Pass the work_struct pointer to the work function rather than context data.
The work function can use container_of() to work out the data.
For the cases where the container of the work_struct may go away the moment the
pending bit is cleared, it is made possible to defer the release of the
structure by deferring the clearing of the pending bit.
To make this work, an extra flag is introduced into the management side of the
work_struct. This governs auto-release of the structure upon execution.
Ordinarily, the work queue executor would release the work_struct for further
scheduling or deallocation by clearing the pending bit prior to jumping to the
work function. This means that, unless the driver makes some guarantee itself
that the work_struct won't go away, the work function may not access anything
else in the work_struct or its container lest they be deallocated.. This is a
problem if the auxiliary data is taken away (as done by the last patch).
However, if the pending bit is *not* cleared before jumping to the work
function, then the work function *may* access the work_struct and its container
with no problems. But then the work function must itself release the
work_struct by calling work_release().
In most cases, automatic release is fine, so this is the default. Special
initiators exist for the non-auto-release case (ending in _NAR).
Signed-Off-By: David Howells <dhowells@redhat.com>
This is a quick hack to overcome the fact that SRCU currently does not
allow static initializers, and we need to sometimes initialize those
things before any other initializers (even "core" ones) can do so.
Currently we don't allow this at all for modules, and the only user that
needs is right now is cpufreq. As reported by Thomas Gleixner:
"Commit b4dfdbb3c7 ("[PATCH] cpufreq:
make the transition_notifier chain use SRCU breaks cpu frequency
notification users, which register the callback > on core_init
level."
Cc: Thomas Gleixner <tglx@timesys.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Andrew Morton <akpm@osdl.org>,
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up cpufreq subsystem to fix coding style issues and to improve
the readability.
Signed-off-by: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Enable ondemand governor and acpi-cpufreq to use IA32_APERF and IA32_MPERF MSR
to get active frequency feedback for the last sampling interval. This will
make ondemand take right frequency decisions when hardware coordination of
frequency is going on.
Without APERF/MPERF, ondemand can take wrong decision at times due
to underlying hardware coordination or TM2.
Example:
* CPU 0 and CPU 1 are hardware cooridnated.
* CPU 1 running at highest frequency.
* CPU 0 was running at highest freq. Now ondemand reduces it to
some intermediate frequency based on utilization.
* Due to underlying hardware coordination with other CPU 1, CPU 0 continues to
run at highest frequency (as long as other CPU is at highest).
* When ondemand samples CPU 0 again next time, without actual frequency
feedback from APERF/MPERF, it will think that previous frequency change
was successful and can go to wrong target frequency. This is because it
thinks that utilization it has got this sampling interval is when running at
intermediate frequency, rather than actual highest frequency.
More information about IA32_APERF IA32_MPERF MSR:
Refer to IA-32 Intel® Architecture Software Developer's Manual at
http://developer.intel.com
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
This patch (as762) changes the cpufreq_transition_notifier_list from a
blocking_notifier_head to an srcu_notifier_head. This will prevent errors
caused attempting to call down_read() to access the notifier chain at a
time when interrupts must remain disabled, during system suspend.
It's not clear to me whether this is really necessary; perhaps the chain
could be made into an atomic_notifier. However a couple of the callout
routines do use blocking operations, so this approach seems safer.
The head of the notifier chain needs to be initialized before use; this is
done by an __init routine at core_initcall time. If this turns out not to
be a good choice, it can easily be changed.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Jesse Brandeburg <jesse.brandeburg@gmail.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Adds a __find_governor() helper function to look up a governor by
name. Also restructures some error handling to conform to the
"single-exit" model which is generally preferred for kernel code.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Dave Jones <davej@redhat.com>
I just stumbled on this bug/feature, this is how to reproduce it:
# echo 450000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq
# echo 450000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq
# echo powersave > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
# cpufreq-info -p
450000 450000 powersave
# echo 1800000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq ; echo $?
0
# cpufreq-info -p
450000 450000 powersave
Here it is. The kernel refuses to set a min_freq higher than the
max_freq but it allows a max_freq lower than min_freq (lowering min_freq
also).
This behaviour is pretty straightforward (but undocumented) and it
doesn't return an error altough failing to accomplish the requested
action (set min_freq).
The problem (IMO) is basically that userspace is not allowed to set a
full policy atomically while the kernel always does that thus it must
enforce an ordering on operations.
The attached patch returns -EINVAL if trying to increase frequencies
starting from scaling_min_freq and documents the correct ordering of writes.
Signed-off-by: Mattia Dongili <malattia@linux.it>
Signed-off-by: Dominik Brodowski <linux at dominikbrodowski.net>
Signed-off-by: Dave Jones <davej@redhat.com>
--
The patch below moves the cpu hotplugging higher up in the cpufreq
layering; this is needed to avoid recursive taking of the cpu hotplug
lock and to otherwise detangle the mess.
The new rules are:
1. you must do lock_cpu_hotplug() around the following functions:
__cpufreq_driver_target
__cpufreq_governor (for CPUFREQ_GOV_LIMITS operation only)
__cpufreq_set_policy
2. governer methods (.governer) must NOT take the lock_cpu_hotplug()
lock in any way; they are called with the lock taken already
3. if your governer spawns a thread that does things, like calling
__cpufreq_driver_target, your thread must honor rule #1.
4. the policy lock and other cpufreq internal locks nest within
the lock_cpu_hotplug() lock.
I'm not entirely happy about how the __cpufreq_governor rule ended up
(conditional locking rule depending on the argument) but basically all
callers pass this as a constant so it's not too horrible.
The patch also removes the cpufreq_governor() function since during the
locking audit it turned out to be entirely unused (so no need to fix it)
The patch works on my testbox, but it could use more testing
(otoh... it can't be much worse than the current code)
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
[ There's some not quite baked bits in cpufreq-git right now
so sending this on as a patch instead ]
On Thu, 2006-07-06 at 07:58 -0700, Tom London wrote:
> After installing .2356 I get this each time I boot:
> =======================================================
> [ INFO: possible circular locking dependency detected ]
> -------------------------------------------------------
> S06cpuspeed/1620 is trying to acquire lock:
> (dbs_mutex){--..}, at: [<c060d6bb>] mutex_lock+0x21/0x24
>
> but task is already holding lock:
> (cpucontrol){--..}, at: [<c060d6bb>] mutex_lock+0x21/0x24
>
> which lock already depends on the new lock.
>
make sure the cpu hotplug recursive mutex (yuck) is taken early in the
cpufreq codepaths to avoid a AB-BA deadlock.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make notifier_blocks associated with cpu_notifier as __cpuinitdata.
__cpuinitdata makes sure that the data is init time only unless
CONFIG_HOTPLUG_CPU is defined.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
CPUs come online only at init time (unless CONFIG_HOTPLUG_CPU is defined).
So, cpu_notifier functionality need to be available only at init time.
This patch makes register_cpu_notifier() available only at init time, unless
CONFIG_HOTPLUG_CPU is defined.
This patch exports register_cpu_notifier() and unregister_cpu_notifier() only
if CONFIG_HOTPLUG_CPU is defined.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In 2.6.17, there was a problem with cpu_notifiers and XFS. I provided a
band-aid solution to solve that problem. In the process, i undid all the
changes you both were making to ensure that these notifiers were available
only at init time (unless CONFIG_HOTPLUG_CPU is defined).
We deferred the real fix to 2.6.18. Here is a set of patches that fixes the
XFS problem cleanly and makes the cpu notifiers available only at init time
(unless CONFIG_HOTPLUG_CPU is defined).
If CONFIG_HOTPLUG_CPU is defined then cpu notifiers are available at run
time.
This patch reverts the notifier_call changes made in 2.6.17
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove KERN_* suffixes from some cpufreq driver's dprintk-s.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Few of the notifier_chain_register() callers use __init in the definition
of notifier_call. It is incorrect as the function definition should be
available after the initializations (they do not unregister them during
initializations).
This patch fixes all such usages to _not_ have the notifier_call __init
section.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch removes the EXPORT_SYMBOL_GPL of the static function cpufreq_parse_governor().
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave Jones <davej@redhat.com>
The previous patch had bugs (locking and refcount).
This one could also be related to the latest DELL reports.
But they only slip into this if a user prog (e.g. powersave daemon does when
AC got (un) plugged due to a scheme change) echos something to
/sys/../cpufreq/scaling_governor
while the frequencies got limited by BIOS.
This one works:
Subject: Max freq stucks at low freq if reduced by _PPC and sysfs gov access
The problem is reproducable by(if machine is limiting freqs via BIOS):
- Unplugging AC -> max freq gets limited
- echo ${governor} >/sys/.../cpufreq/scaling_governor (policy->user_data.max
gets overridden with policy->max and will never come up again.)
This patch exchanged the cpufreq_set_policy call to __cpufreq_set_policy and
duplicated it's functionality but did not override user_data.max.
The same happens with overridding min/max values. If freqs are limited and
you override the min freq value, the max freq global value will also get
stuck to the limited freq, even if BIOS allows all freqs again.
Last scenario does only happen if BIOS does not reduce the frequency
to the lowest value (should never happen, just for correctness...)
drivers/cpufreq/cpufreq.c | 17 +++++++++++++++--
1 files changed, 15 insertions(+), 2 deletions(-)
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: "Pallipadi, Venkatesh" <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
The kernel's implementation of notifier chains is unsafe. There is no
protection against entries being added to or removed from a chain while the
chain is in use. The issues were discussed in this thread:
http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2
We noticed that notifier chains in the kernel fall into two basic usage
classes:
"Blocking" chains are always called from a process context
and the callout routines are allowed to sleep;
"Atomic" chains can be called from an atomic context and
the callout routines are not allowed to sleep.
We decided to codify this distinction and make it part of the API. Therefore
this set of patches introduces three new, parallel APIs: one for blocking
notifiers, one for atomic notifiers, and one for "raw" notifiers (which is
really just the old API under a new name). New kinds of data structures are
used for the heads of the chains, and new routines are defined for
registration, unregistration, and calling a chain. The three APIs are
explained in include/linux/notifier.h and their implementation is in
kernel/sys.c.
With atomic and blocking chains, the implementation guarantees that the chain
links will not be corrupted and that chain callers will not get messed up by
entries being added or removed. For raw chains the implementation provides no
guarantees at all; users of this API must provide their own protections. (The
idea was that situations may come up where the assumptions of the atomic and
blocking APIs are not appropriate, so it should be possible for users to
handle these things in their own way.)
There are some limitations, which should not be too hard to live with. For
atomic/blocking chains, registration and unregistration must always be done in
a process context since the chain is protected by a mutex/rwsem. Also, a
callout routine for a non-raw chain must not try to register or unregister
entries on its own chain. (This did happen in a couple of places and the code
had to be changed to avoid it.)
Since atomic chains may be called from within an NMI handler, they cannot use
spinlocks for synchronization. Instead we use RCU. The overhead falls almost
entirely in the unregister routine, which is okay since unregistration is much
less frequent that calling a chain.
Here is the list of chains that we adjusted and their classifications. None
of them use the raw API, so for the moment it is only a placeholder.
ATOMIC CHAINS
-------------
arch/i386/kernel/traps.c: i386die_chain
arch/ia64/kernel/traps.c: ia64die_chain
arch/powerpc/kernel/traps.c: powerpc_die_chain
arch/sparc64/kernel/traps.c: sparc64die_chain
arch/x86_64/kernel/traps.c: die_chain
drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list
kernel/panic.c: panic_notifier_list
kernel/profile.c: task_free_notifier
net/bluetooth/hci_core.c: hci_notifier
net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain
net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain
net/ipv6/addrconf.c: inet6addr_chain
net/netfilter/nf_conntrack_core.c: nf_conntrack_chain
net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain
net/netlink/af_netlink.c: netlink_chain
BLOCKING CHAINS
---------------
arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain
arch/s390/kernel/process.c: idle_chain
arch/x86_64/kernel/process.c idle_notifier
drivers/base/memory.c: memory_chain
drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list
drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list
drivers/macintosh/adb.c: adb_client_list
drivers/macintosh/via-pmu.c sleep_notifier_list
drivers/macintosh/via-pmu68k.c sleep_notifier_list
drivers/macintosh/windfarm_core.c wf_client_list
drivers/usb/core/notify.c usb_notifier_list
drivers/video/fbmem.c fb_notifier_list
kernel/cpu.c cpu_chain
kernel/module.c module_notify_list
kernel/profile.c munmap_notifier
kernel/profile.c task_exit_notifier
kernel/sys.c reboot_notifier_list
net/core/dev.c netdev_chain
net/decnet/dn_dev.c: dnaddr_chain
net/ipv4/devinet.c: inetaddr_chain
It's possible that some of these classifications are wrong. If they are,
please let us know or submit a patch to fix them. Note that any chain that
gets called very frequently should be atomic, because the rwsem read-locking
used for blocking chains is very likely to incur cache misses on SMP systems.
(However, if the chain's callout routines may sleep then the chain cannot be
atomic.)
The patch set was written by Alan Stern and Chandra Seetharaman, incorporating
material written by Keith Owens and suggestions from Paul McKenney and Andrew
Morton.
[jes@sgi.com: restructure the notifier chain initialization macros]
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds proper logic to cpufreq driver in order to handle
CPU Hotplug.
When CPUs go on/offline, the affected CPUs data, cpufreq_policy->cpus,
is not updated properly. This causes sysfs directories and symlinks to
be in an incorrect state after few CPU on/offlines.
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Introduce caching of cpufreq_cpu_data[freqs->cpu], which allows us to
make the function a lot more readable, and as a nice side-effect, it
now fits in < 80 column displays again.
Signed-off-by: Dave Jones <davej@redhat.com>
BIOS might change frequency behind our back when BIOS changes allowed
frequencies via _PPC. In this case cpufreq core got out of sync.
Ask driver for current freq and notify governors about a change
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Make the cpufreq code play nicely with the mutex debugging code: don't free a
held mutex.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Dave Jones <davej@redhat.com>
This one fell through the automation at first because it initializes the
semaphore to locked, but that's easily remedied
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Dave Jones <davej@redhat.com>
drivers/cpufreq/cpufreq.c | 37 +++++++++++++++++++------------------
include/linux/cpufreq.h | 3 ++-
2 files changed, 21 insertions(+), 19 deletions(-)
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Remove the "inline" keyword from a bunch of big functions in the kernel with
the goal of shrinking it by 30kb to 40kb
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jeff Garzik <jgarzik@pobox.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
What is the value shown in "cpu MHz" of /proc/cpuinfo when CPUs are capable of
changing frequency?
Today the answer is: It depends.
On i386:
SMP kernel - It is always the boot frequency
UP kernel - Scales with the frequency change and shows that was last set.
On x86_64:
There is one single variable cpu_khz that gets written by all the CPUs. So,
the frequency set by last CPU will be seen on /proc/cpuinfo of all the
CPUs in the system. What you see also depends on whether you have constant_tsc
capable CPU or not.
On ia64:
It is always boot time frequency of a particular CPU that gets displayed.
The patch below changes this to:
Show the last known frequency of the particular CPU, when cpufreq is present. If
cpu doesnot support changing of frequency through cpufreq, then boot frequency
will be shown. The patch affects i386, x86_64 and ia64 architectures.
Signed-off-by: Venkatesh Pallipadi<venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
There are some callers in cpufreq hotplug notify path that the lowest
function calls lock_cpu_hotplug(). The lock is already held during
cpu_up() and cpu_down() calls when the notify calls are broadcast to
registered clients.
Ideally if possible, we could disable_preempt() at the highest caller and
make sure we dont sleep in the path down in cpufreq->driver_target() calls
but the calls are so intertwined and cumbersome to cleanup.
Hence we consistently use lock_cpu_hotplug() and unlock_cpu_hotplug() in
all places.
- Removed export of cpucontrol semaphore and made it static.
- removed explicit uses of up/down with lock_cpu_hotplug()
so we can keep track of the the callers in same thread context and
just keep refcounts without calling a down() that causes a deadlock.
- Removed current_in_hotplug() uses
- Removed PF_HOTPLUG_CPU in sched.h introduced for the current_in_hotplug()
temporary workaround.
Tested with insmod of cpufreq_stat.ko, and logical online/offline
to make sure we dont have any hang situations.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Cc: Zwane Mwaikambo <zwane@linuxpower.ca>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
drivers/cpufreq/cpufreq.c: In function `cpufreq_remove_dev':
drivers/cpufreq/cpufreq.c:696: warning: unused variable `cpu_sys_dev'
Signed-off-by: Grant Coady <gcoady@gmail.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When calling target drivers to set frequency, we take cpucontrol lock.
When we modified the code to accomodate CPU hotplug, there was an attempt
to take a double lock of cpucontrol leading to a deadlock. Since the
current thread context is already holding the cpucontrol lock, we dont need
to make another attempt to acquire it.
Now we leave a trace in current->flags indicating current thread already is
under cpucontrol lock held, so we dont attempt to do this another time.
Thanks to Andrew Morton for the beating:-)
From: Brice Goglin <Brice.Goglin@ens-lyon.org>
Build fix
(akpm: this patch is still unpleasant. Ashok continues to look for a cleaner
solution, doesn't he? ;))
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
cpufreq entries in sysfs should only be populated when CPU is online state.
When we either boot with maxcpus=x and then boot the other cpus by echoing
to sysfs online file, these entries should be created and destroyed when
CPU_DEAD is notified. Same treatement as cache entries under sysfs.
We place the processor in the lowest frequency, so hw managed P-State
transitions can still work on the other threads to save power.
Primary goal was to just make these directories appear/disapper dynamically.
There is one in this patch i had to do, which i really dont like myself but
probably best if someone handling the cpufreq infrastructure could give
this code right treatment if this is not acceptable. I guess its probably
good for the first cut.
- Converting lock_cpu_hotplug()/unlock_cpu_hotplug() to disable/enable preempt.
The locking was smack in the middle of the notification path, when the
hotplug is already holding the lock. I tried another solution to avoid this
so avoid taking locks if we know we are from notification path. The solution
was getting very ugly and i decided this was probably good for this iteration
until someone who understands cpufreq could do a better job than me.
(akpm: export cpucontrol to GPL modules: drivers/cpufreq/cpufreq_stats.c now
does lock_cpu_hotplug())
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Zwane Mwaikambo <zwane@holomorphy.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
cpu_sys_devices is redundant with the new API get_cpu_sysdev(). So nuking
this usage since its not needed.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Zwane Mwaikambo <zwane@holomorphy.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A minor fix for cpufreq_add_dev() error path. We need to call driver->exit()
if driver_init() call has succeeded.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
* ret has no need to be unsigned in cpufreq_driver_target()
* ret has no need to be initialized in __cpufreq_governor()
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Dave Jones <davej@redhat.com>
Fix u32 vs pm_message_t confusion in cpufreq.
Signed-off-by: Bernard Blackham <bernard@blackham.com.au>
Signed-off-by: Pavel Machek <pavel@suse.cz>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
sysfs: fix the rest of the kernel so if an attribute doesn't
implement show or store method read/write will return
-EIO instead of 0 or -EINVAL or -EPERM.
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
cpufreq core is printing out messages at KERN_WARNING level that the core
recovers from without intervention, and that the system administrator can
do nothing about. Patch below reduces the severity of these messages to
debug.
Signed-off-by: Matt Domsch <Matt_Domsch@dell.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Dave Jones <davej@redhat.com>
The cpufreq core patch I sent earlier got only half-applied. I added a
flag to let the low level driver disable an annoying warning on
suspend/resume that is normal on ppc, but the "resume" part of it wasn't
applied.
This just adds back that missing bit. The original patch also reworked
the resume() function to avoid nesting too many if () statements along
the way I did the suspend() one, but I didn't include that in the patch
below.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In order to properly fix some issues with cpufreq vs. sleep on
PowerBooks, I had to add a suspend callback to the pmac_cpufreq driver.
I must force a switch to full speed before sleep and I switch back to
previous speed on resume.
I also added a driver flag to disable the warnings in suspend/resume
since it is expected in this case to have different speed (and I want it
to fixup the jiffies properly).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!