mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 08:50:52 +07:00
3c1d7e6ccb
597 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Longpeng
|
3c1d7e6ccb |
mm/hugetlb: fix a addressing exception caused by huge_pte_offset
Our machine encountered a panic(addressing exception) after run for a long time and the calltrace is: RIP: hugetlb_fault+0x307/0xbe0 RSP: 0018:ffff9567fc27f808 EFLAGS: 00010286 RAX: e800c03ff1258d48 RBX: ffffd3bb003b69c0 RCX: e800c03ff1258d48 RDX: 17ff3fc00eda72b7 RSI: 00003ffffffff000 RDI: e800c03ff1258d48 RBP: ffff9567fc27f8c8 R08: e800c03ff1258d48 R09: 0000000000000080 R10: ffffaba0704c22a8 R11: 0000000000000001 R12: ffff95c87b4b60d8 R13: 00005fff00000000 R14: 0000000000000000 R15: ffff9567face8074 FS: 00007fe2d9ffb700(0000) GS:ffff956900e40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffd3bb003b69c0 CR3: 000000be67374000 CR4: 00000000003627e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: follow_hugetlb_page+0x175/0x540 __get_user_pages+0x2a0/0x7e0 __get_user_pages_unlocked+0x15d/0x210 __gfn_to_pfn_memslot+0x3c5/0x460 [kvm] try_async_pf+0x6e/0x2a0 [kvm] tdp_page_fault+0x151/0x2d0 [kvm] ... kvm_arch_vcpu_ioctl_run+0x330/0x490 [kvm] kvm_vcpu_ioctl+0x309/0x6d0 [kvm] do_vfs_ioctl+0x3f0/0x540 SyS_ioctl+0xa1/0xc0 system_call_fastpath+0x22/0x27 For 1G hugepages, huge_pte_offset() wants to return NULL or pudp, but it may return a wrong 'pmdp' if there is a race. Please look at the following code snippet: ... pud = pud_offset(p4d, addr); if (sz != PUD_SIZE && pud_none(*pud)) return NULL; /* hugepage or swap? */ if (pud_huge(*pud) || !pud_present(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, addr); if (sz != PMD_SIZE && pmd_none(*pmd)) return NULL; /* hugepage or swap? */ if (pmd_huge(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; ... The following sequence would trigger this bug: - CPU0: sz = PUD_SIZE and *pud = 0 , continue - CPU0: "pud_huge(*pud)" is false - CPU1: calling hugetlb_no_page and set *pud to xxxx8e7(PRESENT) - CPU0: "!pud_present(*pud)" is false, continue - CPU0: pmd = pmd_offset(pud, addr) and maybe return a wrong pmdp However, we want CPU0 to return NULL or pudp in this case. We must make sure there is exactly one dereference of pud and pmd. Signed-off-by: Longpeng <longpeng2@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20200413010342.771-1-longpeng2@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
cf11e85fc0 |
mm: hugetlb: optionally allocate gigantic hugepages using cma
Commit
|
||
Jules Irenge
|
1b2a1e7bb9 |
mm/hugetlb: add missing annotation for gather_surplus_pages()
Sparse reports a warning at gather_surplus_pages() warning: context imbalance in hugetlb_cow() - unexpected unlock The root cause is the missing annotation at gather_surplus_pages() Add the missing __must_hold(&hugetlb_lock) Signed-off-by: Jules Irenge <jbi.octave@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Link: http://lkml.kernel.org/r/20200214204741.94112-7-jbi.octave@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d4af73e3f8 |
mm/hugetlb: remove unnecessary memory fetch in PageHeadHuge()
Commit
|
||
Mateusz Nosek
|
353b2de42e |
mm/hugetlb.c: clean code by removing unnecessary initialization
Previously variable 'check_addr' was initialized, but was not read later before reassigning. So the initialization can be removed. Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Link: http://lkml.kernel.org/r/20200303212354.25226-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
a9b3f86740 |
hugetlb: support file_region coalescing again
An earlier patch in this series disabled file_region coalescing in order to hang the hugetlb_cgroup uncharge info on the file_region entries. This patch re-adds support for coalescing of file_region entries. Essentially everytime we add an entry, we call a recursive function that tries to coalesce the added region with the regions next to it. The worst case call depth for this function is 3: one to coalesce with the region next to it, one to coalesce to the region prev, and one to reach the base case. This is an important performance optimization as private mappings add their entries page by page, and we could incur big performance costs for large mappings with lots of file_region entries in their resv_map. [almasrymina@google.com: fix CONFIG_CGROUP_HUGETLB ifdefs] Link: http://lkml.kernel.org/r/20200214204544.231482-1-almasrymina@google.com [almasrymina@google.com: remove check_coalesce_bug debug code] Link: http://lkml.kernel.org/r/20200219233610.13808-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Link: http://lkml.kernel.org/r/20200211213128.73302-7-almasrymina@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
08cf9faf75 |
hugetlb_cgroup: support noreserve mappings
Support MAP_NORESERVE accounting as part of the new counter. For each hugepage allocation, at allocation time we check if there is a reservation for this allocation or not. If there is a reservation for this allocation, then this allocation was charged at reservation time, and we don't re-account it. If there is no reserevation for this allocation, we charge the appropriate hugetlb_cgroup. The hugetlb_cgroup to uncharge for this allocation is stored in page[3].private. We use new APIs added in an earlier patch to set this pointer. Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Link: http://lkml.kernel.org/r/20200211213128.73302-6-almasrymina@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
075a61d07a |
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives in the resv_map entries, in file_region->reservation_counter. After a call to region_chg, we charge the approprate hugetlb_cgroup, and if successful, we pass on the hugetlb_cgroup info to a follow up region_add call. When a file_region entry is added to the resv_map via region_add, we put the pointer to that cgroup in file_region->reservation_counter. If charging doesn't succeed, we report the error to the caller, so that the kernel fails the reservation. On region_del, which is when the hugetlb memory is unreserved, we also uncharge the file_region->reservation_counter. [akpm@linux-foundation.org: forward declare struct file_region] Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
0db9d74ed8 |
hugetlb: disable region_add file_region coalescing
A follow up patch in this series adds hugetlb cgroup uncharge info the file_region entries in resv->regions. The cgroup uncharge info may differ for different regions, so they can no longer be coalesced at region_add time. So, disable region coalescing in region_add in this patch. Behavior change: Say a resv_map exists like this [0->1], [2->3], and [5->6]. Then a region_chg/add call comes in region_chg/add(f=0, t=5). Old code would generate resv->regions: [0->5], [5->6]. New code would generate resv->regions: [0->1], [1->2], [2->3], [3->5], [5->6]. Special care needs to be taken to handle the resv->adds_in_progress variable correctly. In the past, only 1 region would be added for every region_chg and region_add call. But now, each call may add multiple regions, so we can no longer increment adds_in_progress by 1 in region_chg, or decrement adds_in_progress by 1 after region_add or region_abort. Instead, region_chg calls add_reservation_in_range() to count the number of regions needed and allocates those, and that info is passed to region_add and region_abort to decrement adds_in_progress correctly. We've also modified the assumption that region_add after region_chg never fails. region_chg now pre-allocates at least 1 region for region_add. If region_add needs more regions than region_chg has allocated for it, then it may fail. [almasrymina@google.com: fix file_region entry allocations] Link: http://lkml.kernel.org/r/20200219012736.20363-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Link: http://lkml.kernel.org/r/20200211213128.73302-4-almasrymina@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
e9fe92ae0c |
hugetlb_cgroup: add reservation accounting for private mappings
Normally the pointer to the cgroup to uncharge hangs off the struct page, and gets queried when it's time to free the page. With hugetlb_cgroup reservations, this is not possible. Because it's possible for a page to be reserved by one task and actually faulted in by another task. The best place to put the hugetlb_cgroup pointer to uncharge for reservations is in the resv_map. But, because the resv_map has different semantics for private and shared mappings, the code patch to charge/uncharge shared and private mappings is different. This patch implements charging and uncharging for private mappings. For private mappings, the counter to uncharge is in resv_map->reservation_counter. On initializing the resv_map this is set to NULL. On reservation of a region in private mapping, the tasks hugetlb_cgroup is charged and the hugetlb_cgroup is placed is resv_map->reservation_counter. On hugetlb_vm_op_close, we uncharge resv_map->reservation_counter. [akpm@linux-foundation.org: forward declare struct resv_map] Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Link: http://lkml.kernel.org/r/20200211213128.73302-3-almasrymina@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
1adc4d419a |
hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations
Augments hugetlb_cgroup_charge_cgroup to be able to charge hugetlb usage or hugetlb reservation counter. Adds a new interface to uncharge a hugetlb_cgroup counter via hugetlb_cgroup_uncharge_counter. Integrates the counter with hugetlb_cgroup, via hugetlb_cgroup_init, hugetlb_cgroup_have_usage, and hugetlb_cgroup_css_offline. Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Sandipan Das <sandipan@linux.ibm.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Link: http://lkml.kernel.org/r/20200211213128.73302-2-almasrymina@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
87bf91d39b |
hugetlbfs: Use i_mmap_rwsem to address page fault/truncate race
hugetlbfs page faults can race with truncate and hole punch operations. Current code in the page fault path attempts to handle this by 'backing out' operations if we encounter the race. One obvious omission in the current code is removing a page newly added to the page cache. This is pretty straight forward to address, but there is a more subtle and difficult issue of backing out hugetlb reservations. To handle this correctly, the 'reservation state' before page allocation needs to be noted so that it can be properly backed out. There are four distinct possibilities for reservation state: shared/reserved, shared/no-resv, private/reserved and private/no-resv. Backing out a reservation may require memory allocation which could fail so that needs to be taken into account as well. Instead of writing the required complicated code for this rare occurrence, just eliminate the race. i_mmap_rwsem is now held in read mode for the duration of page fault processing. Hold i_mmap_rwsem in write mode when modifying i_size. In this way, truncation can not proceed when page faults are being processed. In addition, i_size will not change during fault processing so a single check can be made to ensure faults are not beyond (proposed) end of file. Faults can still race with hole punch, but that race is handled by existing code and the use of hugetlb_fault_mutex. With this modification, checks for races with truncation in the page fault path can be simplified and removed. remove_inode_hugepages no longer needs to take hugetlb_fault_mutex in the case of truncation. Comments are expanded to explain reasoning behind locking. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Link: http://lkml.kernel.org/r/20200316205756.146666-3-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
c0d0381ade |
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
Patch series "hugetlbfs: use i_mmap_rwsem for more synchronization", v2. While discussing the issue with huge_pte_offset [1], I remembered that there were more outstanding hugetlb races. These issues are: 1) For shared pmds, huge PTE pointers returned by huge_pte_alloc can become invalid via a call to huge_pmd_unshare by another thread. 2) hugetlbfs page faults can race with truncation causing invalid global reserve counts and state. A previous attempt was made to use i_mmap_rwsem in this manner as described at [2]. However, those patches were reverted starting with [3] due to locking issues. To effectively use i_mmap_rwsem to address the above issues it needs to be held (in read mode) during page fault processing. However, during fault processing we need to lock the page we will be adding. Lock ordering requires we take page lock before i_mmap_rwsem. Waiting until after taking the page lock is too late in the fault process for the synchronization we want to do. To address this lock ordering issue, the following patches change the lock ordering for hugetlb pages. This is not too invasive as hugetlbfs processing is done separate from core mm in many places. However, I don't really like this idea. Much ugliness is contained in the new routine hugetlb_page_mapping_lock_write() of patch 1. The only other way I can think of to address these issues is by catching all the races. After catching a race, cleanup, backout, retry ... etc, as needed. This can get really ugly, especially for huge page reservations. At one time, I started writing some of the reservation backout code for page faults and it got so ugly and complicated I went down the path of adding synchronization to avoid the races. Any other suggestions would be welcome. [1] https://lore.kernel.org/linux-mm/1582342427-230392-1-git-send-email-longpeng2@huawei.com/ [2] https://lore.kernel.org/linux-mm/20181222223013.22193-1-mike.kravetz@oracle.com/ [3] https://lore.kernel.org/linux-mm/20190103235452.29335-1-mike.kravetz@oracle.com [4] https://lore.kernel.org/linux-mm/1584028670.7365.182.camel@lca.pw/ [5] https://lore.kernel.org/lkml/20200312183142.108df9ac@canb.auug.org.au/ This patch (of 2): While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. One problem with this scheme is that it requires taking i_mmap_rwsem before taking the page lock during page faults. This is not the order specified in the rest of mm code. Handling of hugetlbfs pages is mostly isolated today. Therefore, we use this alternative locking order for PageHuge() pages. mapping->i_mmap_rwsem hugetlb_fault_mutex (hugetlbfs specific page fault mutex) page->flags PG_locked (lock_page) To help with lock ordering issues, hugetlb_page_mapping_lock_write() is introduced to write lock the i_mmap_rwsem associated with a page. In most cases it is easy to get address_space via vma->vm_file->f_mapping. However, in the case of migration or memory errors for anon pages we do not have an associated vma. A new routine _get_hugetlb_page_mapping() will use anon_vma to get address_space in these cases. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Link: http://lkml.kernel.org/r/20200316205756.146666-2-mike.kravetz@oracle.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
71335f37c5 |
mm/gup: allow to react to fatal signals
The existing gup code does not react to the fatal signals in many code paths. For example, in one retry path of gup we're still using down_read() rather than down_read_killable(). Also, when doing page faults we don't pass in FAULT_FLAG_KILLABLE as well, which means that within the faulting process we'll wait in non-killable way as well. These were spotted by Linus during the code review of some other patches. Let's allow the gup code to react to fatal signals to improve the responsiveness of threads when during gup and being killed. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160256.9887-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
4426e945df |
mm/gup: allow VM_FAULT_RETRY for multiple times
This is the gup counterpart of the change that allows the VM_FAULT_RETRY to happen for more than once. One thing to mention is that we must check the fatal signal here before retry because the GUP can be interrupted by that, otherwise we can loop forever. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220195357.16371-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Xu
|
4f6da93411 |
mm/gup: rename "nonblocking" to "locked" where proper
Patch series "mm: Page fault enhancements", v6. This series contains cleanups and enhancements to current page fault logic. The whole idea comes from the discussion between Andrea and Linus on the bug reported by syzbot here: https://lkml.org/lkml/2017/11/2/833 Basically it does two things: (a) Allows the page fault logic to be more interactive on not only SIGKILL, but also the rest of userspace signals, and, (b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more than once. For (a): with the changes we should be able to react faster when page faults are working in parallel with userspace signals like SIGSTOP and SIGCONT (and more), and with that we can remove the buggy part in userfaultfd and benefit the whole page fault mechanism on faster signal processing to reach the userspace. For (b), we should be able to allow the page fault handler to loop for even more than twice. Some context: for now since we have FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the same interrupt context, however never more than twice. This can be not only a potential cleanup to remove this assumption since AFAIU the code itself doesn't really have this twice-only limitation (though that should be a protective approach in the past), at the same time it'll greatly simplify future works like userfaultfd write-protect where it's possible to retry for more than twice (please have a look at [1] below for a possible user that might require the page fault to be handled for a third time; if we can remove the retry limitation we can simply drop that patch and those complexity). This patch (of 16): There's plenty of places around __get_user_pages() that has a parameter "nonblocking" which does not really mean that "it won't block" (because it can really block) but instead it shows whether the mmap_sem is released by up_read() during the page fault handling mostly when VM_FAULT_RETRY is returned. We have the correct naming in e.g. get_user_pages_locked() or get_user_pages_remote() as "locked", however there're still many places that are using the "nonblocking" as name. Renaming the places to "locked" where proper to better suite the functionality of the variable. While at it, fixing up some of the comments accordingly. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
47e29d32af |
mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pages
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS scheme tends to overflow too easily, each tail page increments the head page->_refcount by GUP_PIN_COUNTING_BIAS (1024). That limits the number of huge pages that can be pinned. This patch removes that limitation, by using an exact form of pin counting for compound pages of order > 1. The "order > 1" is required because this approach uses the 3rd struct page in the compound page, and order 1 compound pages only have two pages, so that won't work there. A new struct page field, hpage_pinned_refcount, has been added, replacing a padding field in the union (so no new space is used). This enhancement also has a useful side effect: huge pages and compound pages (of order > 1) do not suffer from the "potential false positives" problem that is discussed in the page_dma_pinned() comment block. That is because these compound pages have extra space for tracking things, so they get exact pin counts instead of overloading page->_refcount. Documentation/core-api/pin_user_pages.rst is updated accordingly. Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
John Hubbard
|
3faa52c03f |
mm/gup: track FOLL_PIN pages
Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
c77c0a8ac4 |
mm/hugetlb: defer freeing of huge pages if in non-task context
The following lockdep splat was observed when a certain hugetlbfs test was run: ================================ WARNING: inconsistent lock state 4.18.0-159.el8.x86_64+debug #1 Tainted: G W --------- - - -------------------------------- inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. swapper/30/0 [HC0[0]:SC1[1]:HE1:SE0] takes: ffffffff9acdc038 (hugetlb_lock){+.?.}, at: free_huge_page+0x36f/0xaa0 {SOFTIRQ-ON-W} state was registered at: lock_acquire+0x14f/0x3b0 _raw_spin_lock+0x30/0x70 __nr_hugepages_store_common+0x11b/0xb30 hugetlb_sysctl_handler_common+0x209/0x2d0 proc_sys_call_handler+0x37f/0x450 vfs_write+0x157/0x460 ksys_write+0xb8/0x170 do_syscall_64+0xa5/0x4d0 entry_SYSCALL_64_after_hwframe+0x6a/0xdf irq event stamp: 691296 hardirqs last enabled at (691296): [<ffffffff99bb034b>] _raw_spin_unlock_irqrestore+0x4b/0x60 hardirqs last disabled at (691295): [<ffffffff99bb0ad2>] _raw_spin_lock_irqsave+0x22/0x81 softirqs last enabled at (691284): [<ffffffff97ff0c63>] irq_enter+0xc3/0xe0 softirqs last disabled at (691285): [<ffffffff97ff0ebe>] irq_exit+0x23e/0x2b0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(hugetlb_lock); <Interrupt> lock(hugetlb_lock); *** DEADLOCK *** : Call Trace: <IRQ> __lock_acquire+0x146b/0x48c0 lock_acquire+0x14f/0x3b0 _raw_spin_lock+0x30/0x70 free_huge_page+0x36f/0xaa0 bio_check_pages_dirty+0x2fc/0x5c0 clone_endio+0x17f/0x670 [dm_mod] blk_update_request+0x276/0xe50 scsi_end_request+0x7b/0x6a0 scsi_io_completion+0x1c6/0x1570 blk_done_softirq+0x22e/0x350 __do_softirq+0x23d/0xad8 irq_exit+0x23e/0x2b0 do_IRQ+0x11a/0x200 common_interrupt+0xf/0xf </IRQ> Both the hugetbl_lock and the subpool lock can be acquired in free_huge_page(). One way to solve the problem is to make both locks irq-safe. However, Mike Kravetz had learned that the hugetlb_lock is held for a linear scan of ALL hugetlb pages during a cgroup reparentling operation. So it is just too long to have irq disabled unless we can break hugetbl_lock down into finer-grained locks with shorter lock hold times. Another alternative is to defer the freeing to a workqueue job. This patch implements the deferred freeing by adding a free_hpage_workfn() work function to do the actual freeing. The free_huge_page() call in a non-task context saves the page to be freed in the hpage_freelist linked list in a lockless manner using the llist APIs. The generic workqueue is used to process the work, but a dedicated workqueue can be used instead if it is desirable to have the huge page freed ASAP. Thanks to Kirill Tkhai <ktkhai@virtuozzo.com> for suggesting the use of llist APIs which simplfy the code. Link: http://lkml.kernel.org/r/20191217170331.30893-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zhigang Lu
|
acbfb087e3 |
mm/hugetlb: avoid looping to the same hugepage if !pages and !vmas
When mmapping an existing hugetlbfs file with MAP_POPULATE, we find it is very time consuming. For example, mmapping a 128GB file takes about 50 milliseconds. Sampling with perfevent shows it spends 99% time in the same_page loop in follow_hugetlb_page(). samples: 205 of event 'cycles', Event count (approx.): 136686374 - 99.04% test_mmap_huget [kernel.kallsyms] [k] follow_hugetlb_page follow_hugetlb_page __get_user_pages __mlock_vma_pages_range __mm_populate vm_mmap_pgoff sys_mmap_pgoff sys_mmap system_call_fastpath __mmap64 follow_hugetlb_page() is called with pages=NULL and vmas=NULL, so for each hugepage, we run into the same_page loop for pages_per_huge_page() times, but doing nothing. With this change, it takes less then 1 millisecond to mmap a 128GB file in hugetlbfs. Link: http://lkml.kernel.org/r/1567581712-5992-1-git-send-email-totty.lu@gmail.com Signed-off-by: Zhigang Lu <tonnylu@tencent.com> Reviewed-by: Haozhong Zhang <hzhongzhang@tencent.com> Reviewed-by: Zongming Zhang <knightzhang@tencent.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
188b04a7d9 |
hugetlb: remove unused hstate in hugetlb_fault_mutex_hash()
The first parameter hstate in function hugetlb_fault_mutex_hash() is not used anymore. This patch removes it. [akpm@linux-foundation.org: various build fixes] [cai@lca.pw: fix a GCC compilation warning] Link: http://lkml.kernel.org/r/1570544108-32331-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20191005003302.785-1-richardw.yang@linux.intel.com Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Signed-off-by: Qian Cai <cai@lca.pw> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
d75c6af9c8 |
hugetlb: remove duplicated code
Remove duplicated code between region_chg and region_add, and refactor it into a common function, add_reservation_in_range. This is mostly done because there is a follow up change in another series that disables region coalescing in region_add, and I want to make that change in one place only. It should improve maintainability anyway on its own. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/20190919200428.188797-3-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mina Almasry
|
5c91195420 |
hugetlb: region_chg provides only cache entry
Current behavior is that region_chg provides both a cache entry in resv->region_cache, AND a placeholder entry in resv->regions. region_add first tries to use the placeholder, and if it finds that the placeholder has been deleted by a racing region_del call, it uses the cache entry. This behavior is completely unnecessary and is removed in this patch for a couple of reasons: 1. region_add needs to either find a cached file_region entry in resv->region_cache, or find an entry in resv->regions to expand. It does not need both. 2. region_chg adding a placeholder entry in resv->regions opens up a possible race with region_del, where region_chg adds a placeholder region in resv->regions, and this region is deleted by a racing call to region_del during region_chg execution or before region_add is called. Removing the race makes the code easier to reason about and maintain. In addition, a follow up patch in another series that disables region coalescing, which would be further complicated if the race with region_del exists. Link: http://lkml.kernel.org/r/20190919200428.188797-2-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Waiman Long
|
930668c344 |
hugetlbfs: take read_lock on i_mmap for PMD sharing
A customer with large SMP systems (up to 16 sockets) with application that uses large amount of static hugepages (~500-1500GB) are experiencing random multisecond delays. These delays were caused by the long time it took to scan the VMA interval tree with mmap_sem held. The sharing of huge PMD does not require changes to the i_mmap at all. Therefore, we can just take the read lock and let other threads searching for the right VMA share it in parallel. Once the right VMA is found, either the PMD lock (2M huge page for x86-64) or the mm->page_table_lock will be acquired to perform the actual PMD sharing. Lock contention, if present, will happen in the spinlock. That is much better than contention in the rwsem where the time needed to scan the the interval tree is indeterminate. With this patch applied, the customer is seeing significant performance improvement over the unpatched kernel. Link: http://lkml.kernel.org/r/20191107211809.9539-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
552546366a |
hugetlbfs: hugetlb_fault_mutex_hash() cleanup
A new clang diagnostic (-Wsizeof-array-div) warns about the calculation to determine the number of u32's in an array of unsigned longs. Suppress warning by adding parentheses. While looking at the above issue, noticed that the 'address' parameter to hugetlb_fault_mutex_hash is no longer used. So, remove it from the definition and all callers. No functional change. Link: http://lkml.kernel.org/r/20190919011847.18400-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Nathan Chancellor <natechancellor@gmail.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Ilie Halip <ilie.halip@gmail.com> Cc: David Bolvansky <david.bolvansky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
5e27a2df03 |
mm/page_alloc: add alloc_contig_pages()
HugeTLB helper alloc_gigantic_page() implements fairly generic allocation method where it scans over various zones looking for a large contiguous pfn range before trying to allocate it with alloc_contig_range(). Other than deriving the requested order from 'struct hstate', there is nothing HugeTLB specific in there. This can be made available for general use to allocate contiguous memory which could not have been allocated through the buddy allocator. alloc_gigantic_page() has been split carving out actual allocation method which is then made available via new alloc_contig_pages() helper wrapped under CONFIG_CONTIG_ALLOC. All references to 'gigantic' have been replaced with more generic term 'contig'. Allocated pages here should be freed with free_contig_range() or by calling __free_page() on each allocated page. Link: http://lkml.kernel.org/r/1571300646-32240-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
f231fe4235 |
hugetlbfs: don't access uninitialized memmaps in pfn_range_valid_gigantic()
Uninitialized memmaps contain garbage and in the worst case trigger kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched. Let's make sure that we only consider online memory (managed by the buddy) that has initialized memmaps. ZONE_DEVICE is not applicable. page_zone() will call page_to_nid(), which will trigger VM_BUG_ON_PGFLAGS(PagePoisoned(page), page) with CONFIG_PAGE_POISONING and CONFIG_DEBUG_VM_PGFLAGS when called on uninitialized memmaps. This can be the case when an offline memory block (e.g., never onlined) is spanned by a zone. Note: As explained by Michal in [1], alloc_contig_range() will verify the range. So it boils down to the wrong access in this function. [1] http://lkml.kernel.org/r/20180423000943.GO17484@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20191015120717.4858-1-david@redhat.com Fixes: |
||
Mike Kravetz
|
f60858f9d3 |
hugetlbfs: don't retry when pool page allocations start to fail
When allocating hugetlbfs pool pages via /proc/sys/vm/nr_hugepages, the pages will be interleaved between all nodes of the system. If nodes are not equal, it is quite possible for one node to fill up before the others. When this happens, the code still attempts to allocate pages from the full node. This results in calls to direct reclaim and compaction which slow things down considerably. When allocating pool pages, note the state of the previous allocation for each node. If previous allocation failed, do not use the aggressive retry algorithm on successive attempts. The allocation will still succeed if there is memory available, but it will not try as hard to free up memory. Link: http://lkml.kernel.org/r/20190806014744.15446-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
4643d67e8c |
hugetlbfs: fix hugetlb page migration/fault race causing SIGBUS
Li Wang discovered that LTP/move_page12 V2 sometimes triggers SIGBUS in
the kernel-v5.2.3 testing. This is caused by a race between hugetlb
page migration and page fault.
If a hugetlb page can not be allocated to satisfy a page fault, the task
is sent SIGBUS. This is normal hugetlbfs behavior. A hugetlb fault
mutex exists to prevent two tasks from trying to instantiate the same
page. This protects against the situation where there is only one
hugetlb page, and both tasks would try to allocate. Without the mutex,
one would fail and SIGBUS even though the other fault would be
successful.
There is a similar race between hugetlb page migration and fault.
Migration code will allocate a page for the target of the migration. It
will then unmap the original page from all page tables. It does this
unmap by first clearing the pte and then writing a migration entry. The
page table lock is held for the duration of this clear and write
operation. However, the beginnings of the hugetlb page fault code
optimistically checks the pte without taking the page table lock. If
clear (as it can be during the migration unmap operation), a hugetlb
page allocation is attempted to satisfy the fault. Note that the page
which will eventually satisfy this fault was already allocated by the
migration code. However, the allocation within the fault path could
fail which would result in the task incorrectly being sent SIGBUS.
Ideally, we could take the hugetlb fault mutex in the migration code
when modifying the page tables. However, locks must be taken in the
order of hugetlb fault mutex, page lock, page table lock. This would
require significant rework of the migration code. Instead, the issue is
addressed in the hugetlb fault code. After failing to allocate a huge
page, take the page table lock and check for huge_pte_none before
returning an error. This is the same check that must be made further in
the code even if page allocation is successful.
Link: http://lkml.kernel.org/r/20190808000533.7701-1-mike.kravetz@oracle.com
Fixes:
|
||
Naoya Horiguchi
|
faf53def3b |
mm: hugetlb: soft-offline: dissolve_free_huge_page() return zero on !PageHuge
madvise(MADV_SOFT_OFFLINE) often returns -EBUSY when calling soft offline
for hugepages with overcommitting enabled. That was caused by the
suboptimal code in current soft-offline code. See the following part:
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
...
} else {
/*
* We set PG_hwpoison only when the migration source hugepage
* was successfully dissolved, because otherwise hwpoisoned
* hugepage remains on free hugepage list, then userspace will
* find it as SIGBUS by allocation failure. That's not expected
* in soft-offlining.
*/
ret = dissolve_free_huge_page(page);
if (!ret) {
if (set_hwpoison_free_buddy_page(page))
num_poisoned_pages_inc();
}
}
return ret;
Here dissolve_free_huge_page() returns -EBUSY if the migration source page
was freed into buddy in migrate_pages(), but even in that case we actually
has a chance that set_hwpoison_free_buddy_page() succeeds. So that means
current code gives up offlining too early now.
dissolve_free_huge_page() checks that a given hugepage is suitable for
dissolving, where we should return success for !PageHuge() case because
the given hugepage is considered as already dissolved.
This change also affects other callers of dissolve_free_huge_page(), which
are cleaned up together.
[n-horiguchi@ah.jp.nec.com: v3]
Link: http://lkml.kernel.org/r/1560761476-4651-3-git-send-email-n-horiguchi@ah.jp.nec.comLink: http://lkml.kernel.org/r/1560154686-18497-3-git-send-email-n-horiguchi@ah.jp.nec.com
Fixes:
|
||
Thomas Gleixner
|
457c899653 |
treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Mike Kravetz
|
f27a5136f7 |
hugetlbfs: always use address space in inode for resv_map pointer
Continuing discussion about
|
||
Jérôme Glisse
|
7269f99993 |
mm/mmu_notifier: use correct mmu_notifier events for each invalidation
This updates each existing invalidation to use the correct mmu notifier event that represent what is happening to the CPU page table. See the patch which introduced the events to see the rational behind this. Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
6f4f13e8d9 |
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
1b426bac66 |
hugetlb: use same fault hash key for shared and private mappings
hugetlb uses a fault mutex hash table to prevent page faults of the same pages concurrently. The key for shared and private mappings is different. Shared keys off address_space and file index. Private keys off mm and virtual address. Consider a private mappings of a populated hugetlbfs file. A fault will map the page from the file and if needed do a COW to map a writable page. Hugetlbfs hole punch uses the fault mutex to prevent mappings of file pages. It uses the address_space file index key. However, private mappings will use a different key and could race with this code to map the file page. This causes problems (BUG) for the page cache remove code as it expects the page to be unmapped. A sample stack is: page dumped because: VM_BUG_ON_PAGE(page_mapped(page)) kernel BUG at mm/filemap.c:169! ... RIP: 0010:unaccount_page_cache_page+0x1b8/0x200 ... Call Trace: __delete_from_page_cache+0x39/0x220 delete_from_page_cache+0x45/0x70 remove_inode_hugepages+0x13c/0x380 ? __add_to_page_cache_locked+0x162/0x380 hugetlbfs_fallocate+0x403/0x540 ? _cond_resched+0x15/0x30 ? __inode_security_revalidate+0x5d/0x70 ? selinux_file_permission+0x100/0x130 vfs_fallocate+0x13f/0x270 ksys_fallocate+0x3c/0x80 __x64_sys_fallocate+0x1a/0x20 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 There seems to be another potential COW issue/race with this approach of different private and shared keys as noted in commit |
||
Mike Kravetz
|
0919e1b69a |
hugetlbfs: on restore reserve error path retain subpool reservation
When a huge page is allocated, PagePrivate() is set if the allocation consumed a reservation. When freeing a huge page, PagePrivate is checked. If set, it indicates the reservation should be restored. PagePrivate being set at free huge page time mostly happens on error paths. When huge page reservations are created, a check is made to determine if the mapping is associated with an explicitly mounted filesystem. If so, pages are also reserved within the filesystem. The default action when freeing a huge page is to decrement the usage count in any associated explicitly mounted filesystem. However, if the reservation is to be restored the reservation/use count within the filesystem should not be decrementd. Otherwise, a subsequent page allocation and free for the same mapping location will cause the file filesystem usage to go 'negative'. Filesystem Size Used Avail Use% Mounted on nodev 4.0G -4.0M 4.1G - /opt/hugepool To fix, when freeing a huge page do not adjust filesystem usage if PagePrivate() is set to indicate the reservation should be restored. I did not cc stable as the problem has been around since reserves were added to hugetlbfs and nobody has noticed. Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
2d0adf7e0d |
mm/hugetlb: get rid of NODEMASK_ALLOC
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by first determining whether it should be allocated on the stack or dynamically, depending on NODES_SHIFT. Right now, it goes the dynamic path whenever the nodemask_t is above 32 bytes. Although we could bump it to a reasonable value, the largest a nodemask_t can get is 128 bytes, so since __nr_hugepages_store_common is called from a rather short stack we can just get rid of the NODEMASK_ALLOC call here. This reduces some code churn and complexity. Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: David Rientjes <rientjes@google.com> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
fd875dca7c |
hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
The number of node specific huge pages can be set via a file such as: /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages When a node specific value is specified, the global number of huge pages must also be adjusted. This adjustment is calculated as the specified node specific value + (global value - current node value). If the node specific value provided by the user is large enough, this calculation could overflow an unsigned long leading to a smaller than expected number of huge pages. To fix, check the calculation for overflow. If overflow is detected, use ULONG_MAX as the requested value. This is inline with the user request to allocate as many huge pages as possible. It was also noticed that the above calculation was done outside the hugetlb_lock. Therefore, the values could be inconsistent and result in underflow. To fix, the calculation is moved within the routine set_max_huge_pages() where the lock is held. In addition, the code in __nr_hugepages_store_common() which tries to handle the case of not being able to allocate a node mask would likely result in incorrect behavior. Luckily, it is very unlikely we will ever take this path. If we do, simply return ENOMEM. Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexandre Ghiti
|
4eb0716e86 |
hugetlb: allow to free gigantic pages regardless of the configuration
On systems without CONTIG_ALLOC activated but that support gigantic pages, boottime reserved gigantic pages can not be freed at all. This patch simply enables the possibility to hand back those pages to memory allocator. Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: David S. Miller <davem@davemloft.net> [sparc] Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kai Shen
|
2bf753e64b |
mm/hugetlb.c: don't put_page in lock of hugetlb_lock
spinlock recursion happened when do LTP test:
#!/bin/bash
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
The dtor returned by get_compound_page_dtor in __put_compound_page may be
the function of free_huge_page which will lock the hugetlb_lock, so don't
put_page in lock of hugetlb_lock.
BUG: spinlock recursion on CPU#0, hugemmap05/1079
lock: hugetlb_lock+0x0/0x18, .magic: dead4ead, .owner: hugemmap05/1079, .owner_cpu: 0
Call trace:
dump_backtrace+0x0/0x198
show_stack+0x24/0x30
dump_stack+0xa4/0xcc
spin_dump+0x84/0xa8
do_raw_spin_lock+0xd0/0x108
_raw_spin_lock+0x20/0x30
free_huge_page+0x9c/0x260
__put_compound_page+0x44/0x50
__put_page+0x2c/0x60
alloc_surplus_huge_page.constprop.19+0xf0/0x140
hugetlb_acct_memory+0x104/0x378
hugetlb_reserve_pages+0xe0/0x250
hugetlbfs_file_mmap+0xc0/0x140
mmap_region+0x3e8/0x5b0
do_mmap+0x280/0x460
vm_mmap_pgoff+0xf4/0x128
ksys_mmap_pgoff+0xb4/0x258
__arm64_sys_mmap+0x34/0x48
el0_svc_common+0x78/0x130
el0_svc_handler+0x38/0x78
el0_svc+0x8/0xc
Link: http://lkml.kernel.org/r/b8ade452-2d6b-0372-32c2-703644032b47@huawei.com
Fixes:
|
||
Linus Torvalds
|
171c2bcbcb |
Merge branch 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull unified TLB flushing from Ingo Molnar: "This contains the generic mmu_gather feature from Peter Zijlstra, which is an all-arch unification of TLB flushing APIs, via the following (broad) steps: - enhance the <asm-generic/tlb.h> APIs to cover more arch details - convert most TLB flushing arch implementations to the generic <asm-generic/tlb.h> APIs. - remove leftovers of per arch implementations After this series every single architecture makes use of the unified TLB flushing APIs" * 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: mm/resource: Use resource_overlaps() to simplify region_intersects() ia64/tlb: Eradicate tlb_migrate_finish() callback asm-generic/tlb: Remove tlb_table_flush() asm-generic/tlb: Remove tlb_flush_mmu_free() asm-generic/tlb: Remove CONFIG_HAVE_GENERIC_MMU_GATHER asm-generic/tlb: Remove arch_tlb*_mmu() s390/tlb: Convert to generic mmu_gather asm-generic/tlb: Introduce CONFIG_HAVE_MMU_GATHER_NO_GATHER=y arch/tlb: Clean up simple architectures um/tlb: Convert to generic mmu_gather sh/tlb: Convert SH to generic mmu_gather ia64/tlb: Convert to generic mmu_gather arm/tlb: Convert to generic mmu_gather asm-generic/tlb, arch: Invert CONFIG_HAVE_RCU_TABLE_INVALIDATE asm-generic/tlb, ia64: Conditionally provide tlb_migrate_finish() asm-generic/tlb: Provide generic tlb_flush() based on flush_tlb_mm() asm-generic/tlb, arch: Provide generic tlb_flush() based on flush_tlb_range() asm-generic/tlb, arch: Provide generic VIPT cache flush asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE asm-generic/tlb: Provide a comment |
||
Linus Torvalds
|
6b3a707736 |
Merge branch 'page-refs' (page ref overflow)
Merge page ref overflow branch. Jann Horn reported that he can overflow the page ref count with sufficient memory (and a filesystem that is intentionally extremely slow). Admittedly it's not exactly easy. To have more than four billion references to a page requires a minimum of 32GB of kernel memory just for the pointers to the pages, much less any metadata to keep track of those pointers. Jann needed a total of 140GB of memory and a specially crafted filesystem that leaves all reads pending (in order to not ever free the page references and just keep adding more). Still, we have a fairly straightforward way to limit the two obvious user-controllable sources of page references: direct-IO like page references gotten through get_user_pages(), and the splice pipe page duplication. So let's just do that. * branch page-refs: fs: prevent page refcount overflow in pipe_buf_get mm: prevent get_user_pages() from overflowing page refcount mm: add 'try_get_page()' helper function mm: make page ref count overflow check tighter and more explicit |
||
Linus Torvalds
|
8fde12ca79 |
mm: prevent get_user_pages() from overflowing page refcount
If the page refcount wraps around past zero, it will be freed while there are still four billion references to it. One of the possible avenues for an attacker to try to make this happen is by doing direct IO on a page multiple times. This patch makes get_user_pages() refuse to take a new page reference if there are already more than two billion references to the page. Reported-by: Jann Horn <jannh@google.com> Acked-by: Matthew Wilcox <willy@infradead.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Zijlstra
|
ed6a79352c |
asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
Move the mmu_gather::page_size things into the generic code instead of PowerPC specific bits. No change in behavior intended. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Aneesh Kumar K.V
|
9a4e9f3b2d |
mm: update get_user_pages_longterm to migrate pages allocated from CMA region
This patch updates get_user_pages_longterm to migrate pages allocated out of CMA region. This makes sure that we don't keep non-movable pages (due to page reference count) in the CMA area. This will be used by ppc64 in a later patch to avoid pinning pages in the CMA region. ppc64 uses CMA region for allocation of the hardware page table (hash page table) and not able to migrate pages out of CMA region results in page table allocation failures. One case where we hit this easy is when a guest using a VFIO passthrough device. VFIO locks all the guest's memory and if the guest memory is backed by CMA region, it becomes unmovable resulting in fragmenting the CMA and possibly preventing other guests from allocation a large enough hash page table. NOTE: We allocate the new page without using __GFP_THISNODE Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
023bdd0023 |
mm/hugetlb: add prot_modify_start/commit sequence for hugetlb update
Architectures like ppc64 require to do a conditional tlb flush based on the old and new value of pte. Follow the regular pte change protection sequence for hugetlb too. This allows the architectures to override the update sequence. Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
7ed2c31dab |
mm/hugetlb: distinguish between migratability and movability
Patch series "arm64/mm: Enable HugeTLB migration", v4. This patch series enables HugeTLB migration support for all supported huge page sizes at all levels including contiguous bit implementation. Following HugeTLB migration support matrix has been enabled with this patch series. All permutations have been tested except for the 16GB. CONT PTE PMD CONT PMD PUD -------- --- -------- --- 4K: 64K 2M 32M 1G 16K: 2M 32M 1G 64K: 2M 512M 16G First the series adds migration support for PUD based huge pages. It then adds a platform specific hook to query an architecture if a given huge page size is supported for migration while also providing a default fallback option preserving the existing semantics which just checks for (PMD|PUD|PGDIR)_SHIFT macros. The last two patches enables HugeTLB migration on arm64 and subscribe to this new platform specific hook by defining an override. The second patch differentiates between movability and migratability aspects of huge pages and implements hugepage_movable_supported() which can then be used during allocation to decide whether to place the huge page in movable zone or not. This patch (of 5): During huge page allocation it's migratability is checked to determine if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE. But the movability aspect of the huge page could depend on other factors than just migratability. Movability in itself is a distinct property which should not be tied with migratability alone. This differentiates these two and implements an enhanced movability check which also considers huge page size to determine if it is feasible to be placed under a movable zone. At present it just checks for gigantic pages but going forward it can incorporate other enhanced checks. Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Steve Capper <steve.capper@arm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Suggested-by: Michal Hocko <mhocko@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
98fa15f34c |
mm: replace all open encodings for NUMA_NO_NODE
Patch series "Replace all open encodings for NUMA_NO_NODE", v3. All these places for replacement were found by running the following grep patterns on the entire kernel code. Please let me know if this might have missed some instances. This might also have replaced some false positives. I will appreciate suggestions, inputs and review. 1. git grep "nid == -1" 2. git grep "node == -1" 3. git grep "nid = -1" 4. git grep "node = -1" This patch (of 2): At present there are multiple places where invalid node number is encoded as -1. Even though implicitly understood it is always better to have macros in there. Replace these open encodings for an invalid node number with the global macro NUMA_NO_NODE. This helps remove NUMA related assumptions like 'invalid node' from various places redirecting them to a common definition. Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe] Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx] Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband] Cc: Joseph Qi <jiangqi903@gmail.com> Cc: Hans Verkuil <hverkuil@xs4all.nl> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
cb6acd01e2 |
hugetlbfs: fix races and page leaks during migration
hugetlb pages should only be migrated if they are 'active'. The
routines set/clear_page_huge_active() modify the active state of hugetlb
pages.
When a new hugetlb page is allocated at fault time, set_page_huge_active
is called before the page is locked. Therefore, another thread could
race and migrate the page while it is being added to page table by the
fault code. This race is somewhat hard to trigger, but can be seen by
strategically adding udelay to simulate worst case scheduling behavior.
Depending on 'how' the code races, various BUG()s could be triggered.
To address this issue, simply delay the set_page_huge_active call until
after the page is successfully added to the page table.
Hugetlb pages can also be leaked at migration time if the pages are
associated with a file in an explicitly mounted hugetlbfs filesystem.
For example, consider a two node system with 4GB worth of huge pages
available. A program mmaps a 2G file in a hugetlbfs filesystem. It
then migrates the pages associated with the file from one node to
another. When the program exits, huge page counts are as follows:
node0
1024 free_hugepages
1024 nr_hugepages
node1
0 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
That is as expected. 2G of huge pages are taken from the free_hugepages
counts, and 2G is the size of the file in the explicitly mounted
filesystem. If the file is then removed, the counts become:
node0
1024 free_hugepages
1024 nr_hugepages
node1
1024 free_hugepages
1024 nr_hugepages
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G 2.0G 2.0G 50% /var/opt/hugepool
Note that the filesystem still shows 2G of pages used, while there
actually are no huge pages in use. The only way to 'fix' the filesystem
accounting is to unmount the filesystem
If a hugetlb page is associated with an explicitly mounted filesystem,
this information in contained in the page_private field. At migration
time, this information is not preserved. To fix, simply transfer
page_private from old to new page at migration time if necessary.
There is a related race with removing a huge page from a file and
migration. When a huge page is removed from the pagecache, the
page_mapping() field is cleared, yet page_private remains set until the
page is actually freed by free_huge_page(). A page could be migrated
while in this state. However, since page_mapping() is not set the
hugetlbfs specific routine to transfer page_private is not called and we
leak the page count in the filesystem.
To fix that, check for this condition before migrating a huge page. If
the condition is detected, return EBUSY for the page.
Link: http://lkml.kernel.org/r/74510272-7319-7372-9ea6-ec914734c179@oracle.com
Link: http://lkml.kernel.org/r/20190212221400.3512-1-mike.kravetz@oracle.com
Fixes:
|
||
Andrea Arcangeli
|
1ac25013fb |
mm/hugetlb.c: teach follow_hugetlb_page() to handle FOLL_NOWAIT
hugetlb needs the same fix as faultin_nopage (which was applied in commit |