The local variable references in shrink_page_list is PAGEREF_RECLAIM_CLEAN
as default. It is for preventing to reclaim dirty pages when CMA try to
migrate pages. Strictly speaking, we don't need it because CMA didn't
allow to write out by .may_writepage = 0 in reclaim_clean_pages_from_list.
Moreover, it has a problem to prevent anonymous pages's swap out even
though force_reclaim = true in shrink_page_list on upcoming patch. So
this patch makes references's default value to PAGEREF_RECLAIM and rename
force_reclaim with ignore_references to make it more clear.
This is a preparatory work for next patch.
Link: http://lkml.kernel.org/r/20190726023435.214162-3-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: kbuild test robot <lkp@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7.
- Background
The Android terminology used for forking a new process and starting an app
from scratch is a cold start, while resuming an existing app is a hot
start. While we continually try to improve the performance of cold
starts, hot starts will always be significantly less power hungry as well
as faster so we are trying to make hot start more likely than cold start.
To increase hot start, Android userspace manages the order that apps
should be killed in a process called ActivityManagerService.
ActivityManagerService tracks every Android app or service that the user
could be interacting with at any time and translates that into a ranked
list for lmkd(low memory killer daemon). They are likely to be killed by
lmkd if the system has to reclaim memory. In that sense they are similar
to entries in any other cache. Those apps are kept alive for
opportunistic performance improvements but those performance improvements
will vary based on the memory requirements of individual workloads.
- Problem
Naturally, cached apps were dominant consumers of memory on the system.
However, they were not significant consumers of swap even though they are
good candidate for swap. Under investigation, swapping out only begins
once the low zone watermark is hit and kswapd wakes up, but the overall
allocation rate in the system might trip lmkd thresholds and cause a
cached process to be killed(we measured performance swapping out vs.
zapping the memory by killing a process. Unsurprisingly, zapping is 10x
times faster even though we use zram which is much faster than real
storage) so kill from lmkd will often satisfy the high zone watermark,
resulting in very few pages actually being moved to swap.
- Approach
The approach we chose was to use a new interface to allow userspace to
proactively reclaim entire processes by leveraging platform information.
This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages
that are known to be cold from userspace and to avoid races with lmkd by
reclaiming apps as soon as they entered the cached state. Additionally,
it could provide many chances for platform to use much information to
optimize memory efficiency.
To achieve the goal, the patchset introduce two new options for madvise.
One is MADV_COLD which will deactivate activated pages and the other is
MADV_PAGEOUT which will reclaim private pages instantly. These new
options complement MADV_DONTNEED and MADV_FREE by adding non-destructive
ways to gain some free memory space. MADV_PAGEOUT is similar to
MADV_DONTNEED in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed immediately; MADV_COLD is similar
to MADV_FREE in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed when memory pressure rises.
This patch (of 5):
When a process expects no accesses to a certain memory range, it could
give a hint to kernel that the pages can be reclaimed when memory pressure
happens but data should be preserved for future use. This could reduce
workingset eviction so it ends up increasing performance.
This patch introduces the new MADV_COLD hint to madvise(2) syscall.
MADV_COLD can be used by a process to mark a memory range as not expected
to be used in the near future. The hint can help kernel in deciding which
pages to evict early during memory pressure.
It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves
active file page -> inactive file LRU
active anon page -> inacdtive anon LRU
Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file
LRU's head because MADV_COLD is a little bit different symantic.
MADV_FREE means it's okay to discard when the memory pressure because the
content of the page is *garbage* so freeing such pages is almost zero
overhead since we don't need to swap out and access afterward causes just
minor fault. Thus, it would make sense to put those freeable pages in
inactive file LRU to compete other used-once pages. It makes sense for
implmentaion point of view, too because it's not swapbacked memory any
longer until it would be re-dirtied. Even, it could give a bonus to make
them be reclaimed on swapless system. However, MADV_COLD doesn't mean
garbage so reclaiming them requires swap-out/in in the end so it's bigger
cost. Since we have designed VM LRU aging based on cost-model, anonymous
cold pages would be better to position inactive anon's LRU list, not file
LRU. Furthermore, it would help to avoid unnecessary scanning if system
doesn't have a swap device. Let's start simpler way without adding
complexity at this moment. However, keep in mind, too that it's a caveat
that workloads with a lot of pages cache are likely to ignore MADV_COLD on
anonymous memory because we rarely age anonymous LRU lists.
* man-page material
MADV_COLD (since Linux x.x)
Pages in the specified regions will be treated as less-recently-accessed
compared to pages in the system with similar access frequencies. In
contrast to MADV_FREE, the contents of the region are preserved regardless
of subsequent writes to pages.
MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP
pages.
[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There isn't a good reason to differentiate between the user address space
layout modification syscalls and the other memory permission/attributes
ones (e.g. mprotect, madvise) w.r.t. the tagged address ABI. Untag the
user addresses on entry to these functions.
Link: http://lkml.kernel.org/r/20190821164730.47450-2-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Szabolcs Nagy <szabolcs.nagy@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Dave P Martin <Dave.Martin@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
get_vaddr_frames uses provided user pointers for vma lookups, which can
only by done with untagged pointers. Instead of locating and changing all
callers of this function, perform untagging in it.
Link: http://lkml.kernel.org/r/28f05e49c92b2a69c4703323d6c12208f3d881fe.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
mm/gup.c provides a kernel interface that accepts user addresses and
manipulates user pages directly (for example get_user_pages, that is used
by the futex syscall). Since a user can provided tagged addresses, we
need to handle this case.
Add untagging to gup.c functions that use user addresses for vma lookups.
Link: http://lkml.kernel.org/r/4731bddba3c938658c10ff4ed55cc01c60f4c8f8.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add RB_DECLARE_CALLBACKS_MAX, which generates augmented rbtree callbacks
for the case where the augmented value is a scalar whose definition
follows a max(f(node)) pattern. This actually covers all present uses of
RB_DECLARE_CALLBACKS, and saves some (source) code duplication in the
various RBCOMPUTE function definitions.
[walken@google.com: fix mm/vmalloc.c]
Link: http://lkml.kernel.org/r/CANN689FXgK13wDYNh1zKxdipeTuALG4eKvKpsdZqKFJ-rvtGiQ@mail.gmail.com
[walken@google.com: re-add check to check_augmented()]
Link: http://lkml.kernel.org/r/20190727022027.GA86863@google.com
Link: http://lkml.kernel.org/r/20190703040156.56953-3-walken@google.com
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_zspage_inuse() was introduced in the commit 4f42047bbd ("zsmalloc:
use accessor") but all the users of it were removed later by the commits,
bdb0af7ca8 ("zsmalloc: factor page chain functionality out")
3783689a1a ("zsmalloc: introduce zspage structure")
so the function can be safely removed now.
Link: http://lkml.kernel.org/r/1568658408-19374-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zswap_writeback_entry() maps a handle to read swpentry first, and
then in the most common case it would map the same handle again.
This is ok when zbud is the backend since its mapping callback is
plain and simple, but it slows things down for z3fold.
Since there's hardly a point in unmapping a handle _that_ fast as
zswap_writeback_entry() does when it reads swpentry, the
suggestion is to keep the handle mapped till the end.
Link: http://lkml.kernel.org/r/20190916004640.b453167d3556c4093af4cf7d@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a zpool_driver, zsmalloc can allocate movable memory because it support
migate pages. But zbud and z3fold cannot allocate movable memory.
Add malloc_support_movable to zpool_driver. If a zpool_driver support
allocate movable memory, set it to true. And add
zpool_malloc_support_movable check malloc_support_movable to make sure if
a zpool support allocate movable memory.
Link: http://lkml.kernel.org/r/20190605100630.13293-1-teawaterz@linux.alibaba.com
Signed-off-by: Hui Zhu <teawaterz@linux.alibaba.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_behavior() converts -ENOMEM to -EAGAIN in several places using
identical code.
Move that code to a common error handling path.
No functional changes.
Link: http://lkml.kernel.org/r/1564640896-1210-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The AF_XDP sockets umem mapping interface uses XDP_UMEM_PGOFF_FILL_RING
and XDP_UMEM_PGOFF_COMPLETION_RING offsets. These offsets are
established already and are part of the configuration interface.
But for 32-bit systems, using AF_XDP socket configuration, these values
are too large to pass the maximum allowed file size verification. The
offsets can be tuned off, but instead of changing the existing
interface, let's extend the max allowed file size for sockets.
No one has been using this until this patch with 32 bits as without
this fix af_xdp sockets can't be used at all, so it unblocks af_xdp
socket usage for 32bit systems.
All list of mmap cbs for sockets was verified for side effects and all
of them contain dummy cb - sock_no_mmap() at this moment, except the
following:
xsk_mmap() - it's what this fix is needed for.
tcp_mmap() - doesn't have obvious issues with pgoff - no any references on it.
packet_mmap() - return -EINVAL if it's even set.
Link: http://lkml.kernel.org/r/20190812124326.32146-1-ivan.khoronzhuk@linaro.org
Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Björn Töpel <bjorn.topel@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Magnus Karlsson <magnus.karlsson@intel.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When addr is out of range of the whole rb_tree, pprev will point to the
right-most node. rb_tree facility already provides a helper function,
rb_last(), to do this task. We can leverage this instead of
reimplementing it.
This patch refines find_vma_prev() with rb_last() to make it a little
nicer to read.
[akpm@linux-foundation.org: little cleanup, per Vlastimil]
Link: http://lkml.kernel.org/r/20190809001928.4950-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commits selects ARCH_HAS_ELF_RANDOMIZE when an arch uses the generic
topdown mmap layout functions so that this security feature is on by
default.
Note that this commit also removes the possibility for arm64 to have elf
randomization and no MMU: without MMU, the security added by randomization
is worth nothing.
Link: http://lkml.kernel.org/r/20190730055113.23635-6-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arm64 handles top-down mmap layout in a way that can be easily reused by
other architectures, so make it available in mm. It then introduces a new
config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT that can be set by other
architectures to benefit from those functions. Note that this new config
depends on MMU being enabled, if selected without MMU support, a warning
will be thrown.
Link: http://lkml.kernel.org/r/20190730055113.23635-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Provide generic top-down mmap layout functions", v6.
This series introduces generic functions to make top-down mmap layout
easily accessible to architectures, in particular riscv which was the
initial goal of this series. The generic implementation was taken from
arm64 and used successively by arm, mips and finally riscv.
Note that in addition the series fixes 2 issues:
- stack randomization was taken into account even if not necessary.
- [1] fixed an issue with mmap base which did not take into account
randomization but did not report it to arm and mips, so by moving arm64
into a generic library, this problem is now fixed for both
architectures.
This work is an effort to factorize architecture functions to avoid code
duplication and oversights as in [1].
[1]: https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1429066.html
This patch (of 14):
This preparatory commit moves this function so that further introduction
of generic topdown mmap layout is contained only in mm/util.c.
Link: http://lkml.kernel.org/r/20190730055113.23635-2-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged needs exclusive mmap_sem to access page table. When it fails
to lock mmap_sem, the page will fault in as pte-mapped THP. As the page
is already a THP, khugepaged will not handle this pmd again.
This patch enables the khugepaged to retry collapse the page table.
struct mm_slot (in khugepaged.c) is extended with an array, containing
addresses of pte-mapped THPs. We use array here for simplicity. We can
easily replace it with more advanced data structures when needed.
In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to
collapse the page table.
Since collapse may happen at an later time, some pages may already fault
in. collapse_pte_mapped_thp() is added to properly handle these pages.
collapse_pte_mapped_thp() also double checks whether all ptes in this pmd
are mapping to the same THP. This is necessary because some subpage of
the THP may be replaced, for example by uprobe. In such cases, it is not
possible to collapse the pmd.
[kirill.shutemov@linux.intel.com: add comments for retract_page_tables()]
Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box
Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new foll_flag: FOLL_SPLIT_PMD. As the name says
FOLL_SPLIT_PMD splits huge pmd for given mm_struct, the underlining huge
page stays as-is.
FOLL_SPLIT_PMD is useful for cases where we need to use regular pages, but
would switch back to huge page and huge pmd on. One of such example is
uprobe. The following patches use FOLL_SPLIT_PMD in uprobe.
Link: http://lkml.kernel.org/r/20190815164525.1848545-4-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "THP aware uprobe", v13.
This patchset makes uprobe aware of THPs.
Currently, when uprobe is attached to text on THP, the page is split by
FOLL_SPLIT. As a result, uprobe eliminates the performance benefit of
THP.
This set makes uprobe THP-aware. Instead of FOLL_SPLIT, we introduces
FOLL_SPLIT_PMD, which only split PMD for uprobe.
After all uprobes within the THP are removed, the PTE-mapped pages are
regrouped as huge PMD.
This set (plus a few THP patches) is also available at
https://github.com/liu-song-6/linux/tree/uprobe-thp
This patch (of 6):
Move memcmp_pages() to mm/util.c and pages_identical() to mm.h, so that we
can use them in other files.
Link: http://lkml.kernel.org/r/20190815164525.1848545-2-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <matthew.wilcox@oracle.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration. For example the below test would
run into premature OOM easily:
$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000
transhuge-stress comes from kernel selftest.
It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.
Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue. The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg. When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.
Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.
[yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai]
Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently shrinker is just allocated and can work when memcg kmem is
enabled. But, THP deferred split shrinker is not slab shrinker, it
doesn't make too much sense to have such shrinker depend on memcg kmem.
It should be able to reclaim THP even though memcg kmem is disabled.
Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker.
When memcg kmem is disabled, just such shrinkers can be called in
shrinking memcg slab.
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A later patch makes THP deferred split shrinker memcg aware, but it needs
page->mem_cgroup information in THP destructor, which is called after
mem_cgroup_uncharge() now.
So move mem_cgroup_uncharge() from __page_cache_release() to compound page
destructor, which is called by both THP and other compound pages except
HugeTLB. And call it in __put_single_page() for single order page.
Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make deferred split shrinker memcg aware", v6.
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration. For example the below test would
run into premature OOM easily:
$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000
transhuge-stress comes from kernel selftest.
It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.
Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue. The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg. When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.
Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.
Make deferred split shrinker not depend on memcg kmem since it is not
slab. It doesn't make sense to not shrink THP even though memcg kmem is
disabled.
With the above change the test demonstrated above doesn't trigger OOM even
though with cgroup.memory=nokmem.
This patch (of 4):
Put split_queue, split_queue_lock and split_queue_len into a struct in
order to reduce code duplication when we convert deferred_split to memcg
aware in the later patches.
Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In previous patch, an application could put part of its text section in
THP via madvise(). These THPs will be protected from writes when the
application is still running (TXTBSY). However, after the application
exits, the file is available for writes.
This patch avoids writes to file THP by dropping page cache for the file
when the file is open for write. A new counter nr_thps is added to struct
address_space. In do_dentry_open(), if the file is open for write and
nr_thps is non-zero, we drop page cache for the whole file.
Link: http://lkml.kernel.org/r/20190801184244.3169074-8-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is (hopefully) the first step to enable THP for non-shmem
filesystems.
This patch enables an application to put part of its text sections to THP
via madvise, for example:
madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE);
We tried to reuse the logic for THP on tmpfs.
Currently, write is not supported for non-shmem THP. khugepaged will only
process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests
(see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is
execve(). This requirement limits non-shmem THP to text sections.
The next patch will handle writes, which would only happen when the all
the vmas with VM_DENYWRITE are unmapped.
An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this
feature.
[songliubraving@fb.com: fix build without CONFIG_SHMEM]
Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com
[songliubraving@fb.com: fix double unlock in collapse_file()]
Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com
Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Next patch will add khugepaged support of non-shmem files. This patch
renames these two functions to reflect the new functionality:
collapse_shmem() => collapse_file()
khugepaged_scan_shmem() => khugepaged_scan_file()
Link: http://lkml.kernel.org/r/20190801184244.3169074-6-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for non-shmem THP, this patch adds a few stats and exposes
them in /proc/meminfo, /sys/bus/node/devices/<node>/meminfo, and
/proc/<pid>/task/<tid>/smaps.
This patch is mostly a rewrite of Kirill A. Shutemov's earlier version:
https://lkml.kernel.org/r/20170126115819.58875-5-kirill.shutemov@linux.intel.com/
Link: http://lkml.kernel.org/r/20190801184244.3169074-5-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With THP, current check of offset:
VM_BUG_ON_PAGE(page->index != offset, page);
is no longer accurate. Update it to:
VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
Link: http://lkml.kernel.org/r/20190801184244.3169074-4-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to previous patch, pagecache_get_page() avoids race condition with
truncate by checking page->mapping == mapping. This does not work for
compound pages. This patch let it check compound_head(page)->mapping
instead.
Link: http://lkml.kernel.org/r/20190801184244.3169074-3-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Enable THP for text section of non-shmem files", v10;
This patchset follows up discussion at LSF/MM 2019. The motivation is to
put text section of an application in THP, and thus reduces iTLB miss rate
and improves performance. Both Facebook and Oracle showed strong
interests to this feature.
To make reviews easier, this set aims a mininal valid product. Current
version of the work does not have any changes to file system specific
code. This comes with some limitations (discussed later).
This set enables an application to "hugify" its text section by simply
running something like:
madvise(0x600000, 0x80000, MADV_HUGEPAGE);
Before this call, the /proc/<pid>/maps looks like:
00400000-074d0000 r-xp 00000000 00:27 2006927 app
After this call, part of the text section is split out and mapped to
THP:
00400000-00425000 r-xp 00000000 00:27 2006927 app
00600000-00e00000 r-xp 00200000 00:27 2006927 app <<< on THP
00e00000-074d0000 r-xp 00a00000 00:27 2006927 app
Limitations:
1. This only works for text section (vma with VM_DENYWRITE).
2. Original limitation #2 is removed in v3.
We gated this feature with an experimental config, READ_ONLY_THP_FOR_FS.
Once we get better support on the write path, we can remove the config and
enable it by default.
Tested cases:
1. Tested with btrfs and ext4.
2. Tested with real work application (memcache like caching service).
3. Tested with "THP aware uprobe":
https://patchwork.kernel.org/project/linux-mm/list/?series=131339
This patch (of 7):
Currently, filemap_fault() avoids race condition with truncate by checking
page->mapping == mapping. This does not work for compound pages. This
patch let it check compound_head(page)->mapping instead.
Link: http://lkml.kernel.org/r/20190801184244.3169074-2-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocating hugetlbfs pool pages via /proc/sys/vm/nr_hugepages, the
pages will be interleaved between all nodes of the system. If nodes are
not equal, it is quite possible for one node to fill up before the others.
When this happens, the code still attempts to allocate pages from the
full node. This results in calls to direct reclaim and compaction which
slow things down considerably.
When allocating pool pages, note the state of the previous allocation for
each node. If previous allocation failed, do not use the aggressive retry
algorithm on successive attempts. The allocation will still succeed if
there is memory available, but it will not try as hard to free up memory.
Link: http://lkml.kernel.org/r/20190806014744.15446-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Kravetz reports that "hugetlb allocations could stall for minutes or
hours when should_compact_retry() would return true more often then it
should. Specifically, this was in the case where compact_result was
COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being
made."
The problem is that the compaction_withdrawn() test in
should_compact_retry() includes compaction outcomes that are only possible
on low compaction priority, and results in a retry without increasing the
priority. This may result in furter reclaim, and more incomplete
compaction attempts.
With this patch, compaction priority is raised when possible, or
should_compact_retry() returns false.
The COMPACT_SKIPPED result doesn't really fit together with the other
outcomes in compaction_withdrawn(), as that's a result caused by
insufficient order-0 pages, not due to low compaction priority. With this
patch, it is moved to a new compaction_needs_reclaim() function, and for
that outcome we keep the current logic of retrying if it looks like
reclaim will be able to help.
Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit "mm, reclaim: make should_continue_reclaim perform dryrun
detection", closer look at the function shows, that nr_reclaimed == 0
means the function will always return false. And since non-zero
nr_reclaimed implies non_zero nr_scanned, testing nr_scanned serves no
purpose, and so does the testing for __GFP_RETRY_MAYFAIL.
This patch thus cleans up the function to test only !nr_reclaimed upfront,
and remove the __GFP_RETRY_MAYFAIL test and nr_scanned parameter
completely. Comment is also updated, explaining that approximating "full
LRU list has been scanned" with nr_scanned == 0 didn't really work.
Link: http://lkml.kernel.org/r/20190806014744.15446-3-mike.kravetz@oracle.com
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "address hugetlb page allocation stalls", v2.
Allocation of hugetlb pages via sysctl or procfs can stall for minutes or
hours. A simple example on a two node system with 8GB of memory is as
follows:
echo 4096 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages
echo 4096 > /proc/sys/vm/nr_hugepages
Obviously, both allocation attempts will fall short of their 8GB goal.
However, one or both of these commands may stall and not be interruptible.
The issues were initially discussed in mail thread [1] and RFC code at
[2].
This series addresses the issues causing the stalls. There are two
distinct fixes, a cleanup, and an optimization. The reclaim patch by
Hillf and compaction patch by Vlasitmil address corner cases in their
respective areas. hugetlb page allocation could stall due to either of
these issues. Vlasitmil added a cleanup patch after Hillf's
modifications. The hugetlb patch by Mike is an optimization suggested
during the debug and development process.
[1] http://lkml.kernel.org/r/d38a095e-dc39-7e82-bb76-2c9247929f07@oracle.com
[2] http://lkml.kernel.org/r/20190724175014.9935-1-mike.kravetz@oracle.com
This patch (of 4):
Address the issue of should_continue_reclaim returning true too often for
__GFP_RETRY_MAYFAIL attempts when !nr_reclaimed and nr_scanned. This was
observed during hugetlb page allocation causing stalls for minutes or
hours.
We can stop reclaiming pages if compaction reports it can make a progress.
There might be side-effects for other high-order allocations that would
potentially benefit from reclaiming more before compaction so that they
would be faster and less likely to stall. However, the consequences of
premature/over-reclaim are considered worse.
We can also bail out of reclaiming pages if we know that there are not
enough inactive lru pages left to satisfy the costly allocation.
We can give up reclaiming pages too if we see dryrun occur, with the
certainty of plenty of inactive pages. IOW with dryrun detected, we are
sure we have reclaimed as many pages as we could.
Link: http://lkml.kernel.org/r/20190806014744.15446-2-mike.kravetz@oracle.com
Signed-off-by: Hillf Danton <hdanton@sina.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cgroup v1 memcg controller has exposed a dedicated kmem limit to users
which turned out to be really a bad idea because there are paths which
cannot shrink the kernel memory usage enough to get below the limit (e.g.
because the accounted memory is not reclaimable). There are cases when
the failure is even not allowed (e.g. __GFP_NOFAIL). This means that the
kmem limit is in excess to the hard limit without any way to shrink and
thus completely useless. OOM killer cannot be invoked to handle the
situation because that would lead to a premature oom killing.
As a result many places might see ENOMEM returning from kmalloc and result
in unexpected errors. E.g. a global OOM killer when there is a lot of
free memory because ENOMEM is translated into VM_FAULT_OOM in #PF path and
therefore pagefault_out_of_memory would result in OOM killer.
Please note that the kernel memory is still accounted to the overall limit
along with the user memory so removing the kmem specific limit should
still allow to contain kernel memory consumption. Unlike the kmem one,
though, it invokes memory reclaim and targeted memcg oom killing if
necessary.
Start the deprecation process by crying to the kernel log. Let's see
whether there are relevant usecases and simply return to EINVAL in the
second stage if nobody complains in few releases.
[akpm@linux-foundation.org: tweak documentation text]
Link: http://lkml.kernel.org/r/20190911151612.GI4023@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_id_get() was introduced in commit 73f576c04b ("mm:memcontrol:
fix cgroup creation failure after many small jobs").
Later, it no longer has any user since the commits,
1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
58fa2a5512 ("mm: memcontrol: add sanity checks for memcg->id.ref on get/put")
so safe to remove it.
Link: http://lkml.kernel.org/r/1568648453-5482-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
constrained_alloc() calculates the size of the oom domain by using
node_spanned_pages which is incorrect because this is the full range of
the physical memory range that the numa node occupies rather than the
memory that backs that range which is represented by node_present_pages.
Sparsely populated nodes (e.g. after memory hot remove or simply sparse
due to memory layout) can have really a large difference between the two.
This shouldn't really cause any real user observable problems because the
oom calculates a ratio against totalpages and used memory cannot exceed
present pages but it is confusing and wrong from code point of view.
Link: http://lkml.kernel.org/r/20190829163443.899-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ac311a14c6 ("oom: decouple mems_allowed from
oom_unkillable_task") changed has_intersects_mems_allowed() to
oom_cpuset_eligible(), but didn't change the comment.
Link: http://lkml.kernel.org/r/1566959929-10638-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For an OOM event: print oom_score_adj value for the OOM Killed process to
document what the oom score adjust value was at the time the process was
OOM Killed. The adjustment value can be set by user code and it affects
the resulting oom_score so it is used to influence kill process selection.
When eligible tasks are not printed (sysctl oom_dump_tasks = 0) printing
this value is the only documentation of the value for the process being
killed. Having this value on the Killed process message is useful to
document if a miscconfiguration occurred or to confirm that the
oom_score_adj configuration applies as expected.
An example which illustates both misconfiguration and validation that the
oom_score_adj was applied as expected is:
Aug 14 23:00:02 testserver kernel: Out of memory: Killed process 2692
(systemd-udevd) total-vm:1056800kB, anon-rss:1052760kB, file-rss:4kB,
shmem-rss:0kB pgtables:22kB oom_score_adj:1000
The systemd-udevd is a critical system application that should have an
oom_score_adj of -1000. It was miconfigured to have a adjustment of 1000
making it a highly favored OOM kill target process. The output documents
both the misconfiguration and the fact that the process was correctly
targeted by OOM due to the miconfiguration. This can be quite helpful for
triage and problem determination.
The addition of the pgtables_bytes shows page table usage by the process
and is a useful measure of the memory size of the process.
Link: http://lkml.kernel.org/r/20190822173157.1569-1-echron@arista.com
Signed-off-by: Edward Chron <echron@arista.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the event of an oom kill, useful information about the killed process
is printed to dmesg. Users, especially system administrators, will find
it useful to immediately see the UID of the process.
We already print uid when dumping eligible tasks so it is not overly hard
to find that information in the oom report. However this information is
unavailable when dumping of eligible tasks is disabled.
In the following example, abuse_the_ram is the name of a program that
attempts to iteratively allocate all available memory until it is stopped
by force.
Current message:
Out of memory: Killed process 35389 (abuse_the_ram)
total-vm:133718232kB, anon-rss:129624980kB, file-rss:0kB,
shmem-rss:0kB
Patched message:
Out of memory: Killed process 2739 (abuse_the_ram),
total-vm:133880028kB, anon-rss:129754836kB, file-rss:0kB,
shmem-rss:0kB, UID:0
[akpm@linux-foundation.org: s/UID %d/UID:%u/ in printk]
Link: http://lkml.kernel.org/r/1560362273-534-1-git-send-email-jsavitz@redhat.com
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1) task_nodes = cpuset_mems_allowed(current);
-> cpuset_mems_allowed() guaranteed to return some non-empty
subset of node_states[N_MEMORY].
2) nodes_and(*new, *new, task_nodes);
-> after nodes_and(), the 'new' should be empty or appropriate
nodemask(online node and with memory).
After 1) and 2), we could remove unnecessary check whether the 'new'
AND node_states[N_MEMORY] is empty.
Link: http://lkml.kernel.org/r/20190806023634.55356-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
total_{migrate,free}_scanned will be added to COMPACTMIGRATE_SCANNED and
COMPACTFREE_SCANNED in compact_zone(). We should clear them before
scanning a new zone. In the proc triggered compaction, we forgot clearing
them.
[laoar.shao@gmail.com: introduce a helper compact_zone_counters_init()]
Link: http://lkml.kernel.org/r/1563869295-25748-1-git-send-email-laoar.shao@gmail.com
[akpm@linux-foundation.org: expand compact_zone_counters_init() into its single callsite, per mhocko]
[vbabka@suse.cz: squash compact_zone() list_head init as well]
Link: http://lkml.kernel.org/r/1fb6f7da-f776-9e42-22f8-bbb79b030b98@suse.cz
[akpm@linux-foundation.org: kcompactd_do_work(): avoid unnecessary initialization of cc.zone]
Link: http://lkml.kernel.org/r/1563789275-9639-1-git-send-email-laoar.shao@gmail.com
Fixes: 7f354a548d ("mm, compaction: add vmstats for kcompactd work")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there is a leak in init_z3fold_page() -- it allocates handles
from kmem cache even for headless pages, but then they are never used and
never freed, so eventually kmem cache may get exhausted. This patch
provides a fix for that.
Link: http://lkml.kernel.org/r/20190917185352.44cf285d3ebd9e64548de5de@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reported-by: Markus Linnala <markus.linnala@gmail.com>
Tested-by: Markus Linnala <markus.linnala@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When compiling a kernel with W=1, there are several of those warnings due
to arm64 overriding a field on purpose. Just disable those warnings for
both GCC and Clang of this file, so it will help dig "gems" hidden in the
W=1 warnings by reducing some noises.
mm/init-mm.c:39:2: warning: initializer overrides prior initialization
of this subobject [-Winitializer-overrides]
INIT_MM_CONTEXT(init_mm)
^~~~~~~~~~~~~~~~~~~~~~~~
./arch/arm64/include/asm/mmu.h:133:9: note: expanded from macro
'INIT_MM_CONTEXT'
.pgd = init_pg_dir,
^~~~~~~~~~~
mm/init-mm.c:30:10: note: previous initialization is here
.pgd = swapper_pg_dir,
^~~~~~~~~~~~~~
Note: there is a side project trying to support explicitly allowing
specific initializer overrides in Clang, but there is no guarantee it
will happen or not.
https://github.com/ClangBuiltLinux/linux/issues/639
Link: http://lkml.kernel.org/r/1566920867-27453-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace open-coded bitmap array initialization of init_mm.cpu_bitmask with
neat CPU_BITS_NONE macro.
And, since init_mm.cpu_bitmask is statically set to zero, there is no way
to clear it again in start_kernel().
Link: http://lkml.kernel.org/r/1565703815-8584-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If !area->pages statement is true where memory allocation fails, area is
freed.
In this case 'area->pages = pages' should not executed. So move
'area->pages = pages' after if statement.
[akpm@linux-foundation.org: give area->pages the same treatment]
Link: http://lkml.kernel.org/r/20190830035716.GA190684@LGEARND20B15
Signed-off-by: Austin Kim <austindh.kim@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Roman Penyaev <rpenyaev@suse.de>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Objective
---------
The current implementation of struct vmap_area wasted space.
After applying this commit, sizeof(struct vmap_area) has been
reduced from 11 words to 8 words.
Description
-----------
1) Pack "subtree_max_size", "vm" and "purge_list". This is no problem
because
A) "subtree_max_size" is only used when vmap_area is in "free" tree
B) "vm" is only used when vmap_area is in "busy" tree
C) "purge_list" is only used when vmap_area is in vmap_purge_list
2) Eliminate "flags".
;Since only one flag VM_VM_AREA is being used, and the same thing can be
done by judging whether "vm" is NULL, then the "flags" can be eliminated.
Link: http://lkml.kernel.org/r/20190716152656.12255-3-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Suggested-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The busy tree can be quite big, even though the area is freed or unmapped
it still stays there until "purge" logic removes it.
1) Optimize and reduce the size of "busy" tree by removing a node from
it right away as soon as user triggers free paths. It is possible to
do so, because the allocation is done using another augmented tree.
The vmalloc test driver shows the difference, for example the
"fix_size_alloc_test" is ~11% better comparing with default configuration:
sudo ./test_vmalloc.sh performance
<default>
Summary: fix_size_alloc_test loops: 1000000 avg: 993985 usec
Summary: full_fit_alloc_test loops: 1000000 avg: 973554 usec
Summary: long_busy_list_alloc_test loops: 1000000 avg: 12617652 usec
<default>
<this patch>
Summary: fix_size_alloc_test loops: 1000000 avg: 882263 usec
Summary: full_fit_alloc_test loops: 1000000 avg: 973407 usec
Summary: long_busy_list_alloc_test loops: 1000000 avg: 12593929 usec
<this patch>
2) Since the busy tree now contains allocated areas only and does not
interfere with lazily free nodes, introduce the new function
show_purge_info() that dumps "unpurged" areas that is propagated
through "/proc/vmallocinfo".
3) Eliminate VM_LAZY_FREE flag.
Link: http://lkml.kernel.org/r/20190716152656.12255-2-lpf.vector@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no possibility for memmap to be NULL in the current codebase.
This check was added in commit 95a4774d05 ("memory-hotplug: update
mce_bad_pages when removing the memory") where memmap was originally
inited to NULL, and only conditionally given a value.
The code that could have passed a NULL has been removed by commit
ba72b4c8cf ("mm/sparsemem: support sub-section hotplug"), so there is no
longer a possibility that memmap can be NULL.
Link: http://lkml.kernel.org/r/20190829035151.20975-1-alastair@d-silva.org
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the function written to do it instead.
Link: http://lkml.kernel.org/r/20190827053656.32191-2-alastair@au1.ibm.com
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__pfn_to_section is defined as __nr_to_section(pfn_to_section_nr(pfn)).
Since we already get section_nr, it is not necessary to get mem_section
from start_pfn. By doing so, we reduce one redundant operation.
Link: http://lkml.kernel.org/r/20190809010242.29797-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size argument passed into sparse_buffer_alloc() has already been
aligned with PAGE_SIZE or PMD_SIZE.
If the size after aligned is not power of 2 (e.g. 0x480000), the
PTR_ALIGN() will return wrong value. Use roundup to round sparsemap_buf
up to next multiple of size.
Link: http://lkml.kernel.org/r/20190705114826.28586-1-lecopzer.chen@mediatek.com
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Mark-PK Tsai <Mark-PK.Tsai@mediatek.com>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_buffer_alloc(xsize) gets the size of memory from sparsemap_buf
after being aligned with the size. However, the size is at least
PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION) and usually larger
than PAGE_SIZE.
Also, sparse_buffer_fini() only frees memory between sparsemap_buf and
sparsemap_buf_end, since sparsemap_buf may be changed by PTR_ALIGN()
first, the aligned space before sparsemap_buf is wasted and no one will
touch it.
In our ARM32 platform (without SPARSEMEM_VMEMMAP)
Sparse_buffer_init
Reserve d359c000 - d3e9c000 (9M)
Sparse_buffer_alloc
Alloc d3a00000 - d3E80000 (4.5M)
Sparse_buffer_fini
Free d3e80000 - d3e9c000 (~=100k)
The reserved memory between d359c000 - d3a00000 (~=4.4M) is unfreed.
In ARM64 platform (with SPARSEMEM_VMEMMAP)
sparse_buffer_init
Reserve ffffffc07d623000 - ffffffc07f623000 (32M)
Sparse_buffer_alloc
Alloc ffffffc07d800000 - ffffffc07f600000 (30M)
Sparse_buffer_fini
Free ffffffc07f600000 - ffffffc07f623000 (140K)
The reserved memory between ffffffc07d623000 - ffffffc07d800000
(~=1.9M) is unfreed.
Let's explicit free redundant aligned memory.
[arnd@arndb.de: mark sparse_buffer_free as __meminit]
Link: http://lkml.kernel.org/r/20190709185528.3251709-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20190705114730.28534-1-lecopzer.chen@mediatek.com
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Mark-PK Tsai <Mark-PK.Tsai@mediatek.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_system_ram_range() will fail with -EINVAL in case
online_pages_range() was never called (== no resource applicable in the
range). Otherwise, we will always call online_pages_range() with nr_pages
> 0 and, therefore, have online_pages > 0.
Remove that special handling.
Link: http://lkml.kernel.org/r/20190814154109.3448-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a9cd410a3d ("mm/page_alloc.c: memory hotplug: free pages as
higher order") assumed that any PFN we get via memory resources is aligned
to to MAX_ORDER - 1, I am not convinced that is always true. Let's play
safe, check the alignment and fallback to single pages.
akpm: warn in this situation so we get to find out if and why this ever
occurs.
[akpm@linux-foundation.org: add WARN_ON_ONCE()]
Link: http://lkml.kernel.org/r/20190814154109.3448-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
online_pages always corresponds to nr_pages. Simplify the code, getting
rid of online_pages_blocks(). Add some comments.
Link: http://lkml.kernel.org/r/20190814154109.3448-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_pfn_range_to_zone() will set all pages to PG_reserved via
memmap_init_zone(). The only way a page could no longer be reserved would
be if a MEM_GOING_ONLINE notifier would clear PG_reserved - which is not
done (the online_page callback is used for that purpose by e.g., Hyper-V
instead). walk_system_ram_range() will never call online_pages_range()
with duplicate PFNs, so drop the PageReserved() check.
This seems to be a leftover from ancient times where the memmap was
initialized when adding memory and we wanted to check for already onlined
memory.
Link: http://lkml.kernel.org/r/20190814154109.3448-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When offlining a node in try_offline_node(), pgdat is not released. So
that pgdat could be reused in hotadd_new_pgdat(). While we reallocate
pgdat->per_cpu_nodestats if this pgdat is reused.
This patch prevents the memory leak by just allocating per_cpu_nodestats
when it is a new pgdat.
Link: http://lkml.kernel.org/r/20190813020608.10194-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memory block spans the same amount of sections/pages/bytes. The size
is determined before the first memory block is created. No need to store
what we can easily calculate - and the calculations even look simpler now.
Michal brought up the idea of variable-sized memory blocks. However, if
we ever implement something like this, we will need an API compatibility
switch and reworks at various places (most code assumes a fixed memory
block size). So let's cleanup what we have right now.
While at it, fix the variable naming in register_mem_sect_under_node() -
we no longer talk about a single section.
Link: http://lkml.kernel.org/r/20190809110200.2746-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's remove this indirection. We need the zone in the caller either way,
so let's just detect it there. Add some documentation for
move_pfn_range_to_zone() instead.
[akpm@linux-foundation.org: restore newline, per David]
Link: http://lkml.kernel.org/r/20190724142324.3686-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using %px to show the actual address in print_bad_pte()
to help us to debug issue.
Link: http://lkml.kernel.org/r/20190831011816.141002-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: remove quicklist page table caches".
A while ago Nicholas proposed to remove quicklist page table caches [1].
I've rebased his patch on the curren upstream and switched ia64 and sh to
use generic versions of PTE allocation.
[1] https://lore.kernel.org/linux-mm/20190711030339.20892-1-npiggin@gmail.com
This patch (of 3):
Remove page table allocator "quicklists". These have been around for a
long time, but have not got much traction in the last decade and are only
used on ia64 and sh architectures.
The numbers in the initial commit look interesting but probably don't
apply anymore. If anybody wants to resurrect this it's in the git
history, but it's unhelpful to have this code and divergent allocator
behaviour for minor archs.
Also it might be better to instead make more general improvements to page
allocator if this is still so slow.
Link: http://lkml.kernel.org/r/1565250728-21721-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In our testing (camera recording), Miguel and Wei found
unmap_page_range() takes above 6ms with preemption disabled easily.
When I see that, the reason is it holds page table spinlock during
entire 512 page operation in a PMD. 6.2ms is never trivial for user
experince if RT task couldn't run in the time because it could make
frame drop or glitch audio problem.
I had a time to benchmark it via adding some trace_printk hooks between
pte_offset_map_lock and pte_unmap_unlock in zap_pte_range. The testing
device is 2018 premium mobile device.
I can get 2ms delay rather easily to release 2M(ie, 512 pages) when the
task runs on little core even though it doesn't have any IPI and LRU
lock contention. It's already too heavy.
If I remove activate_page, 35-40% overhead of zap_pte_range is gone so
most of overhead(about 0.7ms) comes from activate_page via
mark_page_accessed. Thus, if there are LRU contention, that 0.7ms could
accumulate up to several ms.
So this patch adds a check for need_resched() in the loop, and a
preemption point if necessary.
Link: http://lkml.kernel.org/r/20190731061440.GC155569@google.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Miguel de Dios <migueldedios@google.com>
Reported-by: Wei Wang <wvw@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since ptent will not be changed after previous assignment of entry, it is
not necessary to do the assignment again.
Link: http://lkml.kernel.org/r/20190708082740.21111-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[11~From: John Hubbard <jhubbard@nvidia.com>
Subject: mm/gup: add make_dirty arg to put_user_pages_dirty_lock()
Patch series "mm/gup: add make_dirty arg to put_user_pages_dirty_lock()",
v3.
There are about 50+ patches in my tree [2], and I'll be sending out the
remaining ones in a few more groups:
* The block/bio related changes (Jerome mostly wrote those, but I've had
to move stuff around extensively, and add a little code)
* mm/ changes
* other subsystem patches
* an RFC that shows the current state of the tracking patch set. That
can only be applied after all call sites are converted, but it's good to
get an early look at it.
This is part a tree-wide conversion, as described in fc1d8e7cca ("mm:
introduce put_user_page*(), placeholder versions").
This patch (of 3):
Provide more capable variation of put_user_pages_dirty_lock(), and delete
put_user_pages_dirty(). This is based on the following:
1. Lots of call sites become simpler if a bool is passed into
put_user_page*(), instead of making the call site choose which
put_user_page*() variant to call.
2. Christoph Hellwig's observation that set_page_dirty_lock() is
usually correct, and set_page_dirty() is usually a bug, or at least
questionable, within a put_user_page*() calling chain.
This leads to the following API choices:
* put_user_pages_dirty_lock(page, npages, make_dirty)
* There is no put_user_pages_dirty(). You have to
hand code that, in the rare case that it's
required.
[jhubbard@nvidia.com: remove unused variable in siw_free_plist()]
Link: http://lkml.kernel.org/r/20190729074306.10368-1-jhubbard@nvidia.com
Link: http://lkml.kernel.org/r/20190724044537.10458-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of our services observed a high rate of cgroup OOM kills in the
presence of large amounts of clean cache. Debugging showed that the
culprit is the shared cgroup iteration in page reclaim.
Under high allocation concurrency, multiple threads enter reclaim at the
same time. Fearing overreclaim when we first switched from the single
global LRU to cgrouped LRU lists, we introduced a shared iteration state
for reclaim invocations - whether 1 or 20 reclaimers are active
concurrently, we only walk the cgroup tree once: the 1st reclaimer
reclaims the first cgroup, the second the second one etc. With more
reclaimers than cgroups, we start another walk from the top.
This sounded reasonable at the time, but the problem is that reclaim
concurrency doesn't scale with allocation concurrency. As reclaim
concurrency increases, the amount of memory individual reclaimers get to
scan gets smaller and smaller. Individual reclaimers may only see one
cgroup per cycle, and that may not have much reclaimable memory. We see
individual reclaimers declare OOM when there is plenty of reclaimable
memory available in cgroups they didn't visit.
This patch does away with the shared iterator, and every reclaimer is
allowed to scan the full cgroup tree and see all of reclaimable memory,
just like it would on a non-cgrouped system. This way, when OOM is
declared, we know that the reclaimer actually had a chance.
To still maintain fairness in reclaim pressure, disallow cgroup reclaim
from bailing out of the tree walk early. Kswapd and regular direct
reclaim already don't bail, so it's not clear why limit reclaim would have
to, especially since it only walks subtrees to begin with.
This change completely eliminates the OOM kills on our service, while
showing no signs of overreclaim - no increased scan rates, %sys time, or
abrupt free memory spikes. I tested across 100 machines that have 64G of
RAM and host about 300 cgroups each.
[ It's possible overreclaim never was a *practical* issue to begin
with - it was simply a concern we had on the mailing lists at the
time, with no real data to back it up. But we have also added more
bail-out conditions deeper inside reclaim (e.g. the proportional
exit in shrink_node_memcg) since. Regardless, now we have data that
suggests full walks are more reliable and scale just fine. ]
Link: http://lkml.kernel.org/r/20190812192316.13615-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 72f0184c8a ("mm, memcg: remove hotplug locking from try_charge")
introduced css_tryget()/css_put() calls in drain_all_stock(), which are
supposed to protect the target memory cgroup from being released during
the mem_cgroup_is_descendant() call.
However, it's not completely safe. In theory, memcg can go away between
reading stock->cached pointer and calling css_tryget().
This can happen if drain_all_stock() races with drain_local_stock()
performed on the remote cpu as a result of a work, scheduled by the
previous invocation of drain_all_stock().
The race is a bit theoretical and there are few chances to trigger it, but
the current code looks a bit confusing, so it makes sense to fix it
anyway. The code looks like as if css_tryget() and css_put() are used to
protect stocks drainage. It's not necessary because stocked pages are
holding references to the cached cgroup. And it obviously won't work for
works, scheduled on other cpus.
So, let's read the stock->cached pointer and evaluate the memory cgroup
inside a rcu read section, and get rid of css_tryget()/css_put() calls.
Link: http://lkml.kernel.org/r/20190802192241.3253165-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're trying to use memory.high to limit workloads, but have found that
containment can frequently fail completely and cause OOM situations
outside of the cgroup. This happens especially with swap space -- either
when none is configured, or swap is full. These failures often also don't
have enough warning to allow one to react, whether for a human or for a
daemon monitoring PSI.
Here is output from a simple program showing how long it takes in usec
(column 2) to allocate a megabyte of anonymous memory (column 1) when a
cgroup is already beyond its memory high setting, and no swap is
available:
[root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
> --wait -t timeout 300 /root/mdf
[...]
95 1035
96 1038
97 1000
98 1036
99 1048
100 1590
101 1968
102 1776
103 1863
104 1757
105 1921
106 1893
107 1760
108 1748
109 1843
110 1716
111 1924
112 1776
113 1831
114 1766
115 1836
116 1588
117 1912
118 1802
119 1857
120 1731
[...]
[System OOM in 2-3 seconds]
The delay does go up extremely marginally past the 100MB memory.high
threshold, as now we spend time scanning before returning to usermode, but
it's nowhere near enough to contain growth. It also doesn't get worse the
more pages you have, since it only considers nr_pages.
The current situation goes against both the expectations of users of
memory.high, and our intentions as cgroup v2 developers. In
cgroup-v2.txt, we claim that we will throttle and only under "extreme
conditions" will memory.high protection be breached. Likewise, cgroup v2
users generally also expect that memory.high should throttle workloads as
they exceed their high threshold. However, as seen above, this isn't
always how it works in practice -- even on banal setups like those with no
swap, or where swap has become exhausted, we can end up with memory.high
being breached and us having no weapons left in our arsenal to combat
runaway growth with, since reclaim is futile.
It's also hard for system monitoring software or users to tell how bad the
situation is, as "high" events for the memcg may in some cases be benign,
and in others be catastrophic. The current status quo is that we fail
containment in a way that doesn't provide any advance warning that things
are about to go horribly wrong (for example, we are about to invoke the
kernel OOM killer).
This patch introduces explicit throttling when reclaim is failing to keep
memcg size contained at the memory.high setting. It does so by applying
an exponential delay curve derived from the memcg's overage compared to
memory.high. In the normal case where the memcg is either below or only
marginally over its memory.high setting, no throttling will be performed.
This composes well with system health monitoring and remediation, as these
allocator delays are factored into PSI's memory pressure calculations.
This both creates a mechanism system administrators or applications
consuming the PSI interface to trivially see that the memcg in question is
struggling and use that to make more reasonable decisions, and permits
them enough time to act. Either of these can act with significantly more
nuance than that we can provide using the system OOM killer.
This is a similar idea to memory.oom_control in cgroup v1 which would put
the cgroup to sleep if the threshold was violated, but it's also
significantly improved as it results in visible memory pressure, and also
doesn't schedule indefinitely, which previously made tracing and other
introspection difficult (ie. it's clamped at 2*HZ per allocation through
MEMCG_MAX_HIGH_DELAY_JIFFIES).
Contrast the previous results with a kernel with this patch:
[root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
> --wait -t timeout 300 /root/mdf
[...]
95 1002
96 1000
97 1002
98 1003
99 1000
100 1043
101 84724
102 330628
103 610511
104 1016265
105 1503969
106 2391692
107 2872061
108 3248003
109 4791904
110 5759832
111 6912509
112 8127818
113 9472203
114 12287622
115 12480079
116 14144008
117 15808029
118 16384500
119 16383242
120 16384979
[...]
As you can see, in the normal case, memory allocation takes around 1000
usec. However, as we exceed our memory.high, things start to increase
exponentially, but fairly leniently at first. Our first megabyte over
memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the
next is almost an entire second. This gets worse until we reach our
eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte.
However, this is still making forward progress, so permits tracing or
further analysis with programs like GDB.
We use an exponential curve for our delay penalty for a few reasons:
1. We run mem_cgroup_handle_over_high to potentially do reclaim after
we've already performed allocations, which means that temporarily
going over memory.high by a small amount may be perfectly legitimate,
even for compliant workloads. We don't want to unduly penalise such
cases.
2. An exponential curve (as opposed to a static or linear delay) allows
ramping up memory pressure stats more gradually, which can be useful
to work out that you have set memory.high too low, without destroying
application performance entirely.
This patch expands on earlier work by Johannes Weiner. Thanks!
[akpm@linux-foundation.org: fix max() warning]
[akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit]
[akpm@linux-foundation.org: fix it even more]
[chris@chrisdown.name: fix 64-bit divide even more]
Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent Huge Pages are currently stored in i_pages as pointers to
consecutive subpages. This patch changes that to storing consecutive
pointers to the head page in preparation for storing huge pages more
efficiently in i_pages.
Large parts of this are "inspired" by Kirill's patch
https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/
Kirill and Huang Ying contributed several fixes.
[willy@infradead.org: use compound_nr, squish uninit-var warning]
Link: http://lkml.kernel.org/r/20190731210400.7419-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Kirill Shutemov <kirill@shutemov.name>
Reviewed-by: Song Liu <songliubraving@fb.com>
Tested-by: Song Liu <songliubraving@fb.com>
Tested-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Tested-by: Qian Cai <cai@lca.pw>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This actually checks that writeback is needed or in progress.
Link: http://lkml.kernel.org/r/156378817069.1087.1302816672037672488.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Functions like filemap_write_and_wait_range() should do nothing if inode
has no dirty pages or pages currently under writeback. But they anyway
construct struct writeback_control and this does some atomic operations if
CONFIG_CGROUP_WRITEBACK=y - on fast path it locks inode->i_lock and
updates state of writeback ownership, on slow path might be more work.
Current this path is safely avoided only when inode mapping has no pages.
For example generic_file_read_iter() calls filemap_write_and_wait_range()
at each O_DIRECT read - pretty hot path.
This patch skips starting new writeback if mapping has no dirty tags set.
If writeback is already in progress filemap_write_and_wait_range() will
wait for it.
Link: http://lkml.kernel.org/r/156378816804.1087.8607636317907921438.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The debug_pagealloc functionality is useful to catch buggy page allocator
users that cause e.g. use after free or double free. When page
inconsistency is detected, debugging is often simpler by knowing the call
stack of process that last allocated and freed the page. When page_owner
is also enabled, we record the allocation stack trace, but not freeing.
This patch therefore adds recording of freeing process stack trace to page
owner info, if both page_owner and debug_pagealloc are configured and
enabled. With only page_owner enabled, this info is not useful for the
memory leak debugging use case. dump_page() is adjusted to print the
info. An example result of calling __free_pages() twice may look like
this (note the page last free stack trace):
BUG: Bad page state in process bash pfn:13d8f8
page:ffffc31984f63e00 refcount:-1 mapcount:0 mapping:0000000000000000 index:0x0
flags: 0x1affff800000000()
raw: 01affff800000000 dead000000000100 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 ffffffffffffffff 0000000000000000
page dumped because: nonzero _refcount
page_owner tracks the page as freed
page last allocated via order 0, migratetype Unmovable, gfp_mask 0xcc0(GFP_KERNEL)
prep_new_page+0x143/0x150
get_page_from_freelist+0x289/0x380
__alloc_pages_nodemask+0x13c/0x2d0
khugepaged+0x6e/0xc10
kthread+0xf9/0x130
ret_from_fork+0x3a/0x50
page last free stack trace:
free_pcp_prepare+0x134/0x1e0
free_unref_page+0x18/0x90
khugepaged+0x7b/0xc10
kthread+0xf9/0x130
ret_from_fork+0x3a/0x50
Modules linked in:
CPU: 3 PID: 271 Comm: bash Not tainted 5.3.0-rc4-2.g07a1a73-default+ #57
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x85/0xc0
bad_page.cold+0xba/0xbf
rmqueue_pcplist.isra.0+0x6c5/0x6d0
rmqueue+0x2d/0x810
get_page_from_freelist+0x191/0x380
__alloc_pages_nodemask+0x13c/0x2d0
__get_free_pages+0xd/0x30
__pud_alloc+0x2c/0x110
copy_page_range+0x4f9/0x630
dup_mmap+0x362/0x480
dup_mm+0x68/0x110
copy_process+0x19e1/0x1b40
_do_fork+0x73/0x310
__x64_sys_clone+0x75/0x80
do_syscall_64+0x6e/0x1e0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f10af854a10
...
Link: http://lkml.kernel.org/r/20190820131828.22684-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For debugging purposes it might be useful to keep the owner info even
after page has been freed, and include it in e.g. dump_page() when
detecting a bad page state. For that, change the PAGE_EXT_OWNER flag
meaning to "page owner info has been set at least once" and add new
PAGE_EXT_OWNER_ACTIVE for tracking whether page is supposed to be
currently tracked allocated or free. Adjust dump_page() accordingly,
distinguishing free and allocated pages. In the page_owner debugfs file,
keep printing only allocated pages so that existing scripts are not
confused, and also because free pages are irrelevant for the memory
statistics or leak detection that's the typical use case of the file,
anyway.
Link: http://lkml.kernel.org/r/20190820131828.22684-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "debug_pagealloc improvements through page_owner", v2.
The debug_pagealloc functionality serves a similar purpose on the page
allocator level that slub_debug does on the kmalloc level, which is to
detect bad users. One notable feature that slub_debug has is storing
stack traces of who last allocated and freed the object. On page level we
track allocations via page_owner, but that info is discarded when freeing,
and we don't track freeing at all. This series improves those aspects.
With both debug_pagealloc and page_owner enabled, we can then get bug
reports such as the example in Patch 4.
SLUB debug tracking additionally stores cpu, pid and timestamp. This could
be added later, if deemed useful enough to justify the additional page_ext
structure size.
This patch (of 3):
Currently, page owner info is only recorded for the first page of a
high-order allocation, and copied to tail pages in the event of a split
page. With the plan to keep previous owner info after freeing the page,
it would be benefical to record page owner for each subpage upon
allocation. This increases the overhead for high orders, but that should
be acceptable for a debugging option.
The order stored for each subpage is the order of the whole allocation.
This makes it possible to calculate the "head" pfn and to recognize "tail"
pages (quoted because not all high-order allocations are compound pages
with true head and tail pages). When reading the page_owner debugfs file,
keep skipping the "tail" pages so that stats gathered by existing scripts
don't get inflated.
Link: http://lkml.kernel.org/r/20190820131828.22684-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a cleanup patch that replaces two historical uses of
list_move_tail() with relatively recent add_page_to_lru_list_tail().
Link: http://lkml.kernel.org/r/20190716212436.7137-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make working with compound pages easier", v2.
These three patches add three helpers and convert the appropriate
places to use them.
This patch (of 3):
It's unnecessarily hard to find out the size of a potentially huge page.
Replace 'PAGE_SIZE << compound_order(page)' with page_size(page).
Link: http://lkml.kernel.org/r/20190721104612.19120-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes gcc '-Wunused-but-set-variable' warning:
mm/rmap.c: In function page_mkclean_one:
mm/rmap.c:906:17: warning: variable cstart set but not used [-Wunused-but-set-variable]
It is not used any more since
commit cdb07bdea2 ("mm/rmap.c: remove redundant variable cend")
Link: http://lkml.kernel.org/r/20190724141453.38536-1-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reported-by: Hulk Robot <hulkci@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memory corruption identification at bug report for software tag-based
mode. The report shows whether it is "use-after-free" or "out-of-bound"
error instead of "invalid-access" error. This will make it easier for
programmers to see the memory corruption problem.
We extend the slab to store five old free pointer tag and free backtrace,
we can check if the tagged address is in the slab record and make a good
guess if the object is more like "use-after-free" or "out-of-bound".
therefore every slab memory corruption can be identified whether it's
"use-after-free" or "out-of-bound".
[aryabinin@virtuozzo.com: simplify & clenup code]
Link: https://lkml.kernel.org/r/3318f9d7-a760-3cc8-b700-f06108ae745f@virtuozzo.com]
Link: http://lkml.kernel.org/r/20190821180332.11450-1-aryabinin@virtuozzo.com
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only way to obtain the current memory pool size for a running kernel
is to check the kernel config file which is inconvenient. Record it in
the kernel messages.
[akpm@linux-foundation.org: s/memory pool size/memory pool/available/, per Catalin]
Link: http://lkml.kernel.org/r/1565809631-28933-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently kmemleak uses a static early_log buffer to trace all memory
allocation/freeing before the slab allocator is initialised. Such early
log is replayed during kmemleak_init() to properly initialise the kmemleak
metadata for objects allocated up that point. With a memory pool that
does not rely on the slab allocator, it is possible to skip this early log
entirely.
In order to remove the early logging, consider kmemleak_enabled == 1 by
default while the kmem_cache availability is checked directly on the
object_cache and scan_area_cache variables. The RCU callback is only
invoked after object_cache has been initialised as we wouldn't have any
concurrent list traversal before this.
In order to reduce the number of callbacks before kmemleak is fully
initialised, move the kmemleak_init() call to mm_init().
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: remove WARN_ON(), per Catalin]
Link: http://lkml.kernel.org/r/20190812160642.52134-4-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a memory pool for struct kmemleak_object in case the normal
kmem_cache_alloc() fails under the gfp constraints passed by the caller.
The mem_pool[] array size is currently fixed at 16000.
We are not using the existing mempool kernel API since this requires
the slab allocator to be available (for pool->elements allocation). A
subsequent kmemleak patch will replace the static early log buffer with
the pool allocation introduced here and this functionality is required
to be available before the slab was initialised.
Link: http://lkml.kernel.org/r/20190812160642.52134-3-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: kmemleak: Use a memory pool for kmemleak object
allocations", v3.
Following the discussions on v2 of this patch(set) [1], this series takes
slightly different approach:
- it implements its own simple memory pool that does not rely on the
slab allocator
- drops the early log buffer logic entirely since it can now allocate
metadata from the memory pool directly before kmemleak is fully
initialised
- CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option is renamed to
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE
- moves the kmemleak_init() call earlier (mm_init())
- to avoid a separate memory pool for struct scan_area, it makes the
tool robust when such allocations fail as scan areas are rather an
optimisation
[1] http://lkml.kernel.org/r/20190727132334.9184-1-catalin.marinas@arm.com
This patch (of 3):
Object scan areas are an optimisation aimed to decrease the false
positives and slightly improve the scanning time of large objects known to
only have a few specific pointers. If a struct scan_area fails to
allocate, kmemleak can still function normally by scanning the full
object.
Introduce an OBJECT_FULL_SCAN flag and mark objects as such when scan_area
allocation fails.
Link: http://lkml.kernel.org/r/20190812160642.52134-2-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tid_to_cpu() and tid_to_event() are only used in note_cmpxchg_failure()
when SLUB_DEBUG_CMPXCHG=y, so when SLUB_DEBUG_CMPXCHG=n by default, Clang
will complain that those unused functions.
Link: http://lkml.kernel.org/r/1568752232-5094-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg_cache_params structure is only embedded into the kmem_cache of
slab and slub allocators as defined in slab_def.h and slub_def.h and used
internally by mm code. There is no needed to expose it in a public
header. So move it from include/linux/slab.h to mm/slab.h. It is just a
refactoring patch with no code change.
In fact both the slub_def.h and slab_def.h should be moved into the mm
directory as well, but that will probably cause many merge conflicts.
Link: http://lkml.kernel.org/r/20190718180827.18758-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, a value of '1" is written to /sys/kernel/slab/<slab>/shrink
file to shrink the slab by flushing out all the per-cpu slabs and free
slabs in partial lists. This can be useful to squeeze out a bit more
memory under extreme condition as well as making the active object counts
in /proc/slabinfo more accurate.
This usually applies only to the root caches, as the SLUB_MEMCG_SYSFS_ON
option is usually not enabled and "slub_memcg_sysfs=1" not set. Even if
memcg sysfs is turned on, it is too cumbersome and impractical to manage
all those per-memcg sysfs files in a real production system.
So there is no practical way to shrink memcg caches. Fix this by enabling
a proper write to the shrink sysfs file of the root cache to scan all the
available memcg caches and shrink them as well. For a non-root memcg
cache (when SLUB_MEMCG_SYSFS_ON or slub_memcg_sysfs is on), only that
cache will be shrunk when written.
On a 2-socket 64-core 256-thread arm64 system with 64k page after
a parallel kernel build, the the amount of memory occupied by slabs
before shrinking slabs were:
# grep task_struct /proc/slabinfo
task_struct 53137 53192 4288 61 4 : tunables 0 0
0 : slabdata 872 872 0
# grep "^S[lRU]" /proc/meminfo
Slab: 3936832 kB
SReclaimable: 399104 kB
SUnreclaim: 3537728 kB
After shrinking slabs (by echoing "1" to all shrink files):
# grep "^S[lRU]" /proc/meminfo
Slab: 1356288 kB
SReclaimable: 263296 kB
SUnreclaim: 1092992 kB
# grep task_struct /proc/slabinfo
task_struct 2764 6832 4288 61 4 : tunables 0 0
0 : slabdata 112 112 0
Link: http://lkml.kernel.org/r/20190723151445.7385-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
z3fold_page_reclaim()'s retry mechanism is broken: on a second iteration
it will have zhdr from the first one so that zhdr is no longer in line
with struct page. That leads to crashes when the system is stressed.
Fix that by moving zhdr assignment up.
While at it, protect against using already freed handles by using own
local slots structure in z3fold_page_reclaim().
Link: http://lkml.kernel.org/r/20190908162919.830388dc7404d1e2c80f4095@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reported-by: Markus Linnala <markus.linnala@gmail.com>
Reported-by: Chris Murphy <bugzilla@colorremedies.com>
Reported-by: Agustin Dall'Alba <agustin@dallalba.com.ar>
Cc: "Maciej S. Szmigiero" <mail@maciej.szmigiero.name>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the original commit applied, z3fold_zpool_destroy() may get blocked
on wait_event() for indefinite time. Revert this commit for the time
being to get rid of this problem since the issue the original commit
addresses is less severe.
Link: http://lkml.kernel.org/r/20190910123142.7a9c8d2de4d0acbc0977c602@gmail.com
Fixes: d776aaa989 ("mm/z3fold.c: fix race between migration and destruction")
Reported-by: Agustín Dall'Alba <agustin@dallalba.com.ar>
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a cleanup
to the page walker API and a few memremap related changes round out the
series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of drivers by
using a refcount get/put attachment idiom and remove the convoluted
mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its only
user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without providing
a struct device
- Make walk_page_range() and related use a constant structure for function
pointers
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
=FRGg
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
- add dma-mapping and block layer helpers to take care of IOMMU
merging for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask (me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl2CSucLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPfrhAAgXZA/EdFPvkkCoDrmgtf3XkudX9gajeCd9g4NZy6
ZBQElTVvm4S0sQj7IXgALnMumDMbbTibW5SQLX5GwQDe+XXBpZ8ajpAnJAXc8a5T
qaFQ4SInr4CgBZf9nZKDkbSBZ1Tu3AQm1c0QI8riRCkrVTuX4L06xpCef4Yh4mgO
rwWEjIioYpQiKZMmu98riXh3ZNfFG3mVJRhKt8B6XJbBgnUnjDOPYGgaUwp6CU20
tFBKL2GaaV0vdLJ5wYhIGXT4DJ8tp9T5n3IYGZv1Ux889RaZEHlCrMxzelYeDbCT
KhZbhcSECGnddsh73t/UX7/KhytuqnfKa9n+Xo6AWuA47xO4c36quOOcTk9M0vE5
TfGDmewgL6WIv4lzokpRn5EkfDhyL33j8eYJrJ8e0ldcOhSQIFk4ciXnf2stWi6O
JrlzzzSid+zXxu48iTfoPdnMr7psTpiMvvRvKfEeMp2FX9Fg6EdMzJYLTEl+COHB
0WwNacZmY3P01+b5EZXEgqKEZevIIdmPKbyM9rPtTjz8BjBwkABHTpN3fWbVBf7/
Ax6OPYyW40xp1fnJuzn89m3pdOxn88FpDdOaeLz892Zd+Qpnro1ayulnFspVtqGM
mGbzA9whILvXNRpWBSQrvr2IjqMRjbBxX3BVACl3MMpOChgkpp5iANNfSDjCftSF
Zu8=
=/wGv
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- add dma-mapping and block layer helpers to take care of IOMMU merging
for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask
(me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
* tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping: (41 commits)
mmc: renesas_sdhi_internal_dmac: Add MMC_CAP2_MERGE_CAPABLE
mmc: queue: Fix bigger segments usage
arm64: use asm-generic/dma-mapping.h
swiotlb-xen: merge xen_unmap_single into xen_swiotlb_unmap_page
swiotlb-xen: simplify cache maintainance
swiotlb-xen: use the same foreign page check everywhere
swiotlb-xen: remove xen_swiotlb_dma_mmap and xen_swiotlb_dma_get_sgtable
xen: remove the exports for xen_{create,destroy}_contiguous_region
xen/arm: remove xen_dma_ops
xen/arm: simplify dma_cache_maint
xen/arm: use dev_is_dma_coherent
xen/arm: consolidate page-coherent.h
xen/arm: use dma-noncoherent.h calls for xen-swiotlb cache maintainance
arm: remove wrappers for the generic dma remap helpers
dma-mapping: introduce a dma_common_find_pages helper
dma-mapping: always use VM_DMA_COHERENT for generic DMA remap
vmalloc: lift the arm flag for coherent mappings to common code
dma-mapping: provide a better default ->get_required_mask
dma-mapping: remove the dma_declare_coherent_memory export
remoteproc: don't allow modular build
...
Pull misc mount API conversions from Al Viro:
"Conversions to new API for shmem and friends and for mount_mtd()-using
filesystems.
As for the rest of the mount API conversions in -next, some of them
belong in the individual trees (e.g. binderfs one should definitely go
through android folks, after getting redone on top of their changes).
I'm going to drop those and send the rest (trivial ones + stuff ACKed
by maintainers) in a separate series - by that point they are
independent from each other.
Some stuff has already migrated into individual trees (NFS conversion,
for example, or FUSE stuff, etc.); those presumably will go through
the regular merges from corresponding trees."
* 'work.mount2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Make fs_parse() handle fs_param_is_fd-type params better
vfs: Convert ramfs, shmem, tmpfs, devtmpfs, rootfs to use the new mount API
shmem_parse_one(): switch to use of fs_parse()
shmem_parse_options(): take handling a single option into a helper
shmem_parse_options(): don't bother with mpol in separate variable
shmem_parse_options(): use a separate structure to keep the results
make shmem_fill_super() static
make ramfs_fill_super() static
devtmpfs: don't mix {ramfs,shmem}_fill_super() with mount_single()
vfs: Convert squashfs to use the new mount API
mtd: Kill mount_mtd()
vfs: Convert jffs2 to use the new mount API
vfs: Convert cramfs to use the new mount API
vfs: Convert romfs to use the new mount API
vfs: Add a single-or-reconfig keying to vfs_get_super()
- Remove KM_SLEEP/KM_NOSLEEP.
- Ensure that memory buffers for IO are properly sector-aligned to avoid
problems that the block layer doesn't check.
- Make the bmap scrubber more efficient in its record checking.
- Don't crash xfs_db when superblock inode geometry is corrupt.
- Fix btree key helper functions.
- Remove unneeded error returns for things that can't fail.
- Fix buffer logging bugs in repair.
- Clean up iterator return values.
- Speed up directory entry creation.
- Enable allocation of xattr value memory buffer during lookup.
- Fix readahead racing with truncate/punch hole.
- Other minor cleanups.
- Fix one AGI/AGF deadlock with RENAME_WHITEOUT.
- More BUG -> WARN whackamole.
- Fix various problems with the log failing to advance under certain
circumstances, which results in stalls during mount.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl1yhwsACgkQ+H93GTRK
tOtTig//fYLgFVz3l6ffCb8WkJkmi7iWOJp3eLzK55+3W0++ThNsMlRTOWH7xCpZ
f+3LEvvm1ILBgf4XVlwUGt2HlLmNZeKYmiOl/jZxCH25KdfILRIyeyacAYf9vIWf
NQr5HOutsa1IfEDCiDwEnxuuVbgC+rN8j7Rlp/PpweXwRYjssqRWnGRgaZchLbyr
JZ40D9J1HLooY/yftKrgnxtfL4rmAhPoGdX3DnZmobHYRpFHrY31Ks24w6ogShDu
usczNeShXWlg31B4fVHo/rrVQ0xG77U+w/DTNvrAj0uvAlzvWVVibpaZjZtbhadO
NM0zOG41BY/ExBAHhpg0ieVdYI7wNEftF9gjyT7cXO9soD1mRgH6UKQMCm+o1frF
brtcpgQS2aEyGZaXGBIS23ziT/+LLGcav7LUeo7Rf6yiVoEA+FlsGaymC7l+FGCQ
lcgHdeRkeukdj+GJlmpiedb+Xya2g464CXswW7JtCghdNsypRsI4OdQQ2r8Du+w0
PUwfugv1cMAz99xfSZtSoTa7pimFxb6tHRcoqZVfQCefbKQ0VMJDU/AY7gQ2U3UM
PiFKXgPFo0p4tUvA/9ECTPcMDhMKMv200CGCJKXrokWwHtJ6jrAHb+EobjrfoiyX
+hkGEmzzt3vur7Zt2+YesCH3tZj1UfpsemOlorxYQk3hbsA9HEc=
=TZLp
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.4-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"For this cycle we have the usual pile of cleanups and bug fixes, some
performance improvements for online metadata scrubbing, massive
speedups in the directory entry creation code, some performance
improvement in the file ACL lookup code, a fix for a logging stall
during mount, and fixes for concurrency problems.
It has survived a couple of weeks of xfstests runs and merges cleanly.
Summary:
- Remove KM_SLEEP/KM_NOSLEEP.
- Ensure that memory buffers for IO are properly sector-aligned to
avoid problems that the block layer doesn't check.
- Make the bmap scrubber more efficient in its record checking.
- Don't crash xfs_db when superblock inode geometry is corrupt.
- Fix btree key helper functions.
- Remove unneeded error returns for things that can't fail.
- Fix buffer logging bugs in repair.
- Clean up iterator return values.
- Speed up directory entry creation.
- Enable allocation of xattr value memory buffer during lookup.
- Fix readahead racing with truncate/punch hole.
- Other minor cleanups.
- Fix one AGI/AGF deadlock with RENAME_WHITEOUT.
- More BUG -> WARN whackamole.
- Fix various problems with the log failing to advance under certain
circumstances, which results in stalls during mount"
* tag 'xfs-5.4-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (45 commits)
xfs: push the grant head when the log head moves forward
xfs: push iclog state cleaning into xlog_state_clean_log
xfs: factor iclog state processing out of xlog_state_do_callback()
xfs: factor callbacks out of xlog_state_do_callback()
xfs: factor debug code out of xlog_state_do_callback()
xfs: prevent CIL push holdoff in log recovery
xfs: fix missed wakeup on l_flush_wait
xfs: push the AIL in xlog_grant_head_wake
xfs: Use WARN_ON_ONCE for bailout mount-operation
xfs: Fix deadlock between AGI and AGF with RENAME_WHITEOUT
xfs: define a flags field for the AG geometry ioctl structure
xfs: add a xfs_valid_startblock helper
xfs: remove the unused XFS_ALLOC_USERDATA flag
xfs: cleanup xfs_fsb_to_db
xfs: fix the dax supported check in xfs_ioctl_setattr_dax_invalidate
xfs: Fix stale data exposure when readahead races with hole punch
fs: Export generic_fadvise()
mm: Handle MADV_WILLNEED through vfs_fadvise()
xfs: allocate xattr buffer on demand
xfs: consolidate attribute value copying
...