ffffa41608f13660 EFLAGS: 00010287
 RAX: 0000000000001000 RBX: ffff9615b93ae400 RCX: 0000000000000000
 RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9615b96ab410
 RBP: fffffffffffee000 R08: 0000000000000001 R09: 0000000000000000
 R10: ffff961585e62a40 R11: 0000000000000000 R12: ffff9615b96ab400
 R13: ffff9615a1a2a000 R14: 0000000000012000 R15: ffff9615b93ae400
 FS:  0000000000000000(0000) GS:ffff9615bb200000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 000055cbbc2ae178 CR3: 0000000115794006 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  find_free_extent+0x4a0/0x16c0 [btrfs]
  btrfs_reserve_extent+0x91/0x180 [btrfs]
  cow_file_range+0x12d/0x490 [btrfs]
  btrfs_run_delalloc_range+0x9f/0x6d0 [btrfs]
  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
  writepage_delalloc+0xe8/0x150 [btrfs]
  __extent_writepage+0xe8/0x4c0 [btrfs]
  extent_write_cache_pages+0x237/0x530 [btrfs]
  extent_writepages+0x44/0xa0 [btrfs]
  do_writepages+0x23/0x80
  __writeback_single_inode+0x59/0x700
  writeback_sb_inodes+0x267/0x5f0
  __writeback_inodes_wb+0x87/0xe0
  wb_writeback+0x382/0x590
  ? wb_workfn+0x4a2/0x6c0
  wb_workfn+0x4a2/0x6c0
  process_one_work+0x26d/0x6a0
  worker_thread+0x4f/0x3e0
  ? process_one_work+0x6a0/0x6a0
  kthread+0x103/0x140
  ? kthread_create_worker_on_cpu+0x70/0x70
  ret_from_fork+0x3a/0x50
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
 softirqs last  enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace bd7c03622e0b0a52 ]---
 ------------[ cut here ]------------

So fix this by incrementing the bytes_may_use counter of the data
space_info when we fallback to the cow path. If the cow path is successful
the counter is decremented after extent allocation (by
btrfs_add_reserved_bytes()), if it fails it ends up being decremented as
well when clearing the delalloc range (extent_clear_unlock_delalloc()).

This could be triggered sporadically by the test case btrfs/061 from
fstests.

Fixes: 82d5902d9c ("Btrfs: Support reading/writing on disk free ino cache")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:53 +02:00
Filipe Manana
467dc47ea9 btrfs: fix space_info bytes_may_use underflow after nocow buffered write
When doing a buffered write we always try to reserve data space for it,
even when the file has the NOCOW bit set or the write falls into a file
range covered by a prealloc extent. This is done both because it is
expensive to check if we can do a nocow write (checking if an extent is
shared through reflinks or if there's a hole in the range for example),
and because when writeback starts we might actually need to fallback to
COW mode (for example the block group containing the target extents was
turned into RO mode due to a scrub or balance).

When we are unable to reserve data space we check if we can do a nocow
write, and if we can, we proceed with dirtying the pages and setting up
the range for delalloc. In this case the bytes_may_use counter of the
data space_info object is not incremented, unlike in the case where we
are able to reserve data space (done through btrfs_check_data_free_space()
which calls btrfs_alloc_data_chunk_ondemand()).

Later when running delalloc we attempt to start writeback in nocow mode
but we might revert back to cow mode, for example because in the meanwhile
a block group was turned into RO mode by a scrub or relocation. The cow
path after successfully allocating an extent ends up calling
btrfs_add_reserved_bytes(), which expects the bytes_may_use counter of
the data space_info object to have been incremented before - but we did
not do it when the buffered write started, since there was not enough
available data space. So btrfs_add_reserved_bytes() ends up decrementing
the bytes_may_use counter anyway, and when the counter's current value
is smaller then the size of the allocated extent we get a stack trace
like the following:

 ------------[ cut here ]------------
 WARNING: CPU: 0 PID: 20138 at fs/btrfs/space-info.h:115 btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Modules linked in: btrfs blake2b_generic xor raid6_pq libcrc32c (...)
 CPU: 0 PID: 20138 Comm: kworker/u8:15 Not tainted 5.6.0-rc7-btrfs-next-58 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 Workqueue: writeback wb_workfn (flush-btrfs-1754)
 RIP: 0010:btrfs_add_reserved_bytes+0x3d6/0x4e0 [btrfs]
 Code: ff ff 48 (...)
 RSP: 0018:ffffbda18a4b3568 EFLAGS: 00010287
 RAX: 0000000000000000 RBX: ffff9ca076f5d800 RCX: 0000000000000000
 RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff9ca068470410
 RBP: fffffffffffff000 R08: 0000000000000001 R09: 0000000000000000
 R10: ffff9ca079d58040 R11: 0000000000000000 R12: ffff9ca068470400
 R13: ffff9ca0408b2000 R14: 0000000000001000 R15: ffff9ca076f5d800
 FS:  0000000000000000(0000) GS:ffff9ca07a600000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00005605dbfe7048 CR3: 0000000138570006 CR4: 00000000003606f0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  find_free_extent+0x4a0/0x16c0 [btrfs]
  btrfs_reserve_extent+0x91/0x180 [btrfs]
  cow_file_range+0x12d/0x490 [btrfs]
  run_delalloc_nocow+0x341/0xa40 [btrfs]
  btrfs_run_delalloc_range+0x1ea/0x6d0 [btrfs]
  ? find_lock_delalloc_range+0x221/0x250 [btrfs]
  writepage_delalloc+0xe8/0x150 [btrfs]
  __extent_writepage+0xe8/0x4c0 [btrfs]
  extent_write_cache_pages+0x237/0x530 [btrfs]
  ? btrfs_wq_submit_bio+0x9f/0xc0 [btrfs]
  extent_writepages+0x44/0xa0 [btrfs]
  do_writepages+0x23/0x80
  __writeback_single_inode+0x59/0x700
  writeback_sb_inodes+0x267/0x5f0
  __writeback_inodes_wb+0x87/0xe0
  wb_writeback+0x382/0x590
  ? wb_workfn+0x4a2/0x6c0
  wb_workfn+0x4a2/0x6c0
  process_one_work+0x26d/0x6a0
  worker_thread+0x4f/0x3e0
  ? process_one_work+0x6a0/0x6a0
  kthread+0x103/0x140
  ? kthread_create_worker_on_cpu+0x70/0x70
  ret_from_fork+0x3a/0x50
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
 softirqs last  enabled at (0): [<ffffffff94ebdedf>] copy_process+0x74f/0x2020
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace f9f6ef8ec4cd8ec9 ]---

So to fix this, when falling back into cow mode check if space was not
reserved, by testing for the bit EXTENT_NORESERVE in the respective file
range, and if not, increment the bytes_may_use counter for the data
space_info object. Also clear the EXTENT_NORESERVE bit from the range, so
that if the cow path fails it decrements the bytes_may_use counter when
clearing the delalloc range (through the btrfs_clear_delalloc_extent()
callback).

Fixes: 7ee9e4405f ("Btrfs: check if we can nocow if we don't have data space")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:53 +02:00
Filipe Manana
e2c8e92d11 btrfs: fix wrong file range cleanup after an error filling dealloc range
If an error happens while running dellaloc in COW mode for a range, we can
end up calling extent_clear_unlock_delalloc() for a range that goes beyond
our range's end offset by 1 byte, which affects 1 extra page. This results
in clearing bits and doing page operations (such as a page unlock) outside
our target range.

Fix that by calling extent_clear_unlock_delalloc() with an inclusive end
offset, instead of an exclusive end offset, at cow_file_range().

Fixes: a315e68f6e ("Btrfs: fix invalid attempt to free reserved space on failure to cow range")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:53 +02:00
Nikolay Borisov
213ff4b72a btrfs: remove redundant local variable in read_block_for_search
The local 'b' variable is only used to directly read values from passed
extent buffer. So eliminate  it and directly use the input parameter.
Furthermore this shrinks the size of the following functions:

./scripts/bloat-o-meter ctree.orig fs/btrfs/ctree.o
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-73 (-73)
Function                                     old     new   delta
read_block_for_search.isra                   876     871      -5
push_node_left                              1112    1044     -68
Total: Before=50348, After=50275, chg -0.14%

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:52 +02:00
Nikolay Borisov
995e9a166b btrfs: open code key_search
This function wraps the optimisation implemented by d7396f0735
("Btrfs: optimize key searches in btrfs_search_slot") however this
optimisation is really used in only one place - btrfs_search_slot.

Just open code the optimisation and also add a comment explaining how it
works since it's not clear just by looking at the code - the key point
here is it depends on an internal invariant that BTRFS' btree provides,
namely intermediate pointers always contain the key at slot0 at the
child node. So in the case of exact match we can safely assume that the
given key will always be in slot 0 on lower levels.

Furthermore this results in a reduction of btrfs_search_slot's size:

./scripts/bloat-o-meter ctree.orig fs/btrfs/ctree.o
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-75 (-75)
Function                                     old     new   delta
btrfs_search_slot                           2783    2708     -75
Total: Before=50423, After=50348, chg -0.15%

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:52 +02:00
Christoph Hellwig
d8f3e73587 btrfs: split btrfs_direct_IO to read and write part
The read and write versions don't have anything in common except for the
call to iomap_dio_rw.  So split this function, and merge each half into
its only caller.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:52 +02:00
Goldwyn Rodrigues
5f008163a5 btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
Since we now perform direct reads using i_rwsem, we can remove this
inode flag used to co-ordinate unlocked reads.

The truncate call takes i_rwsem. This means it is correctly synchronized
with concurrent direct reads.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jth@kernel.org>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:52 +02:00
Goldwyn Rodrigues
a43a67a2d7 btrfs: switch to iomap_dio_rw() for dio
Switch from __blockdev_direct_IO() to iomap_dio_rw().
Rename btrfs_get_blocks_direct() to btrfs_dio_iomap_begin() and use it
as iomap_begin() for iomap direct I/O functions. This function
allocates and locks all the blocks required for the I/O.
btrfs_submit_direct() is used as the submit_io() hook for direct I/O
ops.

Since we need direct I/O reads to go through iomap_dio_rw(), we change
file_operations.read_iter() to a btrfs_file_read_iter() which calls
btrfs_direct_IO() for direct reads and falls back to
generic_file_buffered_read() for incomplete reads and buffered reads.

We don't need address_space.direct_IO() anymore so set it to noop.
Similarly, we don't need flags used in __blockdev_direct_IO(). iomap is
capable of direct I/O reads from a hole, so we don't need to return
-ENOENT.

BTRFS direct I/O is now done under i_rwsem, shared in case of reads and
exclusive in case of writes. This guards against simultaneous truncates.

Use iomap->iomap_end() to check for failed or incomplete direct I/O:
 - for writes, call __endio_write_update_ordered()
 - for reads, unlock extents

btrfs_dio_data is now hooked in iomap->private and not
current->journal_info. It carries the reservation variable and the
amount of data submitted, so we can calculate the amount of data to call
__endio_write_update_ordered in case of an error.

This patch removes last use of struct buffer_head from btrfs.

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-28 14:01:02 +02:00
Filipe Manana
bbcd1f4d52 btrfs: turn space cache writeout failure messages into debug messages
Since commit 1afb648e94 ("btrfs: use standard debug config option to
enable free-space-cache debug prints"), we started to log error messages
that were never logged before since there was no DEBUG macro defined
anywhere. This started to make test case btrfs/187 to fail very often,
as it greps for any btrfs error messages in dmesg/syslog and fails if
any is found:

(...)
btrfs/186 1s ...  2s
btrfs/187       - output mismatch (see .../results//btrfs/187.out.bad)
    \--- tests/btrfs/187.out     2019-05-17 12:48:32.537340749 +0100
    \+++ /home/fdmanana/git/hub/xfstests/results//btrfs/187.out.bad ...
    \@@ -1,3 +1,8 @@
     QA output created by 187
     Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/snap1'
     Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/snap2'
    +[268364.139958] BTRFS error (device sdc): failed to write free space cache for block group 30408704
    +[268380.156503] BTRFS error (device sdc): failed to write free space cache for block group 30408704
    +[268380.161703] BTRFS error (device sdc): failed to write free space cache for block group 30408704
    +[268380.253180] BTRFS error (device sdc): failed to write free space cache for block group 30408704
    ...
    (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/187.out ...
btrfs/188 4s ...  2s
(...)

The space cache write failures happen due to ENOSPC when attempting to
update the free space cache items in the root tree. This happens because
when starting or joining a transaction we don't know how many block
groups we will end up changing (due to extent allocation or release) and
therefore never reserve space for updating free space cache items.
More often than not, the free space cache writeout succeeds since the
metadata space info is not yet full nor very close to being full, but
when it is, the space cache writeout fails with ENOSPC.

Occasional failures to write space caches are not considered critical
since they can be rebuilt when mounting the filesystem or the next
attempt to write a free space cache in the next transaction commit might
succeed, so we used to hide those error messages with a preprocessor
check for the existence of the DEBUG macro that was never enabled
anywhere.

A few other generic test cases also trigger the error messages due to
ENOSPC failure when writing free space caches as well, however they don't
fail since they don't grep dmesg/syslog for any btrfs specific error
messages.

So change the messages from 'error' level to 'debug' level, as it doesn't
make much sense to have error messages triggered only if the debug macro
is enabled plus, more importantly, the error is not serious nor highly
unexpected.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:38 +02:00
Filipe Manana
2e69a7a60d btrfs: include error on messages about failure to write space/inode caches
Currently the error messages logged when we fail to write a free space
cache or an inode cache are not very useful as they don't mention what
was the error. So include the error number in the messages.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:38 +02:00
Filipe Manana
918cdf4423 btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
The label 'fail_unlock' is pointless, all it does is to jump to the label
'out', so just remove it.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
Filipe Manana
7e4a3f7ed5 btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
We are currently treating any non-zero return value from btrfs_next_leaf()
the same way, by going to the code that inserts a new checksum item in the
tree. However if btrfs_next_leaf() returns an error (a value < 0), we
should just stop and return the error, and not behave as if nothing has
happened, since in that case we do not have a way to know if there is a
next leaf or we are currently at the last leaf already.

So fix that by returning the error from btrfs_next_leaf().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
Filipe Manana
cc14600c15 btrfs: make checksum item extension more efficient
When we want to add checksums into the checksums tree, or a log tree, we
try whenever possible to extend existing checksum items, as this helps
reduce amount of metadata space used, since adding a new item uses extra
metadata space for a btrfs_item structure (25 bytes).

However we have two inefficiencies in the current approach:

1) After finding a checksum item that covers a range with an end offset
   that matches the start offset of the checksum range we want to insert,
   we release the search path populated by btrfs_lookup_csum() and then
   do another COW search on tree with the goal of getting additional
   space for at least one checksum. Doing this path release and then
   searching again is a waste of time because very often the leaf already
   has enough free space for at least one more checksum;

2) After the COW search that guarantees we get free space in the leaf for
   at least one more checksum, we end up not doing the extension of the
   previous checksum item, and fallback to insertion of a new checksum
   item, if the leaf doesn't have an amount of free space larger then the
   space required for 2 checksums plus one btrfs_item structure - this is
   pointless for two reasons:

   a) We want to extend an existing item, so we don't need to account for
      a btrfs_item structure (25 bytes);

   b) We made the COW search with an insertion size for 1 single checksum,
      so if the leaf ends up with a free space amount smaller then 2
      checksums plus the size of a btrfs_item structure, we give up on the
      extension of the existing item and jump to the 'insert' label, where
      we end up releasing the path and then doing yet another search to
      insert a new checksum item for a single checksum.

Fix these inefficiencies by doing the following:

- For case 1), before releasing the path just check if the leaf already
  has enough space for at least 1 more checksum, and if it does, jump
  directly to the item extension code, with releasing our current path,
  which was already COWed by btrfs_lookup_csum();

- For case 2), fix the logic so that for item extension we require only
  that the leaf has enough free space for 1 checksum, and not a minimum
  of 2 checksums plus space for a btrfs_item structure.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
Filipe Manana
e289f03ea7 btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
When we have extents shared amongst different inodes in the same subvolume,
if we fsync them in parallel we can end up with checksum items in the log
tree that represent ranges which overlap.

For example, consider we have inodes A and B, both sharing an extent that
covers the logical range from X to X + 64KiB:

1) Task A starts an fsync on inode A;

2) Task B starts an fsync on inode B;

3) Task A calls btrfs_csum_file_blocks(), and the first search in the
   log tree, through btrfs_lookup_csum(), returns -EFBIG because it
   finds an existing checksum item that covers the range from X - 64KiB
   to X;

4) Task A checks that the checksum item has not reached the maximum
   possible size (MAX_CSUM_ITEMS) and then releases the search path
   before it does another path search for insertion (through a direct
   call to btrfs_search_slot());

5) As soon as task A releases the path and before it does the search
   for insertion, task B calls btrfs_csum_file_blocks() and gets -EFBIG
   too, because there is an existing checksum item that has an end
   offset that matches the start offset (X) of the checksum range we want
   to log;

6) Task B releases the path;

7) Task A does the path search for insertion (through btrfs_search_slot())
   and then verifies that the checksum item that ends at offset X still
   exists and extends its size to insert the checksums for the range from
   X to X + 64KiB;

8) Task A releases the path and returns from btrfs_csum_file_blocks(),
   having inserted the checksums into an existing checksum item that got
   its size extended. At this point we have one checksum item in the log
   tree that covers the logical range from X - 64KiB to X + 64KiB;

9) Task B now does a search for insertion using btrfs_search_slot() too,
   but it finds that the previous checksum item no longer ends at the
   offset X, it now ends at an of offset X + 64KiB, so it leaves that item
   untouched.

   Then it releases the path and calls btrfs_insert_empty_item()
   that inserts a checksum item with a key offset corresponding to X and
   a size for inserting a single checksum (4 bytes in case of crc32c).
   Subsequent iterations end up extending this new checksum item so that
   it contains the checksums for the range from X to X + 64KiB.

   So after task B returns from btrfs_csum_file_blocks() we end up with
   two checksum items in the log tree that have overlapping ranges, one
   for the range from X - 64KiB to X + 64KiB, and another for the range
   from X to X + 64KiB.

Having checksum items that represent ranges which overlap, regardless of
being in the log tree or in the chekcsums tree, can lead to problems where
checksums for a file range end up not being found. This type of problem
has happened a few times in the past and the following commits fixed them
and explain in detail why having checksum items with overlapping ranges is
problematic:

  27b9a8122f "Btrfs: fix csum tree corruption, duplicate and outdated checksums"
  b84b8390d6 "Btrfs: fix file read corruption after extent cloning and fsync"
  40e046acbd "Btrfs: fix missing data checksums after replaying a log tree"

Since this specific instance of the problem can only happen when logging
inodes, because it is the only case where concurrent attempts to insert
checksums for the same range can happen, fix the issue by using an extent
io tree as a range lock to serialize checksum insertion during inode
logging.

This issue could often be reproduced by the test case generic/457 from
fstests. When it happens it produces the following trace:

 BTRFS critical (device dm-0): corrupt leaf: root=18446744073709551610 block=30625792 slot=42, csum end range (15020032) goes beyond the start range (15015936) of the next csum item
 BTRFS info (device dm-0): leaf 30625792 gen 7 total ptrs 49 free space 2402 owner 18446744073709551610
 BTRFS info (device dm-0): refs 1 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 15884
      item 0 key (18446744073709551606 128 13979648) itemoff 3991 itemsize 4
      item 1 key (18446744073709551606 128 13983744) itemoff 3987 itemsize 4
      item 2 key (18446744073709551606 128 13987840) itemoff 3983 itemsize 4
      item 3 key (18446744073709551606 128 13991936) itemoff 3979 itemsize 4
      item 4 key (18446744073709551606 128 13996032) itemoff 3975 itemsize 4
      item 5 key (18446744073709551606 128 14000128) itemoff 3971 itemsize 4
 (...)
 BTRFS error (device dm-0): block=30625792 write time tree block corruption detected
 ------------[ cut here ]------------
 WARNING: CPU: 1 PID: 15884 at fs/btrfs/disk-io.c:539 btree_csum_one_bio+0x268/0x2d0 [btrfs]
 Modules linked in: btrfs dm_thin_pool ...
 CPU: 1 PID: 15884 Comm: fsx Tainted: G        W         5.6.0-rc7-btrfs-next-58 #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 RIP: 0010:btree_csum_one_bio+0x268/0x2d0 [btrfs]
 Code: c7 c7 ...
 RSP: 0018:ffffbb0109e6f8e0 EFLAGS: 00010296
 RAX: 0000000000000000 RBX: ffffe1c0847b6080 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffffffffaa963988 RDI: 0000000000000001
 RBP: ffff956a4f4d2000 R08: 0000000000000000 R09: 0000000000000001
 R10: 0000000000000526 R11: 0000000000000000 R12: ffff956a5cd28bb0
 R13: 0000000000000000 R14: ffff956a649c9388 R15: 000000011ed82000
 FS:  00007fb419959e80(0000) GS:ffff956a7aa00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000fe6d54 CR3: 0000000138696005 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  btree_submit_bio_hook+0x67/0xc0 [btrfs]
  submit_one_bio+0x31/0x50 [btrfs]
  btree_write_cache_pages+0x2db/0x4b0 [btrfs]
  ? __filemap_fdatawrite_range+0xb1/0x110
  do_writepages+0x23/0x80
  __filemap_fdatawrite_range+0xd2/0x110
  btrfs_write_marked_extents+0x15e/0x180 [btrfs]
  btrfs_sync_log+0x206/0x10a0 [btrfs]
  ? kmem_cache_free+0x315/0x3b0
  ? btrfs_log_inode+0x1e8/0xf90 [btrfs]
  ? __mutex_unlock_slowpath+0x45/0x2a0
  ? lockref_put_or_lock+0x9/0x30
  ? dput+0x2d/0x580
  ? dput+0xb5/0x580
  ? btrfs_sync_file+0x464/0x4d0 [btrfs]
  btrfs_sync_file+0x464/0x4d0 [btrfs]
  do_fsync+0x38/0x60
  __x64_sys_fsync+0x10/0x20
  do_syscall_64+0x5c/0x280
  entry_SYSCALL_64_after_hwframe+0x49/0xbe
 RIP: 0033:0x7fb41953a6d0
 Code: 48 3d ...
 RSP: 002b:00007ffcc86bd218 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fb41953a6d0
 RDX: 0000000000000009 RSI: 0000000000040000 RDI: 0000000000000003
 RBP: 0000000000040000 R08: 0000000000000001 R09: 0000000000000009
 R10: 0000000000000064 R11: 0000000000000246 R12: 0000556cf4b2c060
 R13: 0000000000000100 R14: 0000000000000000 R15: 0000556cf322b420
 irq event stamp: 0
 hardirqs last  enabled at (0): [<0000000000000000>] 0x0
 hardirqs last disabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020
 softirqs last  enabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020
 softirqs last disabled at (0): [<0000000000000000>] 0x0
 ---[ end trace d543fc76f5ad7fd8 ]---

In that trace the tree checker detected the overlapping checksum items at
the time when we triggered writeback for the log tree when syncing the
log.

Another trace that can happen is due to BUG_ON() when deleting checksum
items while logging an inode:

 BTRFS critical (device dm-0): slot 81 key (18446744073709551606 128 13635584) new key (18446744073709551606 128 13635584)
 BTRFS info (device dm-0): leaf 30949376 gen 7 total ptrs 98 free space 8527 owner 18446744073709551610
 BTRFS info (device dm-0): refs 4 lock (w:1 r:0 bw:0 br:0 sw:1 sr:0) lock_owner 13473 current 13473
  item 0 key (257 1 0) itemoff 16123 itemsize 160
          inode generation 7 size 262144 mode 100600
  item 1 key (257 12 256) itemoff 16103 itemsize 20
  item 2 key (257 108 0) itemoff 16050 itemsize 53
          extent data disk bytenr 13631488 nr 4096
          extent data offset 0 nr 131072 ram 131072
 (...)
 ------------[ cut here ]------------
 kernel BUG at fs/btrfs/ctree.c:3153!
 invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
 CPU: 1 PID: 13473 Comm: fsx Not tainted 5.6.0-rc7-btrfs-next-58 #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
 RIP: 0010:btrfs_set_item_key_safe+0x1ea/0x270 [btrfs]
 Code: 0f b6 ...
 RSP: 0018:ffff95e3889179d0 EFLAGS: 00010282
 RAX: 0000000000000000 RBX: 0000000000000051 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffffffffb7763988 RDI: 0000000000000001
 RBP: fffffffffffffff6 R08: 0000000000000000 R09: 0000000000000001
 R10: 00000000000009ef R11: 0000000000000000 R12: ffff8912a8ba5a08
 R13: ffff95e388917a06 R14: ffff89138dcf68c8 R15: ffff95e388917ace
 FS:  00007fe587084e80(0000) GS:ffff8913baa00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007fe587091000 CR3: 0000000126dac005 CR4: 00000000003606e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  btrfs_del_csums+0x2f4/0x540 [btrfs]
  copy_items+0x4b5/0x560 [btrfs]
  btrfs_log_inode+0x910/0xf90 [btrfs]
  btrfs_log_inode_parent+0x2a0/0xe40 [btrfs]
  ? dget_parent+0x5/0x370
  btrfs_log_dentry_safe+0x4a/0x70 [btrfs]
  btrfs_sync_file+0x42b/0x4d0 [btrfs]
  __x64_sys_msync+0x199/0x200
  do_syscall_64+0x5c/0x280
  entry_SYSCALL_64_after_hwframe+0x49/0xbe
 RIP: 0033:0x7fe586c65760
 Code: 00 f7 ...
 RSP: 002b:00007ffe250f98b8 EFLAGS: 00000246 ORIG_RAX: 000000000000001a
 RAX: ffffffffffffffda RBX: 00000000000040e1 RCX: 00007fe586c65760
 RDX: 0000000000000004 RSI: 0000000000006b51 RDI: 00007fe58708b000
 RBP: 0000000000006a70 R08: 0000000000000003 R09: 00007fe58700cb61
 R10: 0000000000000100 R11: 0000000000000246 R12: 00000000000000e1
 R13: 00007fe58708b000 R14: 0000000000006b51 R15: 0000558de021a420
 Modules linked in: dm_log_writes ...
 ---[ end trace c92a7f447a8515f5 ]---

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
Anand Jain
adbab6420c btrfs: unexport btrfs_compress_set_level()
btrfs_compress_set_level() can be static function in the file
compression.c.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
David Sterba
0202e83fda btrfs: simplify iget helpers
The inode lookup starting at btrfs_iget takes the full location key,
while only the objectid is used to match the inode, because the lookup
happens inside the given root thus the inode number is unique.
The entire location key is properly set up in btrfs_init_locked_inode.

Simplify the helpers and pass only inode number, renaming it to 'ino'
instead of 'objectid'. This allows to remove temporary variables key,
saving some stack space.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:37 +02:00
David Sterba
a820feb546 btrfs: open code read_fs_root
After the update to btrfs_get_fs_root, read_fs_root has become trivial
wrapper that can be open coded.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
David Sterba
56e9357a1e btrfs: simplify root lookup by id
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.

Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
Qu Wenruo
1dae7e0e58 btrfs: reloc: clear DEAD_RELOC_TREE bit for orphan roots to prevent runaway balance
[BUG]
There are several reported runaway balance, that balance is flooding the
log with "found X extents" where the X never changes.

[CAUSE]
Commit d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after
merge_reloc_roots") introduced BTRFS_ROOT_DEAD_RELOC_TREE bit to
indicate that one subvolume has finished its tree blocks swap with its
reloc tree.

However if balance is canceled or hits ENOSPC halfway, we didn't clear
the BTRFS_ROOT_DEAD_RELOC_TREE bit, leaving that bit hanging forever
until unmount.

Any subvolume root with that bit, would cause backref cache to skip this
tree block, as it has finished its tree block swap.  This would cause
all tree blocks of that root be ignored by balance, leading to runaway
balance.

[FIX]
Fix the problem by also clearing the BTRFS_ROOT_DEAD_RELOC_TREE bit for
the original subvolume of orphan reloc root.

Add an umount check for the stale bit still set.

Fixes: d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
Qu Wenruo
51415b6c1b btrfs: reloc: fix reloc root leak and NULL pointer dereference
[BUG]
When balance is canceled, there is a pretty high chance that unmounting
the fs can lead to lead the NULL pointer dereference:

  BTRFS warning (device dm-3): page private not zero on page 223158272
  ...
  BTRFS warning (device dm-3): page private not zero on page 223162368
  BTRFS error (device dm-3): leaked root 18446744073709551608-304 refcount 1
  BUG: kernel NULL pointer dereference, address: 0000000000000168
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: 0000 [#1] PREEMPT SMP NOPTI
  CPU: 2 PID: 5793 Comm: umount Tainted: G           O      5.7.0-rc5-custom+ #53
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:__lock_acquire+0x5dc/0x24c0
  Call Trace:
   lock_acquire+0xab/0x390
   _raw_spin_lock+0x39/0x80
   btrfs_release_extent_buffer_pages+0xd7/0x200 [btrfs]
   release_extent_buffer+0xb2/0x170 [btrfs]
   free_extent_buffer+0x66/0xb0 [btrfs]
   btrfs_put_root+0x8e/0x130 [btrfs]
   btrfs_check_leaked_roots.cold+0x5/0x5d [btrfs]
   btrfs_free_fs_info+0xe5/0x120 [btrfs]
   btrfs_kill_super+0x1f/0x30 [btrfs]
   deactivate_locked_super+0x3b/0x80
   deactivate_super+0x3e/0x50
   cleanup_mnt+0x109/0x160
   __cleanup_mnt+0x12/0x20
   task_work_run+0x67/0xa0
   exit_to_usermode_loop+0xc5/0xd0
   syscall_return_slowpath+0x205/0x360
   do_syscall_64+0x6e/0xb0
   entry_SYSCALL_64_after_hwframe+0x49/0xb3
  RIP: 0033:0x7fd028ef740b

[CAUSE]
When balance is canceled, all reloc roots are marked as orphan, and
orphan reloc roots are going to be cleaned up.

However for orphan reloc roots and merged reloc roots, their lifespan
are quite different:

	Merged reloc roots	|	Orphan reloc roots by cancel
--------------------------------------------------------------------
create_reloc_root()		| create_reloc_root()
|- refs == 1			| |- refs == 1
				|
btrfs_grab_root(reloc_root);	| btrfs_grab_root(reloc_root);
|- refs == 2			| |- refs == 2
				|
root->reloc_root = reloc_root;	| root->reloc_root = reloc_root;
		>>> No difference so far <<<
				|
prepare_to_merge()		| prepare_to_merge()
|- btrfs_set_root_refs(item, 1);| |- if (!err) (err == -EINTR)
				|
merge_reloc_roots()		| merge_reloc_roots()
|- merge_reloc_root()		| |- Doing nothing to put reloc root
   |- insert_dirty_subvol()	| |- refs == 2
      |- __del_reloc_root()	|
         |- btrfs_put_root()	|
            |- refs == 1	|
		>>> Now orphan reloc roots still have refs 2 <<<
				|
clean_dirty_subvols()		| clean_dirty_subvols()
|- btrfs_drop_snapshot()	| |- btrfS_drop_snapshot()
   |- reloc_root get freed	|    |- reloc_root still has refs 2
				|	related ebs get freed, but
				|	reloc_root still recorded in
				|	allocated_roots
btrfs_check_leaked_roots()	| btrfs_check_leaked_roots()
|- No leaked roots		| |- Leaked reloc_roots detected
				| |- btrfs_put_root()
				|    |- free_extent_buffer(root->node);
				|       |- eb already freed, caused NULL
				|	   pointer dereference

[FIX]
The fix is to clear fs_root->reloc_root and put it at
merge_reloc_roots() time, so that we won't leak reloc roots.

Fixes: d2311e6985 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots")
CC: stable@vger.kernel.org # 5.1+
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
Robbie Ko
c11fbb6ed0 btrfs: reduce lock contention when creating snapshot
When creating a snapshot, ordered extents need to be flushed and this
can take a long time.

In create_snapshot there are two locks held when this happens:

  1. Destination directory inode lock
  2. Global subvolume semaphore

This will unnecessarily block other operations like subvolume destroy,
create, or setflag until the snapshot is created.

We can fix that by moving the flush outside the locked section as this
does not depend on the aforementioned locks.  The code factors out the
snapshot related work from create_snapshot to btrfs_mksnapshot.

__btrfs_ioctl_snap_create
  btrfs_mksubvol
    create_subvol
  btrfs_mksnapshot
    <flush>
    btrfs_mksubvol
      create_snapshot

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:36 +02:00
Qu Wenruo
aeb935a455 btrfs: don't set SHAREABLE flag for data reloc tree
SHAREABLE flag is set for subvolumes because users can create snapshot
for subvolumes, thus sharing tree blocks of them.

But data reloc tree is not exposed to user space, as it's only an
internal tree for data relocation, thus it doesn't need the full path
replacement handling at all.

This patch will make data reloc tree a non-shareable tree, and add
btrfs_fs_info::data_reloc_root for data reloc tree, so relocation code
can grab it from fs_info directly.

This would slightly improve tree relocation, as now data reloc tree
can go through regular COW routine to get relocated, without bothering
the complex tree reloc tree routine.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
Qu Wenruo
82028e0a2a btrfs: inode: cleanup the log-tree exceptions in btrfs_truncate_inode_items()
There are a lot of root owner checks in btrfs_truncate_inode_items()
like:

	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
	    root == fs_info->tree_root)

But considering that, only these trees can have INODE_ITEMs:

- tree root (for v1 space cache)
- subvolume trees
- tree reloc trees
- data reloc tree
- log trees

And since subvolume/tree reloc/data reloc trees all have SHAREABLE bit,
and we're checking tree root manually, so above check is just excluding
log trees.

This patch will replace two of such checks to a simpler one:

	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)

This would merge btrfs_drop_extent_cache() and lock_extent_bits() call
into the same if branch.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
Qu Wenruo
92a7cc4252 btrfs: rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.

In fact, that bit can only be set to those trees:

- Subvolume roots
- Data reloc root
- Reloc roots for above roots

All other trees won't get this bit set.  So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees.  Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).

This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
Anand Jain
ae3e715f85 btrfs: drop stale reference to volume_mutex
Commit dccdb07bc9 ("btrfs: kill btrfs_fs_info::volume_mutex") removed
the last use of the volume_mutex, forgetting to update the comment.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
David Sterba
583e4a2384 btrfs: update documentation of set/get helpers
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00