If the cacheline may still be busy, atomically mark it for future
release, and only if we can determine that it will never be used again,
immediately free it.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/1392
Fixes: ebece75392 ("drm/i915: Keep timeline HWSP allocated until idle across the system")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.2+
Link: https://patchwork.freedesktop.org/patch/msgid/20200306154647.3528345-1-chris@chris-wilson.co.uk
On seqno rollover, we need to allocate ourselves a new cacheline. This
might incur grabbing a new page and pinning it into the GGTT, with some
rather unfortunate lockdep implications.
To avoid a mutex, and more specifically pinning in the GGTT from inside
the kernel context being used to flush the GGTT in emergencies, we will
likely need to lift the next-cacheline allocation to a pre-reservation.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200203094152.4150550-3-chris@chris-wilson.co.uk
On Braswell and Broxton (also known as Valleyview and Apollolake), we
need to serialise updates of the GGTT using the big stop_machine()
hammer. This has the side effect of appearing to lockdep as a possible
reclaim (since it uses the cpuhp mutex and that is tainted by per-cpu
allocations). However, we want to use vm->mutex (including ggtt->mutex)
from within the shrinker and so must avoid such possible taints. For this
purpose, we introduced the asynchronous vma binding and we can apply it
to the PIN_GLOBAL so long as take care to add the necessary waits for
the worker afterwards.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/211
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200130181710.2030251-3-chris@chris-wilson.co.uk
As we stash a pointer to the HWSP cacheline on the request, when reading
it we only need confirm that the cacheline is still valid by checking
that the request and timeline are still intact.
v2: Protect hwsp_cachline with RCU
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191217011659.3092130-1-chris@chris-wilson.co.uk
While not good behaviour, it is, however, established behaviour that we
can punt EAGAIN to userspace if we need to retry the ioctl. When trying
to acquire a mutex, prefer to use EAGAIN to propagate losing the race
so that if it does end up back in userspace, we try again.
Fixes: c81471f5e9 ("drm/i915: Copy across scheduler behaviour flags across submit fences")
Closes: https://gitlab.freedesktop.org/drm/intel/issues/800
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191213160347.1789004-1-chris@chris-wilson.co.uk
The expected downside to commit 58b4c1a07a ("drm/i915: Reduce nested
prepare_remote_context() to a trylock") was that it would need to return
-EAGAIN to userspace in order to resolve potential mutex inversion. Such
an unsightly round trip is unnecessary if we could atomically insert a
barrier into the i915_active_fence, so make it happen.
Currently, we use the timeline->mutex (or some other named outer lock)
to order insertion into the i915_active_fence (and so individual nodes
of i915_active). Inside __i915_active_fence_set, we only need then
serialise with the interrupt handler in order to claim the timeline for
ourselves.
However, if we remove the outer lock, we need to ensure the order is
intact between not only multiple threads trying to insert themselves
into the timeline, but also with the interrupt handler completing the
previous occupant. We use xchg() on insert so that we have an ordered
sequence of insertions (and each caller knows the previous fence on
which to wait, preserving the chain of all fences in the timeline), but
we then have to cmpxchg() in the interrupt handler to avoid overwriting
the new occupant. The only nasty side-effect is having to temporarily
strip off the RCU-annotations to apply the atomic operations, otherwise
the rules are much more conventional!
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=112402
Fixes: 58b4c1a07a ("drm/i915: Reduce nested prepare_remote_context() to a trylock")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191127134527.3438410-1-chris@chris-wilson.co.uk
The major drawback of commit 7e34f4e4aa ("drm/i915/gen8+: Add RC6 CTX
corruption WA") is that it disables RC6 while Skylake (and friends) is
active, and we do not consider the GPU idle until all outstanding
requests have been retired and the engine switched over to the kernel
context. If userspace is idle, this task falls onto our background idle
worker, which only runs roughly once a second, meaning that userspace has
to have been idle for a couple of seconds before we enable RC6 again.
Naturally, this causes us to consume considerably more energy than
before as powersaving is effectively disabled while a display server
(here's looking at you Xorg) is running.
As execlists will get a completion event as each context is completed,
we can use this interrupt to queue a retire worker bound to this engine
to cleanup idle timelines. We will then immediately notice the idle
engine (without userspace intervention or the aid of the background
retire worker) and start parking the GPU. Thus during light workloads,
we will do much more work to idle the GPU faster... Hopefully with
commensurate power saving!
v2: Watch context completions and only look at those local to the engine
when retiring to reduce the amount of excess work we perform.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=112315
References: 7e34f4e4aa ("drm/i915/gen8+: Add RC6 CTX corruption WA")
References: 2248a28384 ("drm/i915/gen8+: Add RC6 CTX corruption WA")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191125105858.1718307-3-chris@chris-wilson.co.uk
The general concept was that intel_timeline.active_count was locked by
the intel_timeline.mutex. The exception was for power management, where
the engine->kernel_context->timeline could be manipulated under the
global wakeref.mutex.
This was quite solid, as we always manipulated the timeline only while
we held an engine wakeref.
And then we started retiring requests outside of struct_mutex, only
using the timelines.active_list and the timeline->mutex. There we
started manipulating intel_timeline.active_count outside of an engine
wakeref, and so introduced a race between __engine_park() and
intel_gt_retire_requests(), a race that could result in the
engine->kernel_context not being added to the active timelines and so
losing requests, which caused us to keep the system permanently powered
up [and unloadable].
The race would be easy to close if we could take the engine wakeref for
the timeline before we retire -- except timelines are not bound to any
engine and so we would need to keep all active engines awake. The
alternative is to guard intel_timeline_enter/intel_timeline_exit for use
outside of the timeline->mutex.
Fixes: e5dadff4b0 ("drm/i915: Protect request retirement with timeline->mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191120165514.3955081-1-chris@chris-wilson.co.uk
When adding a new active timeline, place it at the end of the list. This
allows for intel_gt_retire_requests() to pick up the newcomer more
quickly and hopefully complete the retirement sooner. A miniscule
optimisation.
References: 7936a22dd4 ("drm/i915/gt: Wait for new requests in intel_gt_retire_requests()")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191119162559.3313003-1-chris@chris-wilson.co.uk
Our timelines are currently contained within an intel_gt, and we only
need to perform list/spinlock initialisation, so we can pull the
intel_timelines_init() into our intel_gt_init_early().
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191101130406.4142-1-chris@chris-wilson.co.uk
Forgo the struct_mutex serialisation for i915_active, and interpose its
own mutex handling for active/retire.
This is a multi-layered sleight-of-hand. First, we had to ensure that no
active/retire callbacks accidentally inverted the mutex ordering rules,
nor assumed that they were themselves serialised by struct_mutex. More
challenging though, is the rule over updating elements of the active
rbtree. Instead of the whole i915_active now being serialised by
struct_mutex, allocations/rotations of the tree are serialised by the
i915_active.mutex and individual nodes are serialised by the caller
using the i915_timeline.mutex (we need to use nested spinlocks to
interact with the dma_fence callback lists).
The pain point here is that instead of a single mutex around execbuf, we
now have to take a mutex for active tracker (one for each vma, context,
etc) and a couple of spinlocks for each fence update. The improvement in
fine grained locking allowing for multiple concurrent clients
(eventually!) should be worth it in typical loads.
v2: Add some comments that barely elucidate anything :(
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-6-chris@chris-wilson.co.uk
As we need to use a mutex to serialise i915_active activation
(because we want to allow the callback to sleep), we need to push the
i915_active.retire into a worker callback in case we get need to retire
from an atomic context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-5-chris@chris-wilson.co.uk
As not only is the signal->timeline volatile, so will be acquiring the
timeline's HWSP. We must first carefully acquire the timeline from the
signaling request and then lock the timeline. With the removal of the
struct_mutex serialisation of request construction, we can have multiple
timelines active at once, and so we must avoid using the nested mutex
lock as it is quite possible for both timelines to be establishing
semaphores on the other and so deadlock.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-3-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
Sadly lockdep records when the irqs are re-enabled and then marks up the
fake lock as being irq-unsafe. Our hand is forced and so we must mark up
the entire fake lock critical section as irq-off.
Hopefully this is the last tweak required!
v2: Not quite, we need to mark the timeline spinlock as irqsafe. That
was a genuine bug being hidden by the earlier lockdep splat.
Fixes: d67739268c ("drm/i915/gt: Mark up the nested engine-pm timeline lock as irqsafe")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190823132700.25286-2-chris@chris-wilson.co.uk
As every i915_active_request should be serialised by a dedicated lock,
i915_active consists of a tree of locks; one for each node. Markup up
the i915_active_request with what lock is supposed to be guarding it so
that we can verify that the serialised updated are indeed serialised.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190816121000.8507-2-chris@chris-wilson.co.uk
We use timeline->mutex to protect modifications to
context->active_count, and the associated enable/disable callbacks.
Due to complications with engine-pm barrier there is a path where we used
a "superlock" to provide serialised protect and so could not
unconditionally assert with lockdep that it was always held. However,
we can mark the mutex as taken (noting that we may be nested underneath
ourselves) which means we can be reassured the right timeline->mutex is
always treated as held and let lockdep roam free.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190816121000.8507-1-chris@chris-wilson.co.uk
In preparation for removing struct_mutex from around context retirement,
we need to make timeline pinning and unpinning safe. Since multiple
engines/contexts can share a single timeline, we cannot rely on
borrowing the context mutex (otherwise we could state that the timeline
is only pinned/unpinned inside the context pin/unpin and so guarded by
it). However, we only perform a sequence of atomic operations inside the
timeline pin/unpin and the sequence of those operations is safe for a
concurrent unpin / pin, so we can relax the struct_mutex requirement.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190815205709.24285-3-chris@chris-wilson.co.uk
We no longer allocate a contiguous set of timeline ids for all engines
upon creation, so we no longer should assume that the timelines are
densely allocated within a context. Hopefully, the set of fences used
within a workload are still dense enough for us to take advantage of
the compressed radix tree used for the syncmap.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190625233349.32371-1-chris@chris-wilson.co.uk
If we introduce a callback for i915_active that is only called the first
time we use the i915_active and is symmetrically paired with the
i915_active.retire callback, we can replace the open-coded and
non-atomic implementations -- which will be very fragile (i.e. broken)
upon removing the struct_mutex serialisation.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621183801.23252-4-chris@chris-wilson.co.uk
i915_gem_wait_for_idle() and i915_retire_requests() introduce a
dependency on the timeline->mutex. This is problematic as we want to
later perform allocations underneath i915_active.mutex, forming a link
between the shrinker, the timeline and active mutexes. Nip this cycle in
the bud by removing the acquisition of the timeline mutex (i.e.
retiring) from inside the shrinker.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621183801.23252-1-chris@chris-wilson.co.uk
Since the anonymous i915_gt became struct intel_gt and encloses
struct i915_gt_timelines, rename i915_gt_timelines to intel_gt_timelines
to match its parentage.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621131640.28864-1-chris@chris-wilson.co.uk