For asynchronous events originating from the device, like perf event
output, we need to be able to make sure that objects being referred
to by the FW message are valid on the host. FW events can get queued
and reordered. Even if we had a FW message "barrier" we should still
protect ourselves from bogus FW output.
Add a reverse-mapping hash table and record in it all raw map pointers
FW may refer to. Only record neutral maps, i.e. perf event arrays.
These are currently the only objects FW can refer to. Use RCU protection
on the read side, update side is under RTNL.
Since program vs map destruction order is slightly painful for offload
simply take an extra reference on all the recorded maps to make sure
they don't disappear.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
BPF_MAP_TYPE_PERF_EVENT_ARRAY is special as far as offload goes.
The map only holds glue to perf ring, not actual data. Allow
non-offloaded perf event arrays to be used in offloaded programs.
Offload driver can extract the events from HW and put them in
the map for user space to retrieve.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Jiong Wang says:
====================
This patch set clean up some code logic related with managing subprog
information.
Part of the set are inspried by Edwin's code in his RFC:
"bpf/verifier: subprog/func_call simplifications"
but with clearer separation so it could be easier to review.
- Path 1 unifies main prog and subprogs. All of them are registered in
env->subprog_starts.
- After patch 1, it is clear that subprog_starts and subprog_stack_depth
could be merged as both of them now have main and subprog unified.
Patch 2 therefore does the merge, all subprog information are centred
at bpf_subprog_info.
- Patch 3 goes further to introduce a new fake "exit" subprog which
serves as an ending marker to the subprog list. We could then turn the
following code snippets across verifier:
if (env->subprog_cnt == cur_subprog + 1)
subprog_end = insn_cnt;
else
subprog_end = env->subprog_info[cur_subprog + 1].start;
into:
subprog_end = env->subprog_info[cur_subprog + 1].start;
There is no functional change by this patch set.
No bpf selftest (both non-jit and jit) regression found after this set.
v2:
- fixed adjust_subprog_starts to also update fake "exit" subprog start.
- for John's suggestion on renaming subprog to prog, I could work on
a follow-up patch if it is recognized as worth the change.
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Trivial fix to spelling mistake in netdev_warn warning message
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Remove the 'linear' field from struct mlx5_wq_param.
It is redundant, set but never read.
Signed-off-by: Tariq Toukan <tariqt@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Dump command mailbox length printed was correct only if data_only flag
was set. For the case that data_only flag was clear the offset to stop
printing at was wrong and so the buffer printed was too short.
Changed the print loop to stop according to number of buffers in
mailbox.
Fixes: e126ba97db ("mlx5: Add driver for Mellanox Connect-IB adapters")
Signed-off-by: Moshe Shemesh <moshe@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
Get the logic that calculates the number of blocks in a command mailbox
into a dedicated function.
Signed-off-by: Moshe Shemesh <moshe@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
User-controlled application can cause multiple prints as below to flood
dmesg. Since knowledge of failed MKey release is important for debug,
let's decrease its level to debug.
mlx5_core 0000:00:04.0: mlx5_core_destroy_mkey:127:(pid 2352): failed
radix tree delete of mkey 0x1ed700
Reported-by: Noa Osherovich <noaos@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Saeed Mahameed <saeedm@mellanox.com>
While trying to support CHECKSUM_COMPLETE for IPV6 fragments,
I had to experiments various hacks in get_fixed_ipv6_csum().
I must admit I could not find how to implement this :/
However, get_fixed_ipv6_csum() does a lot of redundant operations,
calling csum_partial() twice.
First csum_partial() computes the checksum of saddr and daddr,
put in @csum_pseudo_hdr. Undone later in the second csum_partial()
computed on whole ipv6 header.
Then nexthdr is added once, added a second time, then substracted.
payload_len is added once, then substracted.
Really all this can be reduced to two add_csum(), to add back 6 bytes
that were removed by mlx4 when providing hw_checksum in RX descriptor.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Reviewed-by: Saeed Mahameed <saeedm@mellanox.com>
Acked-by: Tariq Toukan <tariqt@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ursula Braun says:
====================
net/smc: splice implementation
Stefan comes up with an smc implementation for splice(). The first
three patches are preparational patches, the 4th patch implements
splice().
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Provide an implementation for splice() when we are using SMC. See
smc_splice_read() for further details.
Signed-off-by: Stefan Raspl <raspl@linux.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.ibm.com><
Signed-off-by: David S. Miller <davem@davemloft.net>
Preparatory work for splice() support.
Signed-off-by: Stefan Raspl <raspl@linux.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.ibm.com><
Signed-off-by: David S. Miller <davem@davemloft.net>
Turn smc_rx_wait_data into a generic function that can be used at various
instances to wait on traffic to complete with varying criteria.
Signed-off-by: Stefan Raspl <raspl@linux.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.ibm.com><
Signed-off-by: David S. Miller <davem@davemloft.net>
Some of the conditions to exit recv() are common in two pathes - cleaning up
code by moving the check up so we have it only once.
Signed-off-by: Stefan Raspl <raspl@linux.ibm.com>
Signed-off-by: Ursula Braun <ubraun@linux.ibm.com><
Signed-off-by: David S. Miller <davem@davemloft.net>
Sergei Shtylyov says:
====================
sh_eth: complain on access to unimplemented TSU registers
Here's a set of 2 patches against DaveM's 'net-next.git' repo. The 1st patch
routes TSU_POST<n> register accesses thru sh_eth_tsu_{read|write}() and the 2nd
added WARN_ON() unimplemented register to those functions. I'm going to deal with
TSU_ADR{H|L}<n> registers in a later series...
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 3365711df0 ("sh_eth: WARN on access to a register not implemented
in a particular chip") added WARN_ON() to sh_eth_{read|write}() but not
to sh_eth_tsu_{read|write}(). Now that we've routed almost all TSU register
accesses (except TSU_ADR{H|L}<n> -- which are special) thru the latter
pair of accessors, it makes sense to check for the unimplemented TSU
registers as well...
Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's no particularly good reason TSU_POST<n> registers get accessed
circumventing sh_eth_tsu_{read|write}() -- start using those, removing
(badly named) sh_eth_tsu_get_post_reg_offset(), while at it...
Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are quite a few code snippet like the following in verifier:
subprog_start = 0;
if (env->subprog_cnt == cur_subprog + 1)
subprog_end = insn_cnt;
else
subprog_end = env->subprog_info[cur_subprog + 1].start;
The reason is there is no marker in subprog_info array to tell the end of
it.
We could resolve this issue by introducing a faked "ending" subprog.
The special "ending" subprog is with "insn_cnt" as start offset, so it is
serving as the end mark whenever we iterate over all subprogs.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
It is better to centre all subprog information fields into one structure.
This structure could later serve as function node in call graph.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently, verifier treat main prog and subprog differently. All subprogs
detected are kept in env->subprog_starts while main prog is not kept there.
Instead, main prog is implicitly defined as the prog start at 0.
There is actually no difference between main prog and subprog, it is better
to unify them, and register all progs detected into env->subprog_starts.
This could also help simplifying some code logic.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
struct xfrm_state is rather large (768 bytes here) and therefore wastes
quite a lot of memory as it falls into the kmalloc-1024 slab cache,
leaving 256 bytes of unused memory per XFRM state object -- a net waste
of 25%.
Using a dedicated slab cache for struct xfrm_state reduces the level of
internal fragmentation to a minimum.
On my configuration SLUB chooses to create a slab cache covering 4
pages holding 21 objects, resulting in an average memory waste of ~13
bytes per object -- a net waste of only 1.6%.
In my tests this led to memory savings of roughly 2.3MB for 10k XFRM
states.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
This Kselftest update for 4.17-rc4 consists of a fix for a syntax error
in the script that runs selftests. Mathieu Desnoyers found this bug in
the script on systems running GNU Make 3.8 or older.
-----BEGIN PGP SIGNATURE-----
iQIcBAABCAAGBQJa63FsAAoJEAsCRMQNDUMcnOsP/1bpgIW8zDxhjviswVnFAXtU
C0W5gs7jPOZsAOrIMpdJx6eN9WokS75yPa18cNwvKEZ6CEj5E1PkaCySdBvVAqgU
ACxRV1NA3e6zsKxMXhZhC+O1+KJKTg7HaGspICSVbCBO2GRdrUixiLoVOSyx8VVZ
XQr0dP9DKorSdpaf77xY6gmGIf7zifc/+jCVp+foMG4Cmdvsq7N8GHb/iR6Tj4Gu
L88hW43qquCzo2q4zBZTbo5GUz9r0ctst0/HRAyci+M6gIQ9GwZbE5KplZT8iQVM
KLP6umAQEVP1VDeq1TZs4s0+NQ6/p8h7MtxDrdmIYoQ0usNTH5oBqYg4FWHdYzPG
aj6ahbOnim6B0SsO1+3SARSfY9a/o3BmDwdH5HhxhP9of11UVscqRJFnncHvIUen
XpEWrW7E4jnMb8tiwD/ewu718QoWhr/9OG5PzF+vsCaF2Xw/gJB05NSH8oAVk38q
B4WzyGoYZjuSUaJw/8PUm8I/33cDr9H9jQRtMvgmYXvxPbpKXRPAz4IY4LJeSx6J
sZ9NsT+ZiXm4mnNjJI9Oim3yOYY5FEZ/KTk4vDNDulX3H/QxfN9A3R5bfcaiF3Fw
pTqc/lf6PPLtqGPNss1DU8fyGkvXsfYt4bI2ctOqegsP5+xs8NUrJMuzVSuHvC7a
1poSVAQ6vORC46zgwrQc
=l8ln
-----END PGP SIGNATURE-----
Merge tag 'linux-kselftest-4.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull kselftest fixes from Shuah Khan:
"This Kselftest update for 4.17-rc4 consists of a fix for a syntax
error in the script that runs selftests. Mathieu Desnoyers found this
bug in the script on systems running GNU Make 3.8 or older"
* tag 'linux-kselftest-4.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
selftests: Fix lib.mk run_tests target shell script
Pull networking fixes from David Miller:
1) Various sockmap fixes from John Fastabend (pinned map handling,
blocking in recvmsg, double page put, error handling during redirect
failures, etc.)
2) Fix dead code handling in x86-64 JIT, from Gianluca Borello.
3) Missing device put in RDS IB code, from Dag Moxnes.
4) Don't process fast open during repair mode in TCP< from Yuchung
Cheng.
5) Move address/port comparison fixes in SCTP, from Xin Long.
6) Handle add a bond slave's master into a bridge properly, from
Hangbin Liu.
7) IPv6 multipath code can operate on unitialized memory due to an
assumption that the icmp header is in the linear SKB area. Fix from
Eric Dumazet.
8) Don't invoke do_tcp_sendpages() recursively via TLS, from Dave
Watson.
9) Fix memory leaks in x86-64 JIT, from Daniel Borkmann.
10) RDS leaks kernel memory to userspace, from Eric Dumazet.
11) DCCP can invoke a tasklet on a freed socket, take a refcount. Also
from Eric Dumazet.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (78 commits)
dccp: fix tasklet usage
smc: fix sendpage() call
net/smc: handle unregistered buffers
net/smc: call consolidation
qed: fix spelling mistake: "offloded" -> "offloaded"
net/mlx5e: fix spelling mistake: "loobpack" -> "loopback"
tcp: restore autocorking
rds: do not leak kernel memory to user land
qmi_wwan: do not steal interfaces from class drivers
ipv4: fix fnhe usage by non-cached routes
bpf: sockmap, fix error handling in redirect failures
bpf: sockmap, zero sg_size on error when buffer is released
bpf: sockmap, fix scatterlist update on error path in send with apply
net_sched: fq: take care of throttled flows before reuse
ipv6: Revert "ipv6: Allow non-gateway ECMP for IPv6"
bpf, x64: fix memleak when not converging on calls
bpf, x64: fix memleak when not converging after image
net/smc: restrict non-blocking connect finish
8139too: Use disable_irq_nosync() in rtl8139_poll_controller()
sctp: fix the issue that the cookie-ack with auth can't get processed
...
Daniel Borkmann says:
====================
This set simplifies BPF JITs significantly by moving ld_abs/ld_ind
to native BPF, for details see individual patches. Main rationale
is in patch 'implement ld_abs/ld_ind in native bpf'. Thanks!
v1 -> v2:
- Added missing seen_lds_abs in LDX_MSH and use X = A
initially due to being preserved on func call.
- Added a large batch of cBPF tests into test_bpf.
- Added x32 removal of LD_ABS/LD_IND, so all JITs are
covered.
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Only sync the header from include/uapi/linux/bpf.h.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from x32 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from s390x JIT.
Tested on s390x instance on LinuxONE.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from ppc64 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Sandipan Das <sandipan@linux.vnet.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from mips64 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from arm32 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from sparc64 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from arm64 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since LD_ABS/LD_IND instructions are now removed from the core and
reimplemented through a combination of inlined BPF instructions and
a slow-path helper, we can get rid of the complexity from x64 JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This adds a small BPF helper similar to bpf_skb_load_bytes() that
is able to load relative to mac/net header offset from the skb's
linear data. Compared to bpf_skb_load_bytes(), it takes a fifth
argument namely start_header, which is either BPF_HDR_START_MAC
or BPF_HDR_START_NET. This allows for a more flexible alternative
compared to LD_ABS/LD_IND with negative offset. It's enabled for
tc BPF programs as well as sock filter program types where it's
mainly useful in reuseport programs to ease access to lower header
data.
Reference: https://lists.iovisor.org/pipermail/iovisor-dev/2017-March/000698.html
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:
* fdfaf64e75 ("x86: bpf_jit: support negative offsets")
* 35607b02db ("sparc: bpf_jit: fix loads from negative offsets")
* e0ee9c1215 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
* 07aee94394 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
* 6d59b7dbf7 ("bpf, s390x: do not reload skb pointers in non-skb context")
* 87338c8e2c ("bpf, ppc64: do not reload skb pointers in non-skb context")
For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.
In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.
The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:
test_bpf tcpdump port 22 tcpdump complex
x64 - before 15 21 10 14 19 18
- after 7 10 10 7 10 15
arm64 - before 40 91 92 40 91 151
- after 51 64 73 51 62 113
For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Remove all eBPF tests involving LD_ABS/LD_IND from test_bpf.ko. Reason
is that the eBPF tests from test_bpf module do not go via BPF verifier
and therefore any instruction rewrites from verifier cannot take place.
Therefore, move them into test_verifier which runs out of user space,
so that verfier can rewrite LD_ABS/LD_IND internally in upcoming patches.
It will have the same effect since runtime tests are also performed from
there. This also allows to finally unexport bpf_skb_vlan_{push,pop}_proto
and keep it internal to core kernel.
Additionally, also add further cBPF LD_ABS/LD_IND test coverage into
test_bpf.ko suite.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
No change in functionality, just remove the '__' prefix and replace it
with a 'bpf_' prefix instead. We later on add a couple of more helpers
for cBPF and keeping the scheme with '__' is suboptimal there.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Björn Töpel says:
====================
This patch set introduces a new address family called AF_XDP that is
optimized for high performance packet processing and, in upcoming
patch sets, zero-copy semantics. In this patch set, we have removed
all zero-copy related code in order to make it smaller, simpler and
hopefully more review friendly. This patch set only supports copy-mode
for the generic XDP path (XDP_SKB) for both RX and TX and copy-mode
for RX using the XDP_DRV path. Zero-copy support requires XDP and
driver changes that Jesper Dangaard Brouer is working on. Some of his
work has already been accepted. We will publish our zero-copy support
for RX and TX on top of his patch sets at a later point in time.
An AF_XDP socket (XSK) is created with the normal socket()
syscall. Associated with each XSK are two queues: the RX queue and the
TX queue. A socket can receive packets on the RX queue and it can send
packets on the TX queue. These queues are registered and sized with
the setsockopts XDP_RX_RING and XDP_TX_RING, respectively. It is
mandatory to have at least one of these queues for each socket. In
contrast to AF_PACKET V2/V3 these descriptor queues are separated from
packet buffers. An RX or TX descriptor points to a data buffer in a
memory area called a UMEM. RX and TX can share the same UMEM so that a
packet does not have to be copied between RX and TX. Moreover, if a
packet needs to be kept for a while due to a possible retransmit, the
descriptor that points to that packet can be changed to point to
another and reused right away. This again avoids copying data.
This new dedicated packet buffer area is call a UMEM. It consists of a
number of equally size frames and each frame has a unique frame id. A
descriptor in one of the queues references a frame by referencing its
frame id. The user space allocates memory for this UMEM using whatever
means it feels is most appropriate (malloc, mmap, huge pages,
etc). This memory area is then registered with the kernel using the new
setsockopt XDP_UMEM_REG. The UMEM also has two queues: the FILL queue
and the COMPLETION queue. The fill queue is used by the application to
send down frame ids for the kernel to fill in with RX packet
data. References to these frames will then appear in the RX queue of
the XSK once they have been received. The completion queue, on the
other hand, contains frame ids that the kernel has transmitted
completely and can now be used again by user space, for either TX or
RX. Thus, the frame ids appearing in the completion queue are ids that
were previously transmitted using the TX queue. In summary, the RX and
FILL queues are used for the RX path and the TX and COMPLETION queues
are used for the TX path.
The socket is then finally bound with a bind() call to a device and a
specific queue id on that device, and it is not until bind is
completed that traffic starts to flow. Note that in this patch set,
all packet data is copied out to user-space.
A new feature in this patch set is that the UMEM can be shared between
processes, if desired. If a process wants to do this, it simply skips
the registration of the UMEM and its corresponding two queues, sets a
flag in the bind call and submits the XSK of the process it would like
to share UMEM with as well as its own newly created XSK socket. The
new process will then receive frame id references in its own RX queue
that point to this shared UMEM. Note that since the queue structures
are single-consumer / single-producer (for performance reasons), the
new process has to create its own socket with associated RX and TX
queues, since it cannot share this with the other process. This is
also the reason that there is only one set of FILL and COMPLETION
queues per UMEM. It is the responsibility of a single process to
handle the UMEM. If multiple-producer / multiple-consumer queues are
implemented in the future, this requirement could be relaxed.
How is then packets distributed between these two XSK? We have
introduced a new BPF map called XSKMAP (or BPF_MAP_TYPE_XSKMAP in
full). The user-space application can place an XSK at an arbitrary
place in this map. The XDP program can then redirect a packet to a
specific index in this map and at this point XDP validates that the
XSK in that map was indeed bound to that device and queue number. If
not, the packet is dropped. If the map is empty at that index, the
packet is also dropped. This also means that it is currently mandatory
to have an XDP program loaded (and one XSK in the XSKMAP) to be able
to get any traffic to user space through the XSK.
AF_XDP can operate in two different modes: XDP_SKB and XDP_DRV. If the
driver does not have support for XDP, or XDP_SKB is explicitly chosen
when loading the XDP program, XDP_SKB mode is employed that uses SKBs
together with the generic XDP support and copies out the data to user
space. A fallback mode that works for any network device. On the other
hand, if the driver has support for XDP, it will be used by the AF_XDP
code to provide better performance, but there is still a copy of the
data into user space.
There is a xdpsock benchmarking/test application included that
demonstrates how to use AF_XDP sockets with both private and shared
UMEMs. Say that you would like your UDP traffic from port 4242 to end
up in queue 16, that we will enable AF_XDP on. Here, we use ethtool
for this:
ethtool -N p3p2 rx-flow-hash udp4 fn
ethtool -N p3p2 flow-type udp4 src-port 4242 dst-port 4242 \
action 16
Running the rxdrop benchmark in XDP_DRV mode can then be done
using:
samples/bpf/xdpsock -i p3p2 -q 16 -r -N
For XDP_SKB mode, use the switch "-S" instead of "-N" and all options
can be displayed with "-h", as usual.
We have run some benchmarks on a dual socket system with two Broadwell
E5 2660 @ 2.0 GHz with hyperthreading turned off. Each socket has 14
cores which gives a total of 28, but only two cores are used in these
experiments. One for TR/RX and one for the user space application. The
memory is DDR4 @ 2133 MT/s (1067 MHz) and the size of each DIMM is
8192MB and with 8 of those DIMMs in the system we have 64 GB of total
memory. The compiler used is gcc (Ubuntu 7.3.0-16ubuntu3) 7.3.0. The
NIC is Intel I40E 40Gbit/s using the i40e driver.
Below are the results in Mpps of the I40E NIC benchmark runs for 64
and 1500 byte packets, generated by a commercial packet generator HW
outputing packets at full 40 Gbit/s line rate. The results are without
retpoline so that we can compare against previous numbers. With
retpoline, the AF_XDP numbers drop with between 10 - 15 percent.
AF_XDP performance 64 byte packets. Results from V2 in parenthesis.
Benchmark XDP_SKB XDP_DRV
rxdrop 2.9(3.0) 9.6(9.5)
txpush 2.6(2.5) NA*
l2fwd 1.9(1.9) 2.5(2.5) (TX using XDP_SKB in both cases)
AF_XDP performance 1500 byte packets:
Benchmark XDP_SKB XDP_DRV
rxdrop 2.1(2.2) 3.3(3.3)
l2fwd 1.4(1.4) 1.8(1.8) (TX using XDP_SKB in both cases)
* NA since we have no support for TX using the XDP_DRV infrastructure
in this patch set. This is for a future patch set since it involves
changes to the XDP NDOs. Some of this has been upstreamed by Jesper
Dangaard Brouer.
XDP performance on our system as a base line:
64 byte packets:
XDP stats CPU pps issue-pps
XDP-RX CPU 16 32.3(32.9)M 0
1500 byte packets:
XDP stats CPU pps issue-pps
XDP-RX CPU 16 3.3(3.3)M 0
Changes from V2:
* Fixed a race in XSKMAP map found by Will. The code has been
completely rearchitected and is now simpler, faster, and hopefully
also not racy. Please review and check if it holds.
If you would like to diff V2 against V3, you can find them here:
https://github.com/bjoto/linux/tree/af-xdp-v2-on-bpf-nexthttps://github.com/bjoto/linux/tree/af-xdp-v3-on-bpf-next
The structure of the patch set is as follows:
Patches 1-3: Basic socket and umem plumbing
Patches 4-9: RX support together with the new XSKMAP
Patches 10-13: TX support
Patch 14: Statistics support with getsockopt()
Patch 15: Sample application
We based this patch set on bpf-next commit a3fe1f6f2a ("tools:
bpftool: change time format for program 'loaded at:' information")
To do for this patch set:
* Syzkaller torture session being worked on
Post-series plan:
* Optimize performance
* Kernel selftest
* Kernel load module support of AF_XDP would be nice. Unclear how to
achieve this though since our XDP code depends on net/core.
* Support for AF_XDP sockets without an XPD program loaded. In this
case all the traffic on a queue should go up to the user space socket.
* Daniel Borkmann's suggestion for a "copy to XDP socket, and return
XDP_PASS" for a tcpdump-like functionality.
* And of course getting to zero-copy support in small increments,
starting with TX then adding RX.
Thanks: Björn and Magnus
====================
Acked-by: Willem de Bruijn <willemb@google.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This is a sample application for AF_XDP sockets. The application
supports three different modes of operation: rxdrop, txonly and l2fwd.
To show-case a simple round-robin load-balancing between a set of
sockets in an xskmap, set the RR_LB compile time define option to 1 in
"xdpsock.h".
v2: The entries variable was calculated twice in {umem,xq}_nb_avail.
Co-authored-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In this commit, a new getsockopt is added: XDP_STATISTICS. This is
used to obtain stats from the sockets.
v2: getsockopt now returns size of stats structure.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Here, Tx support is added. The user fills the Tx queue with frames to
be sent by the kernel, and let's the kernel know using the sendmsg
syscall.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The new dev_direct_xmit will be used by AF_XDP in later commits.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Another setsockopt (XDP_TX_QUEUE) is added to let the process allocate
a queue, where the user process can pass frames to be transmitted by
the kernel.
The mmapping of the queue is done using the XDP_PGOFF_TX_QUEUE offset.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Here, we add another setsockopt for registered user memory (umem)
called XDP_UMEM_COMPLETION_QUEUE. Using this socket option, the
process can ask the kernel to allocate a queue (ring buffer) and also
mmap it (XDP_UMEM_PGOFF_COMPLETION_QUEUE) into the process.
The queue is used to explicitly pass ownership of umem frames from the
kernel to user process. This will be used by the TX path to tell user
space that a certain frame has been transmitted and user space can use
it for something else, if it wishes.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit wires up the xskmap to XDP_SKB layer.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit wires up the xskmap to XDP_DRV layer.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The xskmap is yet another BPF map, very much inspired by
dev/cpu/sockmap, and is a holder of AF_XDP sockets. A user application
adds AF_XDP sockets into the map, and by using the bpf_redirect_map
helper, an XDP program can redirect XDP frames to an AF_XDP socket.
Note that a socket that is bound to certain ifindex/queue index will
*only* accept XDP frames from that netdev/queue index. If an XDP
program tries to redirect from a netdev/queue index other than what
the socket is bound to, the frame will not be received on the socket.
A socket can reside in multiple maps.
v3: Fixed race and simplified code.
v2: Removed one indirection in map lookup.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Here the actual receive functions of AF_XDP are implemented, that in a
later commit, will be called from the XDP layers.
There's one set of functions for the XDP_DRV side and another for
XDP_SKB (generic).
A new XDP API, xdp_return_buff, is also introduced.
Adding xdp_return_buff, which is analogous to xdp_return_frame, but
acts upon an struct xdp_buff. The API will be used by AF_XDP in future
commits.
Support for the poll syscall is also implemented.
v2: xskq_validate_id did not update cons_tail.
The entries variable was calculated twice in xskq_nb_avail.
Squashed xdp_return_buff commit.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>