Mask the IRQ priority through PMR and re-enable IRQs at CPU level,
allowing only higher priority interrupts to be received during interrupt
handling.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add helper functions to access system registers related to interrupt
priorities: PMR and RPR.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We would like to reset the Group-0 Active Priority Registers
at boot time if they are available to us. They would be available
if SCR_EL3.FIQ was not set, but we cannot directly probe this bit,
and short of checking, we may end-up trapping to EL3, and the
firmware may not be please to get such an exception. Yes, this
is dumb.
Instead, let's use PMR to find out if its value gets affected by
SCR_EL3.FIQ being set. We use the fact that when SCR_EL3.FIQ is
set, the LSB of the priority is lost due to the shifting back and
forth of the actual priority. If we read back a 0, we know that
Group0 is unavailable. In case we read a non-zero value, we can
safely reset the AP0Rn register.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Booting a crash kernel while in an interrupt handler is likely
to leave the Active Priority Registers with some state that
is not relevant to the new kernel, and is likely to lead
to erratic behaviours such as interrupts not firing as their
priority is already active.
As a sanity measure, wipe the APRs clean on startup. We make
sure to wipe both group 0 and 1 registers in order to avoid
any surprise.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
A new feature Range Selector (RS) has been added to GIC specification
in order to support more than 16 CPUs at affinity level 0. New fields
are introduced in SGI system registers (ICC_SGI0R_EL1, ICC_SGI1R_EL1
and ICC_ASGI1R_EL1) to relax an artificial limit of 16 at level 0.
- A new RSS field in ICC_CTLR_EL3, ICC_CTLR_EL1 and ICV_CTLR_EL1:
[18] - Range Selector Support (RSS)
0b0 = Targeted SGIs with affinity level 0 values of 0-15 are supported.
0b1 = Targeted SGIs with affinity level 0 values of 0-255 are supported.
- A new RS field in ICC_SGI0R_EL1, ICC_SGI1R_EL1 and ICC_ASGI1R_EL1:
[47:44] - RangeSelector (RS) which group of 16 TargetList[n] field
TargetList[n] represents aff0 value ((RS*16)+n)
When ICC_CTLR_EL3.RSS==0 or ICC_CTLR_EL1.RSS==0, RS is RES0.
- A new RSS field in GICD_TYPER:
[26] - Range Selector Support (RSS)
0b0 = Targeted SGIs with affinity level 0 values of 0-15 are supported.
0b1 = Targeted SGIs with affinity level 0 values of 0-255 are supported.
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When masking/unmasking a doorbell interrupt, it is necessary
to issue an invalidation to the corresponding redistributor.
We use the DirectLPI feature by writting directly to the corresponding
redistributor.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
V{PEND,PROP}BASER being 64bit registers, they need some ad-hoc
accessors on 32bit, specially given that VPENDBASER contains
a Valid bit, making the access a bit convoluted.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Wire-up flush_dcache, readq- and writeq-like gic-v3-its assessors, so
GICv3 ITS gets all it needs to be built and run.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
All architectures:
Move `make kvmconfig` stubs from x86; use 64 bits for debugfs stats.
ARM:
Important fixes for not using an in-kernel irqchip; handle SError
exceptions and present them to guests if appropriate; proxying of GICV
access at EL2 if guest mappings are unsafe; GICv3 on AArch32 on ARMv8;
preparations for GICv3 save/restore, including ABI docs; cleanups and
a bit of optimizations.
MIPS:
A couple of fixes in preparation for supporting MIPS EVA host kernels;
MIPS SMP host & TLB invalidation fixes.
PPC:
Fix the bug which caused guests to falsely report lockups; other minor
fixes; a small optimization.
s390:
Lazy enablement of runtime instrumentation; up to 255 CPUs for nested
guests; rework of machine check deliver; cleanups and fixes.
x86:
IOMMU part of AMD's AVIC for vmexit-less interrupt delivery; Hyper-V
TSC page; per-vcpu tsc_offset in debugfs; accelerated INS/OUTS in
nVMX; cleanups and fixes.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJX9iDrAAoJEED/6hsPKofoOPoIAIUlgojkb9l2l1XVDgsXdgQL
sRVhYSVv7/c8sk9vFImrD5ElOPZd+CEAIqFOu45+NM3cNi7gxip9yftUVs7wI5aC
eDZRWm1E4trDZLe54ZM9ThcqZzZZiELVGMfR1+ZndUycybwyWzafpXYsYyaXp3BW
hyHM3qVkoWO3dxBWFwHIoO/AUJrWYkRHEByKyvlC6KPxSdBPSa5c1AQwMCoE0Mo4
K/xUj4gBn9eMelNhg4Oqu/uh49/q+dtdoP2C+sVM8bSdquD+PmIeOhPFIcuGbGFI
B+oRpUhIuntN39gz8wInJ4/GRSeTuR2faNPxMn4E1i1u4LiuJvipcsOjPfe0a18=
=fZRB
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"All architectures:
- move `make kvmconfig` stubs from x86
- use 64 bits for debugfs stats
ARM:
- Important fixes for not using an in-kernel irqchip
- handle SError exceptions and present them to guests if appropriate
- proxying of GICV access at EL2 if guest mappings are unsafe
- GICv3 on AArch32 on ARMv8
- preparations for GICv3 save/restore, including ABI docs
- cleanups and a bit of optimizations
MIPS:
- A couple of fixes in preparation for supporting MIPS EVA host
kernels
- MIPS SMP host & TLB invalidation fixes
PPC:
- Fix the bug which caused guests to falsely report lockups
- other minor fixes
- a small optimization
s390:
- Lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups and fixes
x86:
- IOMMU part of AMD's AVIC for vmexit-less interrupt delivery
- Hyper-V TSC page
- per-vcpu tsc_offset in debugfs
- accelerated INS/OUTS in nVMX
- cleanups and fixes"
* tag 'kvm-4.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (140 commits)
KVM: MIPS: Drop dubious EntryHi optimisation
KVM: MIPS: Invalidate TLB by regenerating ASIDs
KVM: MIPS: Split kernel/user ASID regeneration
KVM: MIPS: Drop other CPU ASIDs on guest MMU changes
KVM: arm/arm64: vgic: Don't flush/sync without a working vgic
KVM: arm64: Require in-kernel irqchip for PMU support
KVM: PPC: Book3s PR: Allow access to unprivileged MMCR2 register
KVM: PPC: Book3S PR: Support 64kB page size on POWER8E and POWER8NVL
KVM: PPC: Book3S: Remove duplicate setting of the B field in tlbie
KVM: PPC: BookE: Fix a sanity check
KVM: PPC: Book3S HV: Take out virtual core piggybacking code
KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread
ARM: gic-v3: Work around definition of gic_write_bpr1
KVM: nVMX: Fix the NMI IDT-vectoring handling
KVM: VMX: Enable MSR-BASED TPR shadow even if APICv is inactive
KVM: nVMX: Fix reload apic access page warning
kvmconfig: add virtio-gpu to config fragment
config: move x86 kvm_guest.config to a common location
arm64: KVM: Remove duplicating init code for setting VMID
ARM: KVM: Support vgic-v3
...
A new accessor for gic_write_bpr1 is added to arch_gicv3.h in 4.9,
whilst the CP15 accessors are redifined in a separate branch.
This leads to a horrible clash, where the new accessor ends up with
a crap "asm volatile" definition.
Work around this by carrying our own definition of gic_write_bpr1,
creating a small conflict which will be obvious to resolve.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
vgic-v3 save/restore routines are written in such way that they map
arm64 system register naming nicely, but it does not fit to arm
world. To keep virt/kvm/arm/hyp/vgic-v3-sr.c untouched we create a
mapping with a function for each register mapping the 32-bit to the
64-bit accessors.
Please, note that 64-bit wide ICH_LR is split in two 32-bit halves
(ICH_LR and ICH_LRC) accessed independently.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Headers linux/irqchip/arm-gic.v3.h and arch/arm/include/asm/kvm_hyp.h
are included in virt/kvm/arm/hyp/vgic-v3-sr.c and both define macros
called __ACCESS_CP15 and __ACCESS_CP15_64 which obviously creates a
conflict. These macros were introduced independently for GIC and KVM
and, in fact, do the same thing.
As an option we could add prefixes to KVM and GIC version of macros so
they won't clash, but it'd introduce code duplication. Alternatively,
we could keep macro in, say, GIC header and include it in KVM one (or
vice versa), but such dependency would not look nicer.
So we follow arm64 way (it handles this via sysreg.h) and move only
single set of macros to asm/cp15.h
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently, when running on FVP, CPU 0 boots up with its BPR changed from
the reset value. This renders it impossible to (preemptively) prioritize
interrupts on CPU 0.
This is harmless on normal systems since Linux typically does not
support preemptive interrupts. It does however cause problems in
systems with additional changes (such as patches for NMI simulation).
Many thanks to Andrew Thoelke for suggesting the BPR as having the
potential to harm preemption.
Suggested-by: Andrew Thoelke <andrew.thoelke@arm.com>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit 1a1ebd5 ("irqchip/gic-v3: Make sure read from ICC_IAR1_EL1 is
visible on redestributor") fixed the missing barrier on arm64, but
forgot to update the 32bit counterpart, which has the same requirements.
Let's fix it.
Fixes: 1a1ebd5 ("irqchip/gic-v3: Make sure read from ICC_IAR1_EL1 is visible on redestributor")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Both the 32bit and 64bit versions of the GICv3 header file are using
barriers, but neglect to include barrier.h, leading to an interesting
splat in some circumstances.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: Jason Cooper <jason@lakedaemon.net>
Link: http://lkml.kernel.org/r/1449483072-17694-3-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Implement the system and memory-mapped register accesses in
asm/arch_gicv3.h for 32bit architectures.
This patch is a straightforward translation of the arm64 header. 64bit
accesses are done in two times and don't need atomicity: TYPER is
read-only, and the upper-word of IROUTER is always zero on 32bit
architectures.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>