This patch adds support for CMA to dma-mapping subsystem for ARM
architecture. By default a global CMA area is used, but specific devices
are allowed to have their private memory areas if required (they can be
created with dma_declare_contiguous() function during board
initialisation).
Contiguous memory areas reserved for DMA are remapped with 2-level page
tables on boot. Once a buffer is requested, a low memory kernel mapping
is updated to to match requested memory access type.
GFP_ATOMIC allocations are performed from special pool which is created
early during boot. This way remapping page attributes is not needed on
allocation time.
CMA has been enabled unconditionally for ARMv6+ systems.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
CC: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
A zero value for prot_sect in the memory types table implies that
section mappings should never be created for the memory type in question.
This is checked for in alloc_init_section().
With LPAE, we set a bit to mask access flag faults for kernel mappings.
This breaks the aforementioned (!prot_sect) check in alloc_init_section().
This patch fixes this bug by first checking for a non-zero
prot_sect before setting the PMD_SECT_AF flag.
Signed-off-by: Vitaly Andrianov <vitalya@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
WARNING: vmlinux.o(.text+0x111b8): Section mismatch in reference
from the function arm_memory_present() to the function
.init.text:memory_present()
The function arm_memory_present() references
the function __init memory_present().
This is often because arm_memory_present lacks a __init
annotation or the annotation of memory_present is wrong.
WARNING: arch/arm/mm/built-in.o(.text+0x1edc): Section mismatch
in reference from the function alloc_init_pud() to the function
.init.text:alloc_init_section()
The function alloc_init_pud() references
the function __init alloc_init_section().
This is often because alloc_init_pud lacks a __init
annotation or the annotation of alloc_init_section is wrong.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Pull more ARM updates from Russell King.
This got a fair number of conflicts with the <asm/system.h> split, but
also with some other sparse-irq and header file include cleanups. They
all looked pretty trivial, though.
* 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (59 commits)
ARM: fix Kconfig warning for HAVE_BPF_JIT
ARM: 7361/1: provide XIP_VIRT_ADDR for no-MMU builds
ARM: 7349/1: integrator: convert to sparse irqs
ARM: 7259/3: net: JIT compiler for packet filters
ARM: 7334/1: add jump label support
ARM: 7333/2: jump label: detect %c support for ARM
ARM: 7338/1: add support for early console output via semihosting
ARM: use set_current_blocked() and block_sigmask()
ARM: exec: remove redundant set_fs(USER_DS)
ARM: 7332/1: extract out code patch function from kprobes
ARM: 7331/1: extract out insn generation code from ftrace
ARM: 7330/1: ftrace: use canonical Thumb-2 wide instruction format
ARM: 7351/1: ftrace: remove useless memory checks
ARM: 7316/1: kexec: EOI active and mask all interrupts in kexec crash path
ARM: Versatile Express: add NO_IOPORT
ARM: get rid of asm/irq.h in asm/prom.h
ARM: 7319/1: Print debug info for SIGBUS in user faults
ARM: 7318/1: gic: refactor irq_start assignment
ARM: 7317/1: irq: avoid NULL check in for_each_irq_desc loop
ARM: 7315/1: perf: add support for the Cortex-A7 PMU
...
Disintegrate asm/system.h for ARM.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Russell King <linux@arm.linux.org.uk>
cc: linux-arm-kernel@lists.infradead.org
Avoid namespace conflicts with drivers over the CP15 definitions by
moving CP15 related prototypes and definitions to a private header
file.
Acked-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Stephen Warren <swarren@nvidia.com> [Tegra]
Acked-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com> [EP93xx]
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Avoid namespace conflicts with drivers over the CP15 definitions by
moving CP15 related prototypes and definitions to a private header
file.
Acked-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Stephen Warren <swarren@nvidia.com> [Tegra]
Acked-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com> [EP93xx]
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Initialize the contents of the vectors page immediately after we
allocate the page, but before we map it. This avoids any possible
aliases with other mappings which may need to be flushed after the
page has been mapped irrespective of the cache type.
We follow this later with a flush_cache_all() after all static memory
mappings have been initialized, which ensures that this is safe from
any cache effects.
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Memory banks living outside of the 32-bit physical address
space do not have a 1:1 pa <-> va mapping and therefore the
__va macro may wrap.
This patch ensures that such banks are marked as highmem so
that the Kernel doesn't try to split them up when it sees that
the wrapped virtual address overlaps the vmalloc space.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
This patch adds the MMU initialisation for the LPAE page table format.
The swapper_pg_dir size with LPAE is 5 rather than 4 pages. A new
proc-v7-3level.S file contains the TTB initialisation, context switch
and PTE setting code with the LPAE. The TTBRx split is based on the
PAGE_OFFSET with TTBR1 used for the kernel mappings. The 36-bit mappings
(supersections) and a few other memory types in mmu.c are conditionally
compiled.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have all the static mappings from iotable_init() located
in the vmalloc area, it is trivial to optimize ioremap by reusing those
static mappings when the requested physical area fits in one of them,
and so in a generic way for all platforms.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Tested-by: Jamie Iles <jamie@jamieiles.com>
In order to remove the build time variation between different SOCs with
regards to VMALLOC_END, the iotable mappings are now allocated inside
the vmalloc region. This allows for VMALLOC_END to be identical across
all machines.
The value for VMALLOC_END is now set to 0xff000000 which is right where
the consistent DMA area starts.
To accommodate all static mappings on machines with possible highmem usage,
the default vmalloc area size is changed to 240 MB so that VMALLOC_START
is no higher than 0xf0000000 by default.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Tested-by: Jamie Iles <jamie@jamieiles.com>
Some upcoming changes must know the VMALLOC_START value, which is based
on high_memory, before bootmem_init() is called.
The best location to set it is in sanity_check_meminfo() where the needed
computation is already done, and in the non MMU case it is trivial to do
now that the meminfo array is already sorted at that point.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This patch defines the (pte|pmd)val_t as u32 and changes the page table
types to be based on these. The PMD bits are converted to the
corresponding type using the _AT macro.
The flush_pmd_entry/clean_pmd_entry argument was changed to (void *) to
allow them to be used with both PGD and PMD pointers and avoid code
duplication.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On certain architectures, there might be a need to mark certain
addresses with strongly ordered memory attributes to avoid ordering
issues at the interconnect level.
On OMAP4, the asynchronous bridge buffers can only be drained
with strongly ordered accesses and hence the need to mark the
memory strongly ordered.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Woodruff Richard <r-woodruff2@ti.com>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
PGDIR_SHIFT and PMD_SHIFT for the classic 2-level page table format have
the same value (21). This patch converts the PGDIR_* uses in the kernel
to the PMD_* equivalent so that LPAE builds can reuse the same code.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Ensure that the meminfo array is sanity checked before we pass the
memory to memblock. This helps to ensure that memblock and meminfo
agree on the dimensions of memory, especially when more memory is
passed than the kernel can deal with.
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
sanity_check_meminfo walks over the registered memory banks and attempts
to split banks across lowmem and highmem when they would otherwise
overlap with the vmalloc space.
When SPARSEMEM is used, there are two potential problems that occur
when the virtual address of the start of a bank is equal to vmalloc_min.
1.) The end of lowmem is calculated as __pa(vmalloc_min - 1) + 1.
In the above scenario, this will give the end address of the
previous bank, rather than the actual bank we are interested in.
This value is later used as the memblock limit and artificially
restricts the total amount of available memory.
2.) The checks to determine whether or not a bank belongs to highmem
or not only check if __va(bank->start) is greater or less than
vmalloc_min. In the case that it is equal, the bank is incorrectly
treated as lowmem, which hoses the vmalloc area.
This patch fixes these two problems by checking whether the virtual
start address of a bank is >= vmalloc_min and then calculating
lowmem_end by finding the virtual end address of the highest lowmem
bank.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Fold all the mmu_gather rework patches into one for submission
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit e616c59140, highmem support was
deactivated for SMP platforms without hardware TLB ops broadcast because
usage of kmap_high_get() requires that IRQs be disabled when kmap_lock
is locked which is incompatible with the IPI mechanism used by the
software TLB ops broadcast invoked through flush_all_zero_pkmaps().
The reason for kmap_high_get() is to ensure that the currently kmap'd
page usage count does not decrease to zero while we're using its
existing virtual mapping in an atomic context. With a VIVT cache this
is essential to do due to cache coherency issues, but with a VIPT cache
this is only an optimization so not to pay the price of establishing a
second mapping if an existing one can be used. However, on VIPT
platforms without hardware TLB maintenance we can give up on that
optimization in order to be able to use highmem.
From ARMv7 onwards the TLB ops are broadcasted in hardware, so let's
disable ARCH_NEEDS_KMAP_HIGH_GET only when CONFIG_SMP and
CONFIG_CPU_TLB_V6 are defined.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Tested-by: Saeed Bishara <saeed.bishara@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add pud_offset() et.al. between the pgd and pmd code in preparation of
using pgtable-nopud.h rather than 4level-fixup.h.
This incorporates a fix from Jamie Iles <jamie@jamieiles.com> for
uaccess_with_memcpy.c.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The unsigned long datatype is not sufficient for mapping physical addresses
>= 4GB.
This patch ensures that the phys_addr_t datatype is used to represent physical
addresses when converting from a PFN.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For the Kernel to support 2 level and 3 level page tables, physical
addresses (and also page table entries) need to be 32 or 64-bits depending
upon the configuration.
This patch uses the %08llx conversion specifier for physical addresses
and page table entries, ensuring that they are cast to (long long) so
that common code can be used regardless of the datatype widths.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With LPAE we no longer have software bits in a separate Linux PTE and
the early_pte_alloc() function should pass PTE_HWTABLE_OFF +
PTE_HWTABLE_SIZE to early_alloc() to avoid allocating extra memory.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The hardware page tables use an XN bit 'execute never'. Historically,
we've had a Linux 'execute allow' bit, in the positive sense. Get rid
of this artifact as future hardware will continue to have the XN sense.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We have two places where we create identity mappings - one when we bring
secondary CPUs online, and one where we setup some mappings for soft-
reboot. Combine these two into a single implementation. Also collect
the identity mapping deletion function.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch removes the domain switching functionality via the set_fs and
__switch_to functions on cores that have a TLS register.
Currently, the ioremap and vmalloc areas share the same level 1 page
tables and therefore have the same domain (DOMAIN_KERNEL). When the
kernel domain is modified from Client to Manager (via the __set_fs or in
the __switch_to function), the XN (eXecute Never) bit is overridden and
newer CPUs can speculatively prefetch the ioremap'ed memory.
Linux performs the kernel domain switching to allow user-specific
functions (copy_to/from_user, get/put_user etc.) to access kernel
memory. In order for these functions to work with the kernel domain set
to Client, the patch modifies the LDRT/STRT and related instructions to
the LDR/STR ones.
The user pages access rights are also modified for kernel read-only
access rather than read/write so that the copy-on-write mechanism still
works. CPU_USE_DOMAINS gets disabled only if the hardware has a TLS register
(CPU_32v6K is defined) since writing the TLS value to the high vectors page
isn't possible.
The user addresses passed to the kernel are checked by the access_ok()
function so that they do not point to the kernel space.
Tested-by: Anton Vorontsov <cbouatmailru@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Use memblock information to setup lowmem mappings rather than the
membank array.
This allows platforms to manipulate the memblock information during
initialization to reserve (and remove) memory from the kernel's view
of memory - and thus allowing platforms to setup their own private
mappings for this memory without causing problems with multiple
aliasing mappings:
size = min(size, SZ_2M);
base = memblock_alloc(size, min(align, SZ_2M));
memblock_free(base, size);
memblock_remove(base, size);
This is needed because multiple mappings of regions with differing
attributes (sharability, type, cache) are not permitted with ARMv6
and above.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This was missing from the noMMU code, so there was the possibility
of things not working as expected if out of order memory information
was passed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Will says:
| Commit e63075a3 removed the explicit MEMBLOCK_REAL_LIMIT #define
| and introduced the requirement that arch code calls
| memblock_set_current_limit to ensure that the __va macro can
| be used on physical addresses returned from memblock_alloc.
Unfortunately, ARM was missed out of this change. Fix this.
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
After Santosh's fixup of the generic MT_MEMORY and
MT_MEMORY_NONCACHED I add this fix to the TCM memory types.
The main change is that the ITCM memory is L_PTE_WRITE and
DOMAIN_KERNEL which works just fine. The changed to the DTCM
is just cosmetic to fit with surrounding code.
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Rickard Andersson <rickard.andersson@stericsson.com>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
UP systems do not implement all the instructions that SMP systems have,
so in order to boot a SMP kernel on a UP system, we need to rewrite
parts of the kernel.
Do this using an 'alternatives' scheme, where the kernel code and data
is modified prior to initialization to replace the SMP instructions,
thereby rendering the problematical code ineffectual. We use the linker
to generate a list of 32-bit word locations and their replacement values,
and run through these replacements when we detect a UP system.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The commit f1a2481c0 sets up the default flags for MT_MEMORY and
MT_MEMORY_NONCACHED memory types. L_PTE_USER flag is wrongly
set as default for these entries so remove it. Also adding
the 'L_PTE_WRITE' flag so that these pages become read-write
instead of just being read-only
[this stops them being exposed to userspace, which is the main
concern here --rmk]
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch populates the L1 entries for MT_MEMORY and MT_MEMORY_NONCACHED
types so that at boot-up, we can map memories outside system memory
at page level granularity
Previously the mapping was limiting to section level, which creates
unnecessary additional mapping for which physical memory may not
present. On the newer ARM with speculation, this is dangerous and can
result in untraceable aborts.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv7 onwards requires that there are no aliases to the same physical
location using different memory types (i.e. Normal vs Strongly Ordered).
Access to SO mappings when the unaligned accesses are handled in
hardware is also Unpredictable (pgprot_noncached() mappings in user
space).
The /dev/mem driver requires uncached mappings with O_SYNC. The patch
implements the phys_mem_access_prot() function which generates Strongly
Ordered memory attributes if !pfn_valid() (independent of O_SYNC) and
Normal Noncacheable (writecombine) if O_SYNC.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The earlier TCM memory regions were mapped as MT_MEMORY_UNCACHED
which doesn't really work on platforms supporting the new v6
features like the NX bit. Add unique MT_MEMORY_[I|D]TCM types
instead.
Cc: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add a common early allocator function, in preparation for switching
over to LMB. When we do, this function will need to do a little more
than just allocating memory; we need it zero initialized too.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move the platform specific bootmem memory reservations out of
arch/arm/mm/mmu.c into their respective platform files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Everything should now be using sparsemem rather than discontigmem, so
remove the code supporting discontigmem from ARM.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than storing the minimum size of the vmalloc area, store the
maximum permitted address of the vmalloc area instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When crash happens in interrupt context there is no userspace context.
We always use current->active_mm in those cases.
Signed-off-by: Mika Westerberg <ext-mika.1.westerberg@nokia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Write combining/cached device mappings are not setting the shared bit,
which could potentially cause problems on SMP systems since the cache
lines won't participate in the cache coherency protocol.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
The ARM setup code includes its own parser for early params, there's
also one in the generic init code.
This patch removes __early_init (and related code) from
arch/arm/kernel/setup.c, and changes users to the generic early_init
macro instead.
The generic macro takes a char * argument, rather than char **, so we
need to update the parser functions a little.
Signed-off-by: Jeremy Kerr <jeremy.kerr@canonical.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We need to do that if we tinker with the MMU entries.
This fixes the occasional bug with kexec where the new
fails to uncompress with "crc error". Most likely at
least kexec on v6 and v7 need this fix.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
PAGE_KERNEL should not be executable; any area marked executable can
be prefetched into the instruction cache. We don't want vmalloc areas
to be read in this way.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The zero page is read-only, and has its cache state cleared during
boot. No further maintanence for this page is required.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Mapping the same memory using two different attributes (memory
type, shareability, cacheability) is unpredictable. During boot,
we encounter a situation when we're updating the kernel's page
tables which can lead to dirty cache lines existing in the cache
which are subsequently missed. This causes stack corruption,
and therefore a crash.
Therefore, ensure that the shared and cacheability settings
matches the configuration that will be used later; this together
with the restriction in early_cachepolicy() ensures that we won't
create a mismatch during boot.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We suffer an unfortunate combination of "features" which makes highmem
support on platforms without hardware TLB maintainence broadcast difficult:
- we need kmap_high_get() support for DMA cache coherence
- this requires kmap_high() to take a spinlock with IRQs disabled
- kmap_high() occasionally calls flush_all_zero_pkmaps() to clear
out old mappings
- flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which
on s/w IPI'd systems eventually calls smp_call_function_many()
- smp_call_function_many() must not be called with IRQs disabled:
WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240()
Modules linked in:
Backtrace:
[<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c)
r6:c007cd18 r5:c02ff228 r4:0000017c
[<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80)
[<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c)
r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34
[<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240)
[<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38)
[<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38)
[<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58)
r6:00000001 r5:00000800 r4:c05f3590
[<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8)
[<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0)
[<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c)
[<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194)
[<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290)
[<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38)
[<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438)
r4:c1819988
[<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c)
[<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318)
[<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4)
[<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84)
[<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4)
r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0
[<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60)
...
So we disable highmem support on these systems.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently, highmem is selectable, and you can request an increased
vmalloc area. However, none of this has any effect on the memory
layout since a patch in the highmem series was accidentally dropped.
Moreover, even if you did want highmem, all memory would still be
registered as lowmem, possibly resulting in overflow of the available
virtual mapping space.
The highmem boundary is determined by the highest allowed beginning
of the vmalloc area, which depends on its configurable minimum size
(see commit 60296c71f6 for details on
this).
We should create mappings and initialize bootmem only for low memory,
while the zone allocator must still be told about highmem.
Currently, memory nodes which are completely located in high memory
are not supported. This is not a huge limitation since systems
relying on highmem support are unlikely to have discontiguous memory
with large holes.
[ A similar patch was meant to be merged before commit 5f0fbf9eca
and be available in Linux v2.6.30, however some git rebase screw-up
of mine dropped the first commit of the series, and that goofage
escaped testing somehow as well. -- Nico ]
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Reviewed-by: Nicolas Pitre <nico@marvell.com>
This patch provides a device drivers, which has a omap iommu, with
address mapping APIs between device virtual address(iommu), physical
address and MPU virtual address.
There are 4 possible patterns for iommu virtual address(iova/da) mapping.
|iova/ mapping iommu_ page
| da pa va (d)-(p)-(v) function type
---------------------------------------------------------------------------
1 | c c c 1 - 1 - 1 _kmap() / _kunmap() s
2 | c c,a c 1 - 1 - 1 _kmalloc()/ _kfree() s
3 | c d c 1 - n - 1 _vmap() / _vunmap() s
4 | c d,a c 1 - n - 1 _vmalloc()/ _vfree() n*
'iova': device iommu virtual address
'da': alias of 'iova'
'pa': physical address
'va': mpu virtual address
'c': contiguous memory area
'd': dicontiguous memory area
'a': anonymous memory allocation
'()': optional feature
'n': a normal page(4KB) size is used.
's': multiple iommu superpage(16MB, 1MB, 64KB, 4KB) size is used.
'*': not yet, but feasible.
Signed-off-by: Hiroshi DOYU <Hiroshi.DOYU@nokia.com>
This hooks the U300 support into Kbuild and makes a small hook
in mmu.c for supporting an odd memory alignment with shared memory
on these systems.
This is rebased to RMK:s GIT HEAD. This patch tries to add the
Kconfig option in alphabetic order by option text and the Makefile
entry after config symbol.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Compiling recent 2.6.29-rc kernels for ARM gives me the following warning:
arch/arm/mm/mmu.c: In function 'sanity_check_meminfo':
arch/arm/mm/mmu.c:697: warning: comparison between pointer and integer
This is because commit 3fd9825c42
"[ARM] 5402/1: fix a case of wrap-around in sanity_check_meminfo()"
in 2.6.29-rc5-git4 added a comparison of a pointer with PAGE_OFFSET,
which is an integer.
Fixed by casting PAGE_OFFSET to void *.
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Acked-by: Nicolas Pitre <nico@cam.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
VIPT aliasing caches have issues of their own which are not yet handled.
Usage of discard_old_kernel_data() in copypage-v6.c is not highmem ready,
kmap/fixmap stuff doesn't take account of cache colouring, etc.
If/when those issues are handled then this could be reverted.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
The kmap virtual area borrows a 2MB range at the top of the 16MB area
below PAGE_OFFSET currently reserved for kernel modules and/or the
XIP kernel. This 2MB corresponds to the range covered by 2 consecutive
second-level page tables, or a single pmd entry as seen by the Linux
page table abstraction. Because XIP kernels are unlikely to be seen
on systems needing highmem support, there shouldn't be any shortage of
VM space for modules (14 MB for modules is still way more than twice the
typical usage).
Because the virtual mapping of highmem pages can go away at any moment
after kunmap() is called on them, we need to bypass the delayed cache
flushing provided by flush_dcache_page() in that case.
The atomic kmap versions are based on fixmaps, and
__cpuc_flush_dcache_page() is used directly in that case.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
This patch adds a Non-cacheable Normal ARM executable memory type,
MT_MEMORY_NONCACHED.
On OMAP3, this is used for rapid dynamic voltage/frequency scaling in
the VDD2 voltage domain. OMAP3's SDRAM controller (SDRC) is in the
VDD2 voltage domain, and its clock frequency must change along with
voltage. The SDRC clock change code cannot run from SDRAM itself,
since SDRAM accesses are paused during the clock change. So the
current implementation of the DVFS code executes from OMAP on-chip
SRAM, aka "OCM RAM."
If the OCM RAM pages are marked as Cacheable, the ARM cache controller
will attempt to flush dirty cache lines to the SDRC, so it can fill
those lines with OCM RAM instruction code. The problem is that the
SDRC is paused during DVFS, and so any SDRAM access causes the ARM MPU
subsystem to hang.
TI's original solution to this problem was to mark the OCM RAM
sections as Strongly Ordered memory, thus preventing caching. This is
overkill: since the memory is marked as non-bufferable, OCM RAM writes
become needlessly slow. The idea of "Strongly Ordered SRAM" is also
conceptually disturbing. Previous LAKML list discussion is here:
http://www.spinics.net/lists/arm-kernel/msg54312.html
This memory type MT_MEMORY_NONCACHED is used for OCM RAM by a future
patch.
Cc: Richard Woodruff <r-woodruff2@ti.com>
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In the non highmem case, if two memory banks of 1GB each are provided,
the second bank would evade suppression since its virtual base would
be 0. Fix this by disallowing any memory bank which virtual base
address is found to be lower than PAGE_OFFSET.
Reported-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As noted by Akinobu Mita in patch b1fceac2b9,
alloc_bootmem and related functions never return NULL and always return a
zeroed region of memory. Thus a NULL test or memset after calls to these
functions is unnecessary.
This was fixed using the following semantic patch.
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@@
expression E;
statement S;
@@
E = \(alloc_bootmem\|alloc_bootmem_low\|alloc_bootmem_pages\|alloc_bootmem_low_pages\|alloc_bootmem_node\|alloc_bootmem_low_pages_node\|alloc_bootmem_pages_node\)(...)
... when != E
(
- BUG_ON (E == NULL);
|
- if (E == NULL) S
)
@@
expression E,E1;
@@
E = \(alloc_bootmem\|alloc_bootmem_low\|alloc_bootmem_pages\|alloc_bootmem_low_pages\|alloc_bootmem_node\|alloc_bootmem_low_pages_node\|alloc_bootmem_pages_node\)(...)
... when != E
- memset(E,0,E1);
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Update to use the asm/sections.h header rather than declaring these
symbols ourselves. Change __data_start to _data to conform with the
naming found within asm/sections.h.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 8d5796d2ec allows for the vmalloc
area to be resized from the kernel cmdline. Make sure it cannot overlap
with RAM entirely.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Doing so will greatly simplify the bootmem initialization code as each
bank is therefore entirely lowmem or highmem with no crossing between
those zones.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently there are two instances of struct meminfo: one in
kernel/setup.c marked __initdata, and another in mm/init.c with
permanent storage. Let's keep only the later to directly populate
the permanent version from arm_add_memory().
Also move common validation tests between the MMU and non-MMU cases
into arm_add_memory() to remove some duplication. Protection against
overflowing the membank array is also moved in there in order to cover
the kernel cmdline parsing path as well.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As suggested by Andrew Morton, remove memzero() - it's not supported
on other architectures so use of it is a potential build breaking bug.
Since the compiler optimizes memset(x,0,n) to __memzero() perfectly
well, we don't miss out on the underlying benefits of memzero().
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Mikael Pettersson reported:
The 2.6.28-rc kernels fail to detect PCI device 0000:00:01.0
(the first ethernet port) on my Thecus n2100 XScale box.
There is however still a strange "ghost" device that gets partially
detected in 2.6.28-rc2 vanilla.
The IOP321 manual says:
The user designates the memory region containing the OCCDR as
non-cacheable and non-bufferable from the IntelR XScaleTM core.
This guarantees that all load/stores to the OCCDR are only of
DWORD quantities.
Ensure that the OCCDR is so mapped.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As a result of the ptebits changes, we ended up marking device mappings
as normal memory on ARMv7 CPUs, resulting in undesirable behaviour with
serial ports and the like. While reviewing the section mapping table
entries, other errors in the memory type settings for devices were
detected and confirmed to prevent Xscale3 platforms booting.
Tested on:
OMAP34xx (ARMv7),
OMAP24xx (ARMv6),
OMAP16xx (ARM926T, ARMv5),
PXA311 (Xscale3),
PXA272 (Xscale),
PXA255 (Xscale),
IXP42x (Xscale),
S3C2410 (ARM920T, ARMv4T),
ARM720T (ARMv4T)
StrongARM-110 (ARMv4)
Acked-by: Tony Lindgren <tony@atomide.com>
Tested-by: Robert Jarzmik <robert.jarzmik@free.fr>
Tested-by: Mike Rapoport <mike@compulab.co.il>
Tested-by: Ben Dooks <ben-linux@fluff.org>
Tested-by: Anders Grafström <grfstrm@users.sourceforge.net>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As of 73bdf0a60e, the kernel needs
to know where modules are located in the virtual address space.
On ARM, we located this region between MODULE_START and MODULE_END.
Unfortunately, everyone else calls it MODULES_VADDR and MODULES_END.
Update ARM to use the same naming, so is_vmalloc_or_module_addr()
can work properly. Also update the comment on mm/vmalloc.c to
reflect that ARM also places modules in a separate region from the
vmalloc space.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
As of the previous commit, MT_DEVICE_IXP2000 encodes to the same
PTE bit encoding as MT_DEVICE, so it's now redundant. Convert
MT_DEVICE_IXP2000 to use MT_DEVICE instead, and remove its aliases.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>