Commit Graph

1590 Commits

Author SHA1 Message Date
Borislav Petkov
191c8137a9 x86/kvm: Implement HWCR support
The hardware configuration register has some useful bits which can be
used by guests. Implement McStatusWrEn which can be used by guests when
injecting MCEs with the in-kernel mce-inject module.

For that, we need to set bit 18 - McStatusWrEn - first, before writing
the MCi_STATUS registers (otherwise we #GP).

Add the required machinery to do so.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: KVM <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:22 +02:00
Liran Alon
6c6a2ab962 KVM: VMX: Nop emulation of MSR_IA32_POWER_CTL
Since commits 668fffa3f8 ("kvm: better MWAIT emulation for guestsâ€)
and 4d5422cea3 ("KVM: X86: Provide a capability to disable MWAIT interceptsâ€),
KVM was modified to allow an admin to configure certain guests to execute
MONITOR/MWAIT inside guest without being intercepted by host.

This is useful in case admin wishes to allocate a dedicated logical
processor for each vCPU thread. Thus, making it safe for guest to
completely control the power-state of the logical processor.

The ability to use this new KVM capability was introduced to QEMU by
commits 6f131f13e68d ("kvm: support -overcommit cpu-pm=on|offâ€) and
2266d4431132 ("i386/cpu: make -cpu host support monitor/mwaitâ€).

However, exposing MONITOR/MWAIT to a Linux guest may cause it's intel_idle
kernel module to execute c1e_promotion_disable() which will attempt to
RDMSR/WRMSR from/to MSR_IA32_POWER_CTL to manipulate the "C1E Enable"
bit. This behaviour was introduced by commit
32e9518005 ("intel_idle: export both C1 and C1Eâ€).

Becuase KVM doesn't emulate this MSR, running KVM with ignore_msrs=0
will cause the above guest behaviour to raise a #GP which will cause
guest to kernel panic.

Therefore, add support for nop emulation of MSR_IA32_POWER_CTL to
avoid #GP in guest in this scenario.

Future commits can optimise emulation further by reflecting guest
MSR changes to host MSR to provide guest with the ability to
fine-tune the dedicated logical processor power-state.

Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:14 +02:00
Luwei Kang
8479e04e7d KVM: x86: Inject PMI for KVM guest
Inject a PMI for KVM guest when Intel PT working
in Host-Guest mode and Guest ToPA entry memory buffer
was completely filled.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30 21:32:13 +02:00
Paolo Bonzini
c110ae578c kvm: move KVM_CAP_NR_MEMSLOTS to common code
All architectures except MIPS were defining it in the same way,
and memory slots are handled entirely by common code so there
is no point in keeping the definition per-architecture.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:08 +02:00
Sean Christopherson
0a62956312 KVM: x86: Inject #GP if guest attempts to set unsupported EFER bits
EFER.LME and EFER.NX are considered reserved if their respective feature
bits are not advertised to the guest.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:07 +02:00
Sean Christopherson
11988499e6 KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes
KVM allows userspace to violate consistency checks related to the
guest's CPUID model to some degree.  Generally speaking, userspace has
carte blanche when it comes to guest state so long as jamming invalid
state won't negatively affect the host.

Currently this is seems to be a non-issue as most of the interesting
EFER checks are missing, e.g. NX and LME, but those will be added
shortly.  Proactively exempt userspace from the CPUID checks so as not
to break userspace.

Note, the efer_reserved_bits check still applies to userspace writes as
that mask reflects the host's capabilities, e.g. KVM shouldn't allow a
guest to run with NX=1 if it has been disabled in the host.

Fixes: d80174745b ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:07 +02:00
Hariprasad Kelam
be43c440eb KVM: x86: fix warning Using plain integer as NULL pointer
Changed passing argument as "0 to NULL" which resolves below sparse warning

arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer

Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Sean Christopherson
b68f3cc7d9 KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.

KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode.  But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.

SMM complicates things as 64-bit CPUs use a different SMRAM save state
area.  KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).

Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM.  If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:38 +02:00
Sean Christopherson
c5833c7a43 KVM: x86: Open code kvm_set_hflags
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson
ed19321fb6 KVM: x86: Load SMRAM in a single shot when leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.

Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm.  Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.

This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:35 +02:00
WANG Chao
1811d979c7 x86/kvm: move kvm_load/put_guest_xcr0 into atomic context
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.

For example:

kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
  vmx_vcpu_run
    vmx_complete_atomic_exit
      kvm_machine_check
        do_machine_check
          do_memory_failure
            memory_failure
              lock_page

In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).

In __switch_to {
     switch_fpu_finish
       copy_kernel_to_fpregs
         XRSTORS

If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.

Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:33 +02:00
Ben Gardon
bc8a3d8925 kvm: mmu: Fix overflow on kvm mmu page limit calculation
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.

Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
	introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:30 +02:00
Sean Christopherson
45def77ebf KVM: x86: update %rip after emulating IO
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h.  Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.

To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace.  Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.

Updating %rip prior to executing to userspace has several drawbacks:

  - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
    fails it will likely yell about the wrong address.
  - Single step exits to userspace for are effectively dropped as
    KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
  - Behavior of PIO emulation is different depending on whether it
    goes down the fast path or the slow path.

Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot.  For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.

All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another.  For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip.  Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.

Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.

Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:04 +01:00
Xiaoyao Li
2bdb76c015 kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.

Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:01 +01:00
Sean Christopherson
0cf9135b77 KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES.  Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).

Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.

Fixes: 1eaafe91a0 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:00 +01:00
Wei Yang
4d66623cfb KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
  non-zero.

* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
  never return zero.

Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:19 +01:00
Sean Christopherson
7390de1e99 Revert "KVM: x86: use the fast way to invalidate all pages"
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all().
Flushing all shadow entries is only done during VM teardown, i.e.
kvm_arch_flush_shadow_all() is only called when the associated MM struct
is being released or when the VM instance is being freed.

Although the performance of teardown itself isn't critical, KVM should
still voluntarily schedule to play nice with the rest of the kernel;
but that can be done without the fast invalidate mechanism in a future
patch.

This reverts commit 6ca18b6950.

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:45 +01:00
Sean Christopherson
52d5dedc79 Revert "KVM: MMU: reclaim the zapped-obsolete page first"
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].

This reverts commit 365c886860.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:42 +01:00
Sean Christopherson
152482580a KVM: Call kvm_arch_memslots_updated() before updating memslots
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound.  x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely.  kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.

Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots.  Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.

Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:32 +01:00
Ben Gardon
254272ce65 kvm: x86: Add memcg accounting to KVM allocations
There are many KVM kernel memory allocations which are tied to the life of
the VM process and should be charged to the VM process's cgroup. If the
allocations aren't tied to the process, the OOM killer will not know
that killing the process will free the associated kernel memory.
Add __GFP_ACCOUNT flags to many of the allocations which are not yet being
charged to the VM process's cgroup.

Tested:
	Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch
	introduced no new failures.
	Ran a kernel memory accounting test which creates a VM to touch
	memory and then checks that the kernel memory allocated for the
	process is within certain bounds.
	With this patch we account for much more of the vmalloc and slab memory
	allocated for the VM.

There remain a few allocations which should be charged to the VM's
cgroup but are not. In x86, they include:
	vcpu->arch.pio_data
There allocations are unaccounted in this patch because they are mapped
to userspace, and accounting them to a cgroup causes problems. This
should be addressed in a future patch.

Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:30 +01:00
Luwei Kang
81b016676e KVM: x86: Sync the pending Posted-Interrupts
Some Posted-Interrupts from passthrough devices may be lost or
overwritten when the vCPU is in runnable state.

The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will
be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state
but not running on physical CPU). If a posted interrupt coming at this
time, the irq remmaping facility will set the bit of PIR (Posted
Interrupt Requests) without ON (Outstanding Notification).
So this interrupt can't be sync to APIC virtualization register and
will not be handled by Guest because ON is zero.

Signed-off-by: Luwei Kang <luwei.kang@intel.com>
[Eliminate the pi_clear_sn fast path. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:27 +01:00
Paolo Bonzini
f7589cca50 KVM: x86: cull apicv code when userspace irqchip is requested
Currently apicv_active can be true even if in-kernel LAPIC
emulation is disabled.  Avoid this by properly initializing
it in kvm_arch_vcpu_init, and then do not do anything to
deactivate APICv when it is actually not used

(Currently APICv is only deactivated by SynIC code that in turn
is only reachable when in-kernel LAPIC is in use.  However, it is
cleaner if kvm_vcpu_deactivate_apicv avoids relying on this.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:21 +01:00
Paolo Bonzini
353c0956a6 KVM: x86: work around leak of uninitialized stack contents (CVE-2019-7222)
Bugzilla: 1671930

Emulation of certain instructions (VMXON, VMCLEAR, VMPTRLD, VMWRITE with
memory operand, INVEPT, INVVPID) can incorrectly inject a page fault
when passed an operand that points to an MMIO address.  The page fault
will use uninitialized kernel stack memory as the CR2 and error code.

The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR
exit to userspace; however, it is not an easy fix, so for now just
ensure that the error code and CR2 are zero.

Embargoed until Feb 7th 2019.

Reported-by: Felix Wilhelm <fwilhelm@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-07 19:02:56 +01:00
Gustavo A. R. Silva
b2869f28e1 KVM: x86: Mark expected switch fall-throughs
In preparation to enabling -Wimplicit-fallthrough, mark switch
cases where we are expecting to fall through.

This patch fixes the following warnings:

arch/x86/kvm/lapic.c:1037:27: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/lapic.c:1876:3: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/hyperv.c:1637:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/svm.c:4396:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/mmu.c:4372:36: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:3835:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/x86.c:7938:23: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:2015:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
arch/x86/kvm/vmx/vmx.c:1773:6: warning: this statement may fall through [-Wimplicit-fallthrough=]

Warning level 3 was used: -Wimplicit-fallthrough=3

This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:29:36 +01:00
Sean Christopherson
1ed199a41c KVM: x86: Fix PV IPIs for 32-bit KVM host
The recognition of the KVM_HC_SEND_IPI hypercall was unintentionally
wrapped in "#ifdef CONFIG_X86_64", causing 32-bit KVM hosts to reject
any and all PV IPI requests despite advertising the feature.  This
results in all KVM paravirtualized guests hanging during SMP boot due
to IPIs never being delivered.

Fixes: 4180bf1b65 ("KVM: X86: Implement "send IPI" hypercall")
Cc: stable@vger.kernel.org
Cc: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 19:11:32 +01:00
Alexander Popov
5cc244a20b KVM: x86: Fix single-step debugging
The single-step debugging of KVM guests on x86 is broken: if we run
gdb 'stepi' command at the breakpoint when the guest interrupts are
enabled, RIP always jumps to native_apic_mem_write(). Then other
nasty effects follow.

Long investigation showed that on Jun 7, 2017 the
commit c8401dda2f ("KVM: x86: fix singlestepping over syscall")
introduced the kvm_run.debug corruption: kvm_vcpu_do_singlestep() can
be called without X86_EFLAGS_TF set.

Let's fix it. Please consider that for -stable.

Signed-off-by: Alexander Popov <alex.popov@linux.com>
Cc: stable@vger.kernel.org
Fixes: c8401dda2f ("KVM: x86: fix singlestepping over syscall")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25 18:52:53 +01:00
Linus Torvalds
42b00f122c * ARM: selftests improvements, large PUD support for HugeTLB,
single-stepping fixes, improved tracing, various timer and vGIC
 fixes
 
 * x86: Processor Tracing virtualization, STIBP support, some correctness fixes,
 refactorings and splitting of vmx.c, use the Hyper-V range TLB flush hypercall,
 reduce order of vcpu struct, WBNOINVD support, do not use -ftrace for __noclone
 functions, nested guest support for PAUSE filtering on AMD, more Hyper-V
 enlightenments (direct mode for synthetic timers)
 
 * PPC: nested VFIO
 
 * s390: bugfixes only this time
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJcH0vFAAoJEL/70l94x66Dw/wH/2FZp1YOM5OgiJzgqnXyDbyf
 dNEfWo472MtNiLsuf+ZAfJojVIu9cv7wtBfXNzW+75XZDfh/J88geHWNSiZDm3Fe
 aM4MOnGG0yF3hQrRQyEHe4IFhGFNERax8Ccv+OL44md9CjYrIrsGkRD08qwb+gNh
 P8T/3wJEKwUcVHA/1VHEIM8MlirxNENc78p6JKd/C7zb0emjGavdIpWFUMr3SNfs
 CemabhJUuwOYtwjRInyx1y34FzYwW3Ejuc9a9UoZ+COahUfkuxHE8u+EQS7vLVF6
 2VGVu5SA0PqgmLlGhHthxLqVgQYo+dB22cRnsLtXlUChtVAq8q9uu5sKzvqEzuE=
 =b4Jx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - selftests improvements
   - large PUD support for HugeTLB
   - single-stepping fixes
   - improved tracing
   - various timer and vGIC fixes

  x86:
   - Processor Tracing virtualization
   - STIBP support
   - some correctness fixes
   - refactorings and splitting of vmx.c
   - use the Hyper-V range TLB flush hypercall
   - reduce order of vcpu struct
   - WBNOINVD support
   - do not use -ftrace for __noclone functions
   - nested guest support for PAUSE filtering on AMD
   - more Hyper-V enlightenments (direct mode for synthetic timers)

  PPC:
   -  nested VFIO

  s390:
   - bugfixes only this time"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
  KVM: x86: Add CPUID support for new instruction WBNOINVD
  kvm: selftests: ucall: fix exit mmio address guessing
  Revert "compiler-gcc: disable -ftracer for __noclone functions"
  KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
  KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
  KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
  MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
  KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
  KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
  KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
  KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
  KVM: Make kvm_set_spte_hva() return int
  KVM: Replace old tlb flush function with new one to flush a specified range.
  KVM/MMU: Add tlb flush with range helper function
  KVM/VMX: Add hv tlb range flush support
  x86/hyper-v: Add HvFlushGuestAddressList hypercall support
  KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
  KVM: x86: Disable Intel PT when VMXON in L1 guest
  KVM: x86: Set intercept for Intel PT MSRs read/write
  KVM: x86: Implement Intel PT MSRs read/write emulation
  ...
2018-12-26 11:46:28 -08:00
Chao Peng
bf8c55d8dc KVM: x86: Implement Intel PT MSRs read/write emulation
This patch implement Intel Processor Trace MSRs read/write
emulation.
Intel PT MSRs read/write need to be emulated when Intel PT
MSRs is intercepted in guest and during live migration.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:36 +01:00
Wei Yang
bdd303cb1b KVM: fix some typos
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
[Preserved the iff and a probably intentional weird bracket notation.
 Also dropped the style change to make a single-purpose patch. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21 11:28:26 +01:00
Paolo Bonzini
ed8e481227 KVM: x86: fix size of x86_fpu_cache objects
The memory allocation in b666a4b697 ("kvm: x86: Dynamically allocate
guest_fpu", 2018-11-06) is wrong, there are other members in struct fpu
before the fpregs_state union and the patch should be doing something
similar to the code in fpu__init_task_struct_size.  It's enough to run
a guest and then rmmod kvm to see slub errors which are actually caused
by memory corruption.

For now let's revert it to sizeof(struct fpu), which is conservative.
I have plans to move fsave/fxsave/xsave directly in KVM, without using
the kernel FPU helpers, and once it's done, the size of the object in
the cache will be something like kvm_xstate_size.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:19 +01:00
Eduardo Habkost
0e1b869fff kvm: x86: Add AMD's EX_CFG to the list of ignored MSRs
Some guests OSes (including Windows 10) write to MSR 0xc001102c
on some cases (possibly while trying to apply a CPU errata).
Make KVM ignore reads and writes to that MSR, so the guest won't
crash.

The MSR is documented as "Execution Unit Configuration (EX_CFG)",
at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors".

Cc: stable@vger.kernel.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18 22:15:44 +01:00
Wanpeng Li
dcbd3e49c2 KVM: X86: Fix NULL deref in vcpu_scan_ioapic
Reported by syzkaller:

    CPU: 1 PID: 5962 Comm: syz-executor118 Not tainted 4.20.0-rc6+ #374
    Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
    RIP: 0010:kvm_apic_hw_enabled arch/x86/kvm/lapic.h:169 [inline]
    RIP: 0010:vcpu_scan_ioapic arch/x86/kvm/x86.c:7449 [inline]
    RIP: 0010:vcpu_enter_guest arch/x86/kvm/x86.c:7602 [inline]
    RIP: 0010:vcpu_run arch/x86/kvm/x86.c:7874 [inline]
    RIP: 0010:kvm_arch_vcpu_ioctl_run+0x5296/0x7320 arch/x86/kvm/x86.c:8074
    Call Trace:
	 kvm_vcpu_ioctl+0x5c8/0x1150 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2596
	 vfs_ioctl fs/ioctl.c:46 [inline]
	 file_ioctl fs/ioctl.c:509 [inline]
	 do_vfs_ioctl+0x1de/0x1790 fs/ioctl.c:696
	 ksys_ioctl+0xa9/0xd0 fs/ioctl.c:713
	 __do_sys_ioctl fs/ioctl.c:720 [inline]
	 __se_sys_ioctl fs/ioctl.c:718 [inline]
	 __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718
	 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
	 entry_SYSCALL_64_after_hwframe+0x49/0xbe

The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT14 msr
and triggers scan ioapic logic to load synic vectors into EOI exit bitmap.
However, irqchip is not initialized by this simple testcase, ioapic/apic
objects should not be accessed.

This patch fixes it by also considering whether or not apic is present.

Reported-by: syzbot+39810e6c400efadfef71@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18 22:15:44 +01:00
Marc Orr
b666a4b697 kvm: x86: Dynamically allocate guest_fpu
Previously, the guest_fpu field was embedded in the kvm_vcpu_arch
struct. Unfortunately, the field is quite large, (e.g., 4352 bytes on my
current setup). This bloats the kvm_vcpu_arch struct for x86 into an
order 3 memory allocation, which can become a problem on overcommitted
machines. Thus, this patch moves the fpu state outside of the
kvm_vcpu_arch struct.

With this patch applied, the kvm_vcpu_arch struct is reduced to 15168
bytes for vmx on my setup when building the kernel with kvmconfig.

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:08 +01:00
Marc Orr
240c35a378 kvm: x86: Use task structs fpu field for user
Previously, x86's instantiation of 'struct kvm_vcpu_arch' added an fpu
field to save/restore fpu-related architectural state, which will differ
from kvm's fpu state. However, this is redundant to the 'struct fpu'
field, called fpu, embedded in the task struct, via the thread field.
Thus, this patch removes the user_fpu field from the kvm_vcpu_arch
struct and replaces it with the task struct's fpu field.

This change is significant because the fpu struct is actually quite
large. For example, on the system used to develop this patch, this
change reduces the size of the vcpu_vmx struct from 23680 bytes down to
19520 bytes, when building the kernel with kvmconfig. This reduction in
the size of the vcpu_vmx struct moves us closer to being able to
allocate the struct at order 2, rather than order 3.

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:07 +01:00
Jim Mattson
e53d88af63 kvm: x86: Don't modify MSR_PLATFORM_INFO on vCPU reset
If userspace has provided a different value for this MSR (e.g with the
turbo bits set), the userspace-provided value should survive a vCPU
reset. For backwards compatibility, MSR_PLATFORM_INFO is initialized
in kvm_arch_vcpu_setup.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Cc: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 18:00:01 +01:00
Vitaly Kuznetsov
2bc39970e9 x86/kvm/hyper-v: Introduce KVM_GET_SUPPORTED_HV_CPUID
With every new Hyper-V Enlightenment we implement we're forced to add a
KVM_CAP_HYPERV_* capability. While this approach works it is fairly
inconvenient: the majority of the enlightenments we do have corresponding
CPUID feature bit(s) and userspace has to know this anyways to be able to
expose the feature to the guest.

Add KVM_GET_SUPPORTED_HV_CPUID ioctl (backed by KVM_CAP_HYPERV_CPUID, "one
cap to rule them all!") returning all Hyper-V CPUID feature leaves.

Using the existing KVM_GET_SUPPORTED_CPUID doesn't seem to be possible:
Hyper-V CPUID feature leaves intersect with KVM's (e.g. 0x40000000,
0x40000001) and we would probably confuse userspace in case we decide to
return these twice.

KVM_CAP_HYPERV_CPUID's number is interim: we're intended to drop
KVM_CAP_HYPERV_STIMER_DIRECT and use its number instead.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:59:54 +01:00
Sean Christopherson
5158917c7b KVM: x86: nVMX: Allow nested_enable_evmcs to be NULL
...so that it can conditionally set by the VMX code, i.e. iff @nested is
true.  This will in turn allow it to be moved out of vmx.c and into a
nested-specified file.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 17:17:57 +01:00
Paolo Bonzini
2a31b9db15 kvm: introduce manual dirty log reprotect
There are two problems with KVM_GET_DIRTY_LOG.  First, and less important,
it can take kvm->mmu_lock for an extended period of time.  Second, its user
can actually see many false positives in some cases.  The latter is due
to a benign race like this:

  1. KVM_GET_DIRTY_LOG returns a set of dirty pages and write protects
     them.
  2. The guest modifies the pages, causing them to be marked ditry.
  3. Userspace actually copies the pages.
  4. KVM_GET_DIRTY_LOG returns those pages as dirty again, even though
     they were not written to since (3).

This is especially a problem for large guests, where the time between
(1) and (3) can be substantial.  This patch introduces a new
capability which, when enabled, makes KVM_GET_DIRTY_LOG not
write-protect the pages it returns.  Instead, userspace has to
explicitly clear the dirty log bits just before using the content
of the page.  The new KVM_CLEAR_DIRTY_LOG ioctl can also operate on a
64-page granularity rather than requiring to sync a full memslot;
this way, the mmu_lock is taken for small amounts of time, and
only a small amount of time will pass between write protection
of pages and the sending of their content.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 12:34:19 +01:00
Paolo Bonzini
8fe65a8299 kvm: rename last argument to kvm_get_dirty_log_protect
When manual dirty log reprotect will be enabled, kvm_get_dirty_log_protect's
pointer argument will always be false on exit, because no TLB flush is needed
until the manual re-protection operation.  Rename it from "is_dirty" to "flush",
which more accurately tells the caller what they have to do with it.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 12:34:18 +01:00
Paolo Bonzini
e5d83c74a5 kvm: make KVM_CAP_ENABLE_CAP_VM architecture agnostic
The first such capability to be handled in virt/kvm/ will be manual
dirty page reprotection.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14 12:34:18 +01:00
Leonid Shatz
326e742533 KVM: nVMX/nSVM: Fix bug which sets vcpu->arch.tsc_offset to L1 tsc_offset
Since commit e79f245dde ("X86/KVM: Properly update 'tsc_offset' to
represent the running guest"), vcpu->arch.tsc_offset meaning was
changed to always reflect the tsc_offset value set on active VMCS.
Regardless if vCPU is currently running L1 or L2.

However, above mentioned commit failed to also change
kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly.
This is because vmx_write_tsc_offset() could set the tsc_offset value
in active VMCS to given offset parameter *plus vmcs12->tsc_offset*.
However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset
to given offset parameter. Without taking into account the possible
addition of vmcs12->tsc_offset. (Same is true for SVM case).

Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return
actually set tsc_offset in active VMCS and modify
kvm_vcpu_write_tsc_offset() to set returned value in
vcpu->arch.tsc_offset.
In addition, rename write_tsc_offset() callback to write_l1_tsc_offset()
to make it clear that it is meant to set L1 TSC offset.

Fixes: e79f245dde ("X86/KVM: Properly update 'tsc_offset' to represent the running guest")
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Leonid Shatz <leonid.shatz@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27 12:50:10 +01:00
Liran Alon
bcbfbd8ec2 KVM: x86: Fix kernel info-leak in KVM_HC_CLOCK_PAIRING hypercall
kvm_pv_clock_pairing() allocates local var
"struct kvm_clock_pairing clock_pairing" on stack and initializes
all it's fields besides padding (clock_pairing.pad[]).

Because clock_pairing var is written completely (including padding)
to guest memory, failure to init struct padding results in kernel
info-leak.

Fix the issue by making sure to also init the padding with zeroes.

Fixes: 55dd00a73a ("KVM: x86: add KVM_HC_CLOCK_PAIRING hypercall")
Reported-by: syzbot+a8ef68d71211ba264f56@syzkaller.appspotmail.com
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27 12:49:57 +01:00
Wanpeng Li
e97f852fd4 KVM: X86: Fix scan ioapic use-before-initialization
Reported by syzkaller:

 BUG: unable to handle kernel NULL pointer dereference at 00000000000001c8
 PGD 80000003ec4da067 P4D 80000003ec4da067 PUD 3f7bfa067 PMD 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 7 PID: 5059 Comm: debug Tainted: G           OE     4.19.0-rc5 #16
 RIP: 0010:__lock_acquire+0x1a6/0x1990
 Call Trace:
  lock_acquire+0xdb/0x210
  _raw_spin_lock+0x38/0x70
  kvm_ioapic_scan_entry+0x3e/0x110 [kvm]
  vcpu_enter_guest+0x167e/0x1910 [kvm]
  kvm_arch_vcpu_ioctl_run+0x35c/0x610 [kvm]
  kvm_vcpu_ioctl+0x3e9/0x6d0 [kvm]
  do_vfs_ioctl+0xa5/0x690
  ksys_ioctl+0x6d/0x80
  __x64_sys_ioctl+0x1a/0x20
  do_syscall_64+0x83/0x6e0
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT6 msr
and triggers scan ioapic logic to load synic vectors into EOI exit bitmap.
However, irqchip is not initialized by this simple testcase, ioapic/apic
objects should not be accessed.
This can be triggered by the following program:

    #define _GNU_SOURCE

    #include <endian.h>
    #include <stdint.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <sys/syscall.h>
    #include <sys/types.h>
    #include <unistd.h>

    uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff};

    int main(void)
    {
    	syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
    	long res = 0;
    	memcpy((void*)0x20000040, "/dev/kvm", 9);
    	res = syscall(__NR_openat, 0xffffffffffffff9c, 0x20000040, 0, 0);
    	if (res != -1)
    		r[0] = res;
    	res = syscall(__NR_ioctl, r[0], 0xae01, 0);
    	if (res != -1)
    		r[1] = res;
    	res = syscall(__NR_ioctl, r[1], 0xae41, 0);
    	if (res != -1)
    		r[2] = res;
    	memcpy(
    			(void*)0x20000080,
    			"\x01\x00\x00\x00\x00\x5b\x61\xbb\x96\x00\x00\x40\x00\x00\x00\x00\x01\x00"
    			"\x08\x00\x00\x00\x00\x00\x0b\x77\xd1\x78\x4d\xd8\x3a\xed\xb1\x5c\x2e\x43"
    			"\xaa\x43\x39\xd6\xff\xf5\xf0\xa8\x98\xf2\x3e\x37\x29\x89\xde\x88\xc6\x33"
    			"\xfc\x2a\xdb\xb7\xe1\x4c\xac\x28\x61\x7b\x9c\xa9\xbc\x0d\xa0\x63\xfe\xfe"
    			"\xe8\x75\xde\xdd\x19\x38\xdc\x34\xf5\xec\x05\xfd\xeb\x5d\xed\x2e\xaf\x22"
    			"\xfa\xab\xb7\xe4\x42\x67\xd0\xaf\x06\x1c\x6a\x35\x67\x10\x55\xcb",
    			106);
    	syscall(__NR_ioctl, r[2], 0x4008ae89, 0x20000080);
    	syscall(__NR_ioctl, r[2], 0xae80, 0);
    	return 0;
    }

This patch fixes it by bailing out scan ioapic if ioapic is not initialized in
kernel.

Reported-by: Wei Wu <ww9210@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Wei Wu <ww9210@gmail.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27 12:49:20 +01:00
Jordan Borgner
0e96f31ea4 x86: Clean up 'sizeof x' => 'sizeof(x)'
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time.
Fix the few places that didn't follow the convention.

(Also do some whitespace cleanups in a few places while at it.)

[ mingo: Rewrote the changelog. ]

Signed-off-by: Jordan Borgner <mail@jordan-borgner.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-29 07:13:28 +01:00
Radim Krčmář
f9dcf08e20 Revert "kvm: x86: optimize dr6 restore"
This reverts commit 0e0a53c551.

As Christian Ehrhardt noted:

  The most common case is that vcpu->arch.dr6 and the host's %dr6 value
  are not related at all because ->switch_db_regs is zero. To do this
  all correctly, we must handle the case where the guest leaves an arbitrary
  unused value in vcpu->arch.dr6 before disabling breakpoints again.

  However, this means that vcpu->arch.dr6 is not suitable to detect the
  need for a %dr6 clear.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-10-23 16:34:59 +02:00
Jim Mattson
c4f55198c7 kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
This is a per-VM capability which can be enabled by userspace so that
the faulting linear address will be included with the information
about a pending #PF in L2, and the "new DR6 bits" will be included
with the information about a pending #DB in L2. With this capability
enabled, the L1 hypervisor can now intercept #PF before CR2 is
modified. Under VMX, the L1 hypervisor can now intercept #DB before
DR6 and DR7 are modified.

When userspace has enabled KVM_CAP_EXCEPTION_PAYLOAD, it should
generally provide an appropriate payload when injecting a #PF or #DB
exception via KVM_SET_VCPU_EVENTS. However, to support restoring old
checkpoints, this payload is not required.

Note that bit 16 of the "new DR6 bits" is set to indicate that a debug
exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions was
enabled. This is the reverse of DR6.RTM, which is cleared in this
scenario.

This capability also enables exception.pending in struct
kvm_vcpu_events, which allows userspace to distinguish between pending
and injected exceptions.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:44 +02:00
Jim Mattson
f10c729ff9 kvm: vmx: Defer setting of DR6 until #DB delivery
When exception payloads are enabled by userspace (which is not yet
possible) and a #DB is raised in L2, defer the setting of DR6 until
later. Under VMX, this allows the L1 hypervisor to intercept the fault
before DR6 is modified. Under SVM, DR6 is modified before L1 can
intercept the fault (as has always been the case with DR7).

Note that the payload associated with a #DB exception includes only
the "new DR6 bits." When the payload is delievered, DR6.B0-B3 will be
cleared and DR6.RTM will be set prior to merging in the new DR6 bits.

Also note that bit 16 in the "new DR6 bits" is set to indicate that a
debug exception (#DB) or a breakpoint exception (#BP) occurred inside
an RTM region while advanced debugging of RTM transactional regions
was enabled. Though the reverse of DR6.RTM, this makes the #DB payload
field compatible with both the pending debug exceptions field under
VMX and the exit qualification for #DB exceptions under VMX.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:43 +02:00
Jim Mattson
da998b46d2 kvm: x86: Defer setting of CR2 until #PF delivery
When exception payloads are enabled by userspace (which is not yet
possible) and a #PF is raised in L2, defer the setting of CR2 until
the #PF is delivered. This allows the L1 hypervisor to intercept the
fault before CR2 is modified.

For backwards compatibility, when exception payloads are not enabled
by userspace, kvm_multiple_exception modifies CR2 when the #PF
exception is raised.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:43 +02:00
Jim Mattson
91e86d225e kvm: x86: Add payload operands to kvm_multiple_exception
kvm_multiple_exception now takes two additional operands: has_payload
and payload, so that updates to CR2 (and DR6 under VMX) can be delayed
until the exception is delivered. This is necessary to properly
emulate VMX or SVM hardware behavior for nested virtualization.

The new behavior is triggered by
vcpu->kvm->arch.exception_payload_enabled, which will (later) be set
by a new per-VM capability, KVM_CAP_EXCEPTION_PAYLOAD.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:42 +02:00
Jim Mattson
59073aaf6d kvm: x86: Add exception payload fields to kvm_vcpu_events
The per-VM capability KVM_CAP_EXCEPTION_PAYLOAD (to be introduced in a
later commit) adds the following fields to struct kvm_vcpu_events:
exception_has_payload, exception_payload, and exception.pending.

With this capability set, all of the details of vcpu->arch.exception,
including the payload for a pending exception, are reported to
userspace in response to KVM_GET_VCPU_EVENTS.

With this capability clear, the original ABI is preserved, and the
exception.injected field is set for either pending or injected
exceptions.

When userspace calls KVM_SET_VCPU_EVENTS with
KVM_CAP_EXCEPTION_PAYLOAD clear, exception.injected is no longer
translated to exception.pending. KVM_SET_VCPU_EVENTS can now only
establish a pending exception when KVM_CAP_EXCEPTION_PAYLOAD is set.

Reported-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17 19:07:38 +02:00