Commit Graph

1133 Commits

Author SHA1 Message Date
Yafang Shao
766a4c19d8 mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones
After commit 815744d751 ("mm: memcontrol: don't batch updates of local
VM stats and events"), the local VM counter are not in sync with the
hierarchical ones.

Below is one example in a leaf memcg on my server (with 8 CPUs):

	inactive_file 3567570944
	total_inactive_file 3568029696

We find that the deviation is very great because the 'val' in
__mod_memcg_state() is in pages while the effective value in
memcg_stat_show() is in bytes.

So the maximum of this deviation between local VM stats and total VM
stats can be (32 * number_of_cpu * PAGE_SIZE), that may be an
unacceptably great value.

We should keep the local VM stats in sync with the total stats.  In
order to keep this behavior the same across counters, this patch updates
__mod_lruvec_state() and __count_memcg_events() as well.

Link: http://lkml.kernel.org/r/1562851979-10610-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-16 19:23:21 -07:00
Linus Torvalds
fec88ab0af HMM patches for 5.3
Improvements and bug fixes for the hmm interface in the kernel:
 
 - Improve clarity, locking and APIs related to the 'hmm mirror' feature
   merged last cycle. In linux-next we now see AMDGPU and nouveau to be
   using this API.
 
 - Remove old or transitional hmm APIs. These are hold overs from the past
   with no users, or APIs that existed only to manage cross tree conflicts.
   There are still a few more of these cleanups that didn't make the merge
   window cut off.
 
 - Improve some core mm APIs:
   * export alloc_pages_vma() for driver use
   * refactor into devm_request_free_mem_region() to manage
     DEVICE_PRIVATE resource reservations
   * refactor duplicative driver code into the core dev_pagemap
     struct
 
 - Remove hmm wrappers of improved core mm APIs, instead have drivers use
   the simplified API directly
 
 - Remove DEVICE_PUBLIC
 
 - Simplify the kconfig flow for the hmm users and core code
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl0k1zkACgkQOG33FX4g
 mxrO+w//QF/yI/9Hh30RWEBq8W107cODkDlaT0Z/7cVEXfGetZzIUpqzxnJofRfQ
 xTw1XmYkc9WpJe/mTTuFZFewNQwWuMM6X0Xi25fV438/Y64EclevlcJTeD49TIH1
 CIMsz8bX7CnCEq5sz+UypLg9LPnaD9L/JLyuSbyjqjms/o+yzqa7ji7p/DSINuhZ
 Qva9OZL1ZSEDJfNGi8uGpYBqryHoBAonIL12R9sCF5pbJEnHfWrH7C06q7AWOAjQ
 4vjN/p3F4L9l/v2IQ26Kn/S0AhmN7n3GT//0K66e2gJPfXa8fxRKGuFn/Kd79EGL
 YPASn5iu3cM23up1XkbMNtzacL8yiIeTOcMdqw26OaOClojy/9OJduv5AChe6qL/
 VUQIAn1zvPsJTyC5U7mhmkrGuTpP6ivHpxtcaUp+Ovvi1cyK40nLCmSNvLnbN5ES
 bxbb0SjE4uupDG5qU6Yct/hFp6uVMSxMqXZOb9Xy8ZBkbMsJyVOLj71G1/rVIfPU
 hO1AChX5CRG1eJoMo6oBIpiwmSvcOaPp3dqIOQZvwMOqrO869LR8qv7RXyh/g9gi
 FAEKnwLl4GK3YtEO4Kt/1YI5DXYjSFUbfgAs0SPsRKS6hK2+RgRk2M/B/5dAX0/d
 lgOf9WPODPwiSXBYLtJB8qHVDX0DIY8faOyTx6BYIKClUtgbBI8=
 =wKvp
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull HMM updates from Jason Gunthorpe:
 "Improvements and bug fixes for the hmm interface in the kernel:

   - Improve clarity, locking and APIs related to the 'hmm mirror'
     feature merged last cycle. In linux-next we now see AMDGPU and
     nouveau to be using this API.

   - Remove old or transitional hmm APIs. These are hold overs from the
     past with no users, or APIs that existed only to manage cross tree
     conflicts. There are still a few more of these cleanups that didn't
     make the merge window cut off.

   - Improve some core mm APIs:
       - export alloc_pages_vma() for driver use
       - refactor into devm_request_free_mem_region() to manage
         DEVICE_PRIVATE resource reservations
       - refactor duplicative driver code into the core dev_pagemap
         struct

   - Remove hmm wrappers of improved core mm APIs, instead have drivers
     use the simplified API directly

   - Remove DEVICE_PUBLIC

   - Simplify the kconfig flow for the hmm users and core code"

* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits)
  mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR
  mm: remove the HMM config option
  mm: sort out the DEVICE_PRIVATE Kconfig mess
  mm: simplify ZONE_DEVICE page private data
  mm: remove hmm_devmem_add
  mm: remove hmm_vma_alloc_locked_page
  nouveau: use devm_memremap_pages directly
  nouveau: use alloc_page_vma directly
  PCI/P2PDMA: use the dev_pagemap internal refcount
  device-dax: use the dev_pagemap internal refcount
  memremap: provide an optional internal refcount in struct dev_pagemap
  memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
  memremap: remove the data field in struct dev_pagemap
  memremap: add a migrate_to_ram method to struct dev_pagemap_ops
  memremap: lift the devmap_enable manipulation into devm_memremap_pages
  memremap: pass a struct dev_pagemap to ->kill and ->cleanup
  memremap: move dev_pagemap callbacks into a separate structure
  memremap: validate the pagemap type passed to devm_memremap_pages
  mm: factor out a devm_request_free_mem_region helper
  mm: export alloc_pages_vma
  ...
2019-07-14 19:42:11 -07:00
Shakeel Butt
6ba749ee78 mm, oom: remove redundant task_in_mem_cgroup() check
oom_unkillable_task() can be called from three different contexts i.e.
global OOM, memcg OOM and oom_score procfs interface.  At the moment
oom_unkillable_task() does a task_in_mem_cgroup() check on the given
process.  Since there is no reason to perform task_in_mem_cgroup()
check for global OOM and oom_score procfs interface, those contexts
provide NULL memcg and skips the task_in_mem_cgroup() check.  However
for memcg OOM context, the oom_unkillable_task() is always called from
mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes
redundant and effectively dead code.  So, just remove the
task_in_mem_cgroup() check altogether.

Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:47 -07:00
Tetsuo Handa
f168a9a54e mm: memcontrol: use CSS_TASK_ITER_PROCS at mem_cgroup_scan_tasks()
Since commit c03cd7738a ("cgroup: Include dying leaders with live
threads in PROCS iterations") corrected how CSS_TASK_ITER_PROCS works,
mem_cgroup_scan_tasks() can use CSS_TASK_ITER_PROCS in order to check
only one thread from each thread group.

[penguin-kernel@I-love.SAKURA.ne.jp: remove thread group leader check in oom_evaluate_task()]
  Link: http://lkml.kernel.org/r/1560853257-14934-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Link: http://lkml.kernel.org/r/c763afc8-f0ae-756a-56a7-395f625b95fc@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:47 -07:00
Roman Gushchin
fb2f2b0adb mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
Let's reparent non-root kmem_caches on memcg offlining.  This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g.  dentry used by another application).

Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.

Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore.  It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.

We can race with the slab allocation and deallocation paths.  It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats.  The child
cgroup is already offline, so we don't use or show it anywhere.

Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes().  But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.

[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
  Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
4d96ba3530 mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages
Every slab page charged to a non-root memory cgroup has a pointer to the
memory cgroup and holds a reference to it, which protects a non-empty
memory cgroup from being released.  At the same time the page has a
pointer to the corresponding kmem_cache, and also hold a reference to the
kmem_cache.  And kmem_cache by itself holds a reference to the cgroup.

So there is clearly some redundancy, which allows to stop setting the
page->mem_cgroup pointer and rely on getting memcg pointer indirectly via
kmem_cache.  Further it will allow to change this pointer easier, without
a need to go over all charged pages.

So let's stop setting page->mem_cgroup pointer for slab pages, and stop
using the css refcounter directly for protecting the memory cgroup from
going away.  Instead rely on kmem_cache as an intermediate object.

Make sure that vmstats and shrinker lists are working as previously, as
well as /proc/kpagecgroup interface.

Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
f0a3a24b53 mm: memcg/slab: rework non-root kmem_cache lifecycle management
Currently each charged slab page holds a reference to the cgroup to which
it's charged.  Kmem_caches are held by the memcg and are released all
together with the memory cgroup.  It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.

Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.

To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches.  The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation.  The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.

To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation.  Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.

* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):

    time find / -name fname-no-exist
    echo 2 > /proc/sys/vm/drop_caches
    repeat 10 times

Results:

        orig		patched

real	0m1.455s	real	0m1.355s
user	0m0.206s	user	0m0.219s
sys	0m0.855s	sys	0m0.807s

real	0m1.487s	real	0m1.699s
user	0m0.221s	user	0m0.256s
sys	0m0.806s	sys	0m0.948s

real	0m1.515s	real	0m1.505s
user	0m0.183s	user	0m0.215s
sys	0m0.876s	sys	0m0.858s

real	0m1.291s	real	0m1.380s
user	0m0.193s	user	0m0.198s
sys	0m0.843s	sys	0m0.786s

real	0m1.364s	real	0m1.374s
user	0m0.180s	user	0m0.182s
sys	0m0.868s	sys	0m0.806s

real	0m1.352s	real	0m1.312s
user	0m0.201s	user	0m0.212s
sys	0m0.820s	sys	0m0.761s

real	0m1.302s	real	0m1.349s
user	0m0.205s	user	0m0.203s
sys	0m0.803s	sys	0m0.792s

real	0m1.334s	real	0m1.301s
user	0m0.194s	user	0m0.201s
sys	0m0.806s	sys	0m0.779s

real	0m1.426s	real	0m1.434s
user	0m0.216s	user	0m0.181s
sys	0m0.824s	sys	0m0.864s

real	0m1.350s	real	0m1.295s
user	0m0.200s	user	0m0.190s
sys	0m0.842s	sys	0m0.811s

So it looks like the difference is not noticeable in this test.

[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
  Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
49a18eae2e mm: memcg/slab: introduce __memcg_kmem_uncharge_memcg()
Let's separate the page counter modification code out of
__memcg_kmem_uncharge() in a way similar to what
__memcg_kmem_charge() and __memcg_kmem_charge_memcg() work.

This will allow to reuse this code later using a new
memcg_kmem_uncharge_memcg() wrapper, which calls
__memcg_kmem_uncharge_memcg() if memcg_kmem_enabled()
check is passed.

Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Johannes Weiner
c8713d0b23 mm: memcontrol: dump memory.stat during cgroup OOM
The current cgroup OOM memory info dump doesn't include all the memory
we are tracking, nor does it give insight into what the VM tried to do
leading up to the OOM. All that useful info is in memory.stat.

Furthermore, the recursive printing for every child cgroup can
generate absurd amounts of data on the console for larger cgroup
trees, and it's not like we provide a per-cgroup breakdown during
global OOM kills.

When an OOM kill is triggered, print one set of recursive memory.stat
items at the level whose limit triggered the OOM condition.

Example output:

    stress invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0
    CPU: 2 PID: 210 Comm: stress Not tainted 5.2.0-rc2-mm1-00247-g47d49835983c #135
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
    Call Trace:
     dump_stack+0x46/0x60
     dump_header+0x4c/0x2d0
     oom_kill_process.cold.10+0xb/0x10
     out_of_memory+0x200/0x270
     ? try_to_free_mem_cgroup_pages+0xdf/0x130
     mem_cgroup_out_of_memory+0xb7/0xc0
     try_charge+0x680/0x6f0
     mem_cgroup_try_charge+0xb5/0x160
     __add_to_page_cache_locked+0xc6/0x300
     ? list_lru_destroy+0x80/0x80
     add_to_page_cache_lru+0x45/0xc0
     pagecache_get_page+0x11b/0x290
     filemap_fault+0x458/0x6d0
     ext4_filemap_fault+0x27/0x36
     __do_fault+0x2f/0xb0
     __handle_mm_fault+0x9c5/0x1140
     ? apic_timer_interrupt+0xa/0x20
     handle_mm_fault+0xc5/0x180
     __do_page_fault+0x1ab/0x440
     ? page_fault+0x8/0x30
     page_fault+0x1e/0x30
    RIP: 0033:0x55c32167fc10
    Code: Bad RIP value.
    RSP: 002b:00007fff1d031c50 EFLAGS: 00010206
    RAX: 000000000dc00000 RBX: 00007fd2db000010 RCX: 00007fd2db000010
    RDX: 0000000000000000 RSI: 0000000010001000 RDI: 0000000000000000
    RBP: 000055c321680a54 R08: 00000000ffffffff R09: 0000000000000000
    R10: 0000000000000022 R11: 0000000000000246 R12: ffffffffffffffff
    R13: 0000000000000002 R14: 0000000000001000 R15: 0000000010000000
    memory: usage 1024kB, limit 1024kB, failcnt 75131
    swap: usage 0kB, limit 9007199254740988kB, failcnt 0
    Memory cgroup stats for /foo:
    anon 0
    file 0
    kernel_stack 36864
    slab 274432
    sock 0
    shmem 0
    file_mapped 0
    file_dirty 0
    file_writeback 0
    anon_thp 0
    inactive_anon 126976
    active_anon 0
    inactive_file 0
    active_file 0
    unevictable 0
    slab_reclaimable 0
    slab_unreclaimable 274432
    pgfault 59466
    pgmajfault 1617
    workingset_refault 2145
    workingset_activate 0
    workingset_nodereclaim 0
    pgrefill 98952
    pgscan 200060
    pgsteal 59340
    pgactivate 40095
    pgdeactivate 96787
    pglazyfree 0
    pglazyfreed 0
    thp_fault_alloc 0
    thp_collapse_alloc 0
    Tasks state (memory values in pages):
    [  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name
    [    200]     0   200     1121      884    53248       29             0 bash
    [    209]     0   209      905      246    45056       19             0 stress
    [    210]     0   210    66442       56   499712    56349             0 stress
    oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),oom_memcg=/foo,task_memcg=/foo,task=stress,pid=210,uid=0
    Memory cgroup out of memory: Killed process 210 (stress) total-vm:265768kB, anon-rss:0kB, file-rss:224kB, shmem-rss:0kB
    oom_reaper: reaped process 210 (stress), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

[hannes@cmpxchg.org: s/kvmalloc/kmalloc/ per Michal]
  Link: http://lkml.kernel.org/r/20190605161133.GA12453@cmpxchg.org
Link: http://lkml.kernel.org/r/20190604210509.9744-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Shakeel Butt
1e577f970f mm, memcg: introduce memory.events.local
The memory controller in cgroup v2 exposes memory.events file for each
memcg which shows the number of times events like low, high, max, oom
and oom_kill have happened for the whole tree rooted at that memcg.
Users can also poll or register notification to monitor the changes in
that file.  Any event at any level of the tree rooted at memcg will
notify all the listeners along the path till root_mem_cgroup.  There are
existing users which depend on this behavior.

However there are users which are only interested in the events
happening at a specific level of the memcg tree and not in the events in
the underlying tree rooted at that memcg.  One such use-case is a
centralized resource monitor which can dynamically adjust the limits of
the jobs running on a system.  The jobs can create their sub-hierarchy
for their own sub-tasks.  The centralized monitor is only interested in
the events at the top level memcgs of the jobs as it can then act and
adjust the limits of the jobs.  Using the current memory.events for such
centralized monitor is very inconvenient.  The monitor will keep
receiving events which it is not interested and to find if the received
event is interesting, it has to read memory.event files of the next
level and compare it with the top level one.  So, let's introduce
memory.events.local to the memcg which shows and notify for the events
at the memcg level.

Now, does memory.stat and memory.pressure need their local versions.  IMHO
no due to the no internal process contraint of the cgroup v2.  The
memory.stat file of the top level memcg of a job shows the stats and
vmevents of the whole tree.  The local stats or vmevents of the top level
memcg will only change if there is a process running in that memcg but v2
does not allow that.  Similarly for memory.pressure there will not be any
process in the internal nodes and thus no chance of local pressure.

Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Shakeel Butt
38d384932e memcg, oom: no oom-kill for __GFP_RETRY_MAYFAIL
The documentation of __GFP_RETRY_MAYFAIL clearly mentioned that the OOM
killer will not be triggered and indeed the page alloc does not invoke OOM
killer for such allocations.  However we do trigger memcg OOM killer for
__GFP_RETRY_MAYFAIL.  Fix that.  This flag will used later to not trigger
oom-killer in the charging path for fanotify and inotify event
allocations.

Link: http://lkml.kernel.org/r/20190514212259.156585-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Yafang Shao
dd9239900e mm/memcontrol: fix wrong statistics in memory.stat
When we calculate total statistics for memcg1_stats and memcg1_events,
we use the the index 'i' in the for loop as the events index.  Actually
we should use memcg1_stats[i] and memcg1_events[i] as the events index.

Link: http://lkml.kernel.org/r/1562116978-19539-1-git-send-email-laoar.shao@gmail.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty").
Signed-off-by: Yafang Shao <laoar.shao@gmail.com
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:40 -07:00
Christoph Hellwig
25b2995a35 mm: remove MEMORY_DEVICE_PUBLIC support
The code hasn't been used since it was added to the tree, and doesn't
appear to actually be usable.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-07-02 14:32:43 -03:00
Johannes Weiner
815744d751 mm: memcontrol: don't batch updates of local VM stats and events
The kernel test robot noticed a 26% will-it-scale pagefault regression
from commit 42a3003535 ("mm: memcontrol: fix recursive statistics
correctness & scalabilty").  This appears to be caused by bouncing the
additional cachelines from the new hierarchical statistics counters.

We can fix this by getting rid of the batched local counters instead.

Originally, there were *only* group-local counters, and they were fully
maintained per cpu.  A reader of a stats file high up in the cgroup tree
would have to walk the entire subtree and collect each level's per-cpu
counters to get the recursive view.  This was prohibitively expensive,
and so we switched to per-cpu batched updates of the local counters
during a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), reducing the complexity from nr_subgroups *
nr_cpus to nr_subgroups.

With growing machines and cgroup trees, the tree walk itself became too
expensive for monitoring top-level groups, and this is when the culprit
patch added hierarchy counters on each cgroup level.  When the per-cpu
batch size would be reached, both the local and the hierarchy counters
would get batch-updated from the per-cpu delta simultaneously.

This makes local and hierarchical counter reads blazingly fast, but it
unfortunately makes the write-side too cache line intense.

Since local counter reads were never a problem - we only centralized
them to accelerate the hierarchy walk - and use of the local counters
are becoming rarer due to replacement with hierarchical views (ongoing
rework in the page reclaim and workingset code), we can make those local
counters unbatched per-cpu counters again.

The scheme will then be as such:

   when a memcg statistic changes, the writer will:
   - update the local counter (per-cpu)
   - update the batch counter (per-cpu). If the batch is full:
   - spill the batch into the group's atomic_t
   - spill the batch into all ancestors' atomic_ts
   - empty out the batch counter (per-cpu)

   when a local memcg counter is read, the reader will:
   - collect the local counter from all cpus

   when a hiearchy memcg counter is read, the reader will:
   - read the atomic_t

We might be able to simplify this further and make the recursive
counters unbatched per-cpu counters as well (batch upward propagation,
but leave per-cpu collection to the readers), but that will require a
more in-depth analysis and testing of all the callsites.  Deal with the
immediate regression for now.

Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-13 17:34:56 -10:00
Thomas Gleixner
c942fddf87 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
Based on 3 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [kishon] [vijay] [abraham]
  [i] [kishon]@[ti] [com] this program is distributed in the hope that
  it will be useful but without any warranty without even the implied
  warranty of merchantability or fitness for a particular purpose see
  the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [graeme] [gregory]
  [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
  [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
  [hk] [hemahk]@[ti] [com] this program is distributed in the hope
  that it will be useful but without any warranty without even the
  implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1105 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:37 -07:00
Johannes Weiner
def0fdae81 mm: memcontrol: fix NUMA round-robin reclaim at intermediate level
When a cgroup is reclaimed on behalf of a configured limit, reclaim
needs to round-robin through all NUMA nodes that hold pages of the memcg
in question.  However, when assembling the mask of candidate NUMA nodes,
the code only consults the *local* cgroup LRU counters, not the
recursive counters for the entire subtree.  Cgroup limits are frequently
configured against intermediate cgroups that do not have memory on their
own LRUs.  In this case, the node mask will always come up empty and
reclaim falls back to scanning only the current node.

If a cgroup subtree has some memory on one node but the processes are
bound to another node afterwards, the limit reclaim will never age or
reclaim that memory anymore.

To fix this, use the recursive LRU counts for a cgroup subtree to
determine which nodes hold memory of that cgroup.

The code has been broken like this forever, so it doesn't seem to be a
problem in practice.  I just noticed it while reviewing the way the LRU
counters are used in general.

Link: http://lkml.kernel.org/r/20190412151507.2769-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner
42a3003535 mm: memcontrol: fix recursive statistics correctness & scalabilty
Right now, when somebody needs to know the recursive memory statistics
and events of a cgroup subtree, they need to walk the entire subtree and
sum up the counters manually.

There are two issues with this:

1. When a cgroup gets deleted, its stats are lost. The state counters
   should all be 0 at that point, of course, but the events are not.
   When this happens, the event counters, which are supposed to be
   monotonic, can go backwards in the parent cgroups.

2. During regular operation, we always have a certain number of lazily
   freed cgroups sitting around that have been deleted, have no tasks,
   but have a few cache pages remaining. These groups' statistics do not
   change until we eventually hit memory pressure, but somebody
   watching, say, memory.stat on an ancestor has to iterate those every
   time.

This patch addresses both issues by introducing recursive counters at
each level that are propagated from the write side when stats change.

Upward propagation happens when the per-cpu caches spill over into the
local atomic counter.  This is the same thing we do during charge and
uncharge, except that the latter uses atomic RMWs, which are more
expensive; stat changes happen at around the same rate.  In a sparse
file test (page faults and reclaim at maximum CPU speed) with 5 cgroup
nesting levels, perf shows __mod_memcg_page state at ~1%.

Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner
db9adbcbe7 mm: memcontrol: move stat/event counting functions out-of-line
These are getting too big to be inlined in every callsite.  They were
stolen from vmstat.c, which already out-of-lines them, and they have
only been growing since.  The callsites aren't that hot, either.

Move __mod_memcg_state()
     __mod_lruvec_state() and
     __count_memcg_events() out of line and add kerneldoc comments.

Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner
205b20cc5a mm: memcontrol: make cgroup stats and events query API explicitly local
Patch series "mm: memcontrol: memory.stat cost & correctness".

The cgroup memory.stat file holds recursive statistics for the entire
subtree.  The current implementation does this tree walk on-demand
whenever the file is read.  This is giving us problems in production.

1. The cost of aggregating the statistics on-demand is high.  A lot of
   system service cgroups are mostly idle and their stats don't change
   between reads, yet we always have to check them.  There are also always
   some lazily-dying cgroups sitting around that are pinned by a handful
   of remaining page cache; the same applies to them.

   In an application that periodically monitors memory.stat in our
   fleet, we have seen the aggregation consume up to 5% CPU time.

2. When cgroups die and disappear from the cgroup tree, so do their
   accumulated vm events.  The result is that the event counters at
   higher-level cgroups can go backwards and confuse some of our
   automation, let alone people looking at the graphs over time.

To address both issues, this patch series changes the stat
implementation to spill counts upwards when the counters change.

The upward spilling is batched using the existing per-cpu cache.  In a
sparse file stress test with 5 level cgroup nesting, the additional cost
of the flushing was negligible (a little under 1% of CPU at 100% CPU
utilization, compared to the 5% of reading memory.stat during regular
operation).

This patch (of 4):

memcg_page_state(), lruvec_page_state(), memcg_sum_events() are
currently returning the state of the local memcg or lruvec, not the
recursive state.

In practice there is a demand for both versions, although the callers
that want the recursive counts currently sum them up by hand.

Per default, cgroups are considered recursive entities and generally we
expect more users of the recursive counters, with the local counts being
special cases.  To reflect that in the name, add a _local suffix to the
current implementations.

The following patch will re-incarnate these functions with recursive
semantics, but with an O(1) implementation.

[hannes@cmpxchg.org: fix bisection hole]
  Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Chris Down
871789d4af mm, memcg: rename ambiguously named memory.stat counters and functions
I spent literally an hour trying to work out why an earlier version of
my memory.events aggregation code doesn't work properly, only to find
out I was calling memcg->events instead of memcg->memory_events, which
is fairly confusing.

This naming seems in need of reworking, so make it harder to do the
wrong thing by using vmevents instead of events, which makes it more
clear that these are vm counters rather than memcg-specific counters.

There are also a few other inconsistent names in both the percpu and
aggregated structs, so these are all cleaned up to be more coherent and
easy to understand.

This commit contains code cleanup only: there are no logic changes.

[akpm@linux-foundation.org: fix it for preceding changes]
Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:52 -07:00
Johannes Weiner
113b7dfd82 mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() API
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.

Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner
21d89d151b mm: memcontrol: push down mem_cgroup_nr_lru_pages()
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).

Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner
2b487e59f0 mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.

This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.

Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner
22796c844f mm: memcontrol: replace node summing with memcg_page_state()
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner
1a61ab8038 mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Greg Thelen
0b3d6e6f2d mm: writeback: use exact memcg dirty counts
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:

 1) per-memcg per-cpu values in range of [-32..32]

 2) per-memcg atomic counter

When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic.  Stat readers only check the atomic.  Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.

Assuming 100 cpus:
   4k x86 page_size:  13 MiB error per memcg
  64k ppc page_size: 200 MiB error per memcg

Considering that dirty+writeback are used together for some decisions the
errors double.

This inaccuracy can lead to undeserved oom kills.  One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e.  per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages.  If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.

It could be argued that tiny containers are not supported, but it's more
subtle.  It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.

The following test reliably ooms without this patch.  This patch avoids
oom kills.

  $ cat test
  mount -t cgroup2 none /dev/cgroup
  cd /dev/cgroup
  echo +io +memory > cgroup.subtree_control
  mkdir test
  cd test
  echo 10M > memory.max
  (echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
  (echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)

  $ cat memcg-writeback-stress.c
  /*
   * Dirty pages from all but one cpu.
   * Clean pages from the non dirtying cpu.
   * This is to stress per cpu counter imbalance.
   * On a 100 cpu machine:
   * - per memcg per cpu dirty count is 32 pages for each of 99 cpus
   * - per memcg atomic is -99*32 pages
   * - thus the complete dirty limit: sum of all counters 0
   * - balance_dirty_pages() only sees atomic count -99*32 pages, which
   *   it max()s to 0.
   * - So a workload can dirty -99*32 pages before balance_dirty_pages()
   *   cares.
   */
  #define _GNU_SOURCE
  #include <err.h>
  #include <fcntl.h>
  #include <sched.h>
  #include <stdlib.h>
  #include <stdio.h>
  #include <sys/stat.h>
  #include <sys/sysinfo.h>
  #include <sys/types.h>
  #include <unistd.h>

  static char *buf;
  static int bufSize;

  static void set_affinity(int cpu)
  {
  	cpu_set_t affinity;

  	CPU_ZERO(&affinity);
  	CPU_SET(cpu, &affinity);
  	if (sched_setaffinity(0, sizeof(affinity), &affinity))
  		err(1, "sched_setaffinity");
  }

  static void dirty_on(int output_fd, int cpu)
  {
  	int i, wrote;

  	set_affinity(cpu);
  	for (i = 0; i < 32; i++) {
  		for (wrote = 0; wrote < bufSize; ) {
  			int ret = write(output_fd, buf+wrote, bufSize-wrote);
  			if (ret == -1)
  				err(1, "write");
  			wrote += ret;
  		}
  	}
  }

  int main(int argc, char **argv)
  {
  	int cpu, flush_cpu = 1, output_fd;
  	const char *output;

  	if (argc != 2)
  		errx(1, "usage: output_file");

  	output = argv[1];
  	bufSize = getpagesize();
  	buf = malloc(getpagesize());
  	if (buf == NULL)
  		errx(1, "malloc failed");

  	output_fd = open(output, O_CREAT|O_RDWR);
  	if (output_fd == -1)
  		err(1, "open(%s)", output);

  	for (cpu = 0; cpu < get_nprocs(); cpu++) {
  		if (cpu != flush_cpu)
  			dirty_on(output_fd, cpu);
  	}

  	set_affinity(flush_cpu);
  	if (fsync(output_fd))
  		err(1, "fsync(%s)", output);
  	if (close(output_fd))
  		err(1, "close(%s)", output);
  	free(buf);
  }

Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters.  This avoids the aforementioned oom
kills.

This does not affect the overhead of memory.stat, which still reads the
single atomic counter.

Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter.  And the percpu_counter
spinlocks are more heavyweight than is required.

It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports.  But that is saved for later.

Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>	[4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-05 16:02:31 -10:00
Qian Cai
82ede7ee38 mm/memcontrol.c: fix bad line in comment
Commit 230671533d ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.

  mm/memcontrol.c:5774: warning: bad line:                | 0, otherwise.

Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Andrey Ryabinin
f4b7e272b5 mm: remove zone_lru_lock() function, access ->lru_lock directly
We have common pattern to access lru_lock from a page pointer:
	zone_lru_lock(page_zone(page))

Which is silly, because it unfolds to this:
	&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
	&NODE_DATA(page_to_nid(page))->lru_lock

Remove zone_lru_lock() function, since it's only complicate things.  Use
'page_pgdat(page)->lru_lock' pattern instead.

[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
  Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Alexey Dobriyan
b9726c26dc numa: make "nr_node_ids" unsigned int
Number of NUMA nodes can't be negative.

This saves a few bytes on x86_64:

	add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238)
	Function                                     old     new   delta
	hv_synic_alloc.cold                           88     110     +22
	prealloc_shrinker                            260     262      +2
	bootstrap                                    249     251      +2
	sched_init_numa                             1566    1567      +1
	show_slab_objects                            778     777      -1
	s_show                                      1201    1200      -1
	kmem_cache_init                              346     345      -1
	__alloc_workqueue_key                       1146    1145      -1
	mem_cgroup_css_alloc                        1614    1612      -2
	__do_sys_swapon                             4702    4699      -3
	__list_lru_init                              655     651      -4
	nic_probe                                   2379    2374      -5
	store_user_store                             118     111      -7
	red_zone_store                               106      99      -7
	poison_store                                 106      99      -7
	wq_numa_init                                 348     338     -10
	__kmem_cache_empty                            75      65     -10
	task_numa_free                               186     173     -13
	merge_across_nodes_store                     351     336     -15
	irq_create_affinity_masks                   1261    1246     -15
	do_numa_crng_init                            343     321     -22
	task_numa_fault                             4760    4737     -23
	swapfile_init                                179     156     -23
	hv_synic_alloc                               536     492     -44
	apply_wqattrs_prepare                        746     695     -51

Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Chris Down
1ff9e6e179 mm: memcontrol: expose THP events on a per-memcg basis
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide.  This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.

For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic].  This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page.  It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.

[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
  Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Tetsuo Handa
7775face20 memcg: killed threads should not invoke memcg OOM killer
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem.  The race looks as
follows:

P1				oom_reaper		P2
try_charge						try_charge
  mem_cgroup_out_of_memory
    mutex_lock(oom_lock)
      out_of_memory
        oom_kill_process(P1,P2)
         wake_oom_reaper
    mutex_unlock(oom_lock)
    				oom_reap_task
							  mutex_lock(oom_lock)
							    select_bad_process # no victim

The problem is more visible with many threads.

Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.

The oom bypass is safe because we do the same early in the try_charge
path already.  The situation migh have changed in the mean time.  It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path.  "

Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Chris Down
677dc9731b mm, memcg: extract memcg maxable seq_file logic to seq_show_memcg_tunable
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.

This patch makes this generic by providing a single function to do this
work.  In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.

Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Chris Down
aa9694bb78 mm, memcg: create mem_cgroup_from_seq
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).

There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css.  It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).

Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Gustavo A. R. Silva
67b8046f42 mm/memcontrol.c: use struct_size() in kmalloc()
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array.  For example:

  struct foo {
      int stuff;
      void *entry[];
  };

  instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);

Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:

  instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);

This code was detected with the help of Coccinelle.

Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Shakeel Butt
60cd4bcd62 memcg: localize memcg_kmem_enabled() check
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.

This is purely code cleanup patch without any functional change.  Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same.  This should not matter as
memcg_charge_slab() is not in the hot path.

Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Michal Hocko
7056d3a37d memcg, oom: notify on oom killer invocation from the charge path
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore.  The reason is that 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path.  While doing so the notification was left behind in
mem_cgroup_oom_synchronize.

Fix the issue by replicating the oom hierarchy locking and the
notification.

Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org>	[4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:52 -08:00
yuzhoujian
f0c867d958 mm, oom: add oom victim's memcg to the oom context information
The current oom report doesn't display victim's memcg context during the
global OOM situation.  While this information is not strictly needed, it
can be really helpful for containerized environments to locate which
container has lost a process.  Now that we have a single line for the oom
context, we can trivially add both the oom memcg (this can be either
global_oom or a specific memcg which hits its hard limits) and task_memcg
which is the victim's memcg.

Below is the single line output in the oom report after this patch.

- global oom context information:

oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>

- memcg oom context information:

oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>

[penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()]
  Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:48 -08:00
Roman Gushchin
e68599a3c3 mm: handle no memcg case in memcg_kmem_charge() properly
Mike Galbraith reported a regression caused by the commit 9b6f7e163c
("mm: rework memcg kernel stack accounting") on a system with
"cgroup_disable=memory" boot option: the system panics with the following
stack trace:

  BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8
  PGD 0 P4D 0
  Oops: 0002 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4
  RIP: 0010:page_counter_try_charge+0x22/0xc0
  Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49
  Call Trace:
   try_charge+0xcb/0x780
   memcg_kmem_charge_memcg+0x28/0x80
   memcg_kmem_charge+0x8b/0x1d0
   copy_process.part.41+0x1ca/0x2070
   _do_fork+0xd7/0x3d0
   do_syscall_64+0x5a/0x180
   entry_SYSCALL_64_after_hwframe+0x49/0xbe

The problem occurs because get_mem_cgroup_from_current() returns the NULL
pointer if memory controller is disabled.  Let's check if this is a case
at the beginning of memcg_kmem_charge() and just return 0 if
mem_cgroup_disabled() returns true.  This is how we handle this case in
many other places in the memory controller code.

Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com
Fixes: 9b6f7e163c ("mm: rework memcg kernel stack accounting")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-03 10:09:37 -07:00
Linus Torvalds
dad4f140ed Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox:
 "The XArray provides an improved interface to the radix tree data
  structure, providing locking as part of the API, specifying GFP flags
  at allocation time, eliminating preloading, less re-walking the tree,
  more efficient iterations and not exposing RCU-protected pointers to
  its users.

  This patch set

   1. Introduces the XArray implementation

   2. Converts the pagecache to use it

   3. Converts memremap to use it

  The page cache is the most complex and important user of the radix
  tree, so converting it was most important. Converting the memremap
  code removes the only other user of the multiorder code, which allows
  us to remove the radix tree code that supported it.

  I have 40+ followup patches to convert many other users of the radix
  tree over to the XArray, but I'd like to get this part in first. The
  other conversions haven't been in linux-next and aren't suitable for
  applying yet, but you can see them in the xarray-conv branch if you're
  interested"

* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
  radix tree: Remove multiorder support
  radix tree test: Convert multiorder tests to XArray
  radix tree tests: Convert item_delete_rcu to XArray
  radix tree tests: Convert item_kill_tree to XArray
  radix tree tests: Move item_insert_order
  radix tree test suite: Remove multiorder benchmarking
  radix tree test suite: Remove __item_insert
  memremap: Convert to XArray
  xarray: Add range store functionality
  xarray: Move multiorder_check to in-kernel tests
  xarray: Move multiorder_shrink to kernel tests
  xarray: Move multiorder account test in-kernel
  radix tree test suite: Convert iteration test to XArray
  radix tree test suite: Convert tag_tagged_items to XArray
  radix tree: Remove radix_tree_clear_tags
  radix tree: Remove radix_tree_maybe_preload_order
  radix tree: Remove split/join code
  radix tree: Remove radix_tree_update_node_t
  page cache: Finish XArray conversion
  dax: Convert page fault handlers to XArray
  ...
2018-10-28 11:35:40 -07:00
Roman Gushchin
7a1adfddaf mm: don't raise MEMCG_OOM event due to failed high-order allocation
It was reported that on some of our machines containers were restarted
with OOM symptoms without an obvious reason.  Despite there were almost no
memory pressure and plenty of page cache, MEMCG_OOM event was raised
occasionally, causing the container management software to think, that OOM
has happened.  However, no tasks have been killed.

The following investigation showed that the problem is caused by a failing
attempt to charge a high-order page.  In such case, the OOM killer is
never invoked.  As shown below, it can happen under conditions, which are
very far from a real OOM: e.g.  there is plenty of clean page cache and no
memory pressure.

There is no sense in raising an OOM event in this case, as it might
confuse a user and lead to wrong and excessive actions (e.g.  restart the
workload, as in my case).

Let's look at the charging path in try_charge().  If the memory usage is
about memory.max, which is absolutely natural for most memory cgroups, we
try to reclaim some pages.  Even if we were able to reclaim enough memory
for the allocation, the following check can fail due to a race with
another concurrent allocation:

    if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
        goto retry;

For regular pages the following condition will save us from triggering
the OOM:

   if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
       goto retry;

But for high-order allocation this condition will intentionally fail.  The
reason behind is that we'll likely fall to regular pages anyway, so it's
ok and even preferred to return ENOMEM.

In this case the idea of raising MEMCG_OOM looks dubious.

Fix this by moving MEMCG_OOM raising to mem_cgroup_oom() after allocation
order check, so that the event won't be raised for high order allocations.
This change doesn't affect regular pages allocation and charging.

Link: http://lkml.kernel.org/r/20181004214050.7417-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:14 -07:00
Kirill Tkhai
1c2d479a11 mm/memcontrol.c: convert mem_cgroup_id::ref to refcount_t type
This will allow to use generic refcount_t interfaces to check counters
overflow instead of currently existing VM_BUG_ON().  The only difference
after the patch is VM_BUG_ON() may cause BUG(), while refcount_t fires
with WARN().  But this seems not to be significant here, since such the
problems are usually caught by syzbot with panic-on-warn enabled.

Link: http://lkml.kernel.org/r/153910718919.7006.13400779039257185427.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:35 -07:00
Shakeel Butt
85cfb24506 memcg: remove memcg_kmem_skip_account
The flag memcg_kmem_skip_account was added during the era of opt-out kmem
accounting.  There is no need for such flag in the opt-in world as there
aren't any __GFP_ACCOUNT allocations within memcg_create_cache_enqueue().

Link: http://lkml.kernel.org/r/20180919004501.178023-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Johannes Weiner
e9b257ed15 mm/memcontrol.c: fix memory.stat item ordering
The refault stats go better with the page fault stats, and are of
higher interest than the stats on LRU operations. In fact they used to
be grouped together; when the LRU operation stats were added later on,
they were wedged in between.

Move them back together. Documentation/admin-guide/cgroup-v2.rst
already lists them in the right order.

Link: http://lkml.kernel.org/r/20181010140239.GA2527@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Roman Gushchin
591edfb10a mm: drain memcg stocks on css offlining
Memcg charge is batched using per-cpu stocks, so an offline memcg can be
pinned by a cached charge up to a moment, when a process belonging to some
other cgroup will charge some memory on the same cpu.  In other words,
cached charges can prevent a memory cgroup from being reclaimed for some
time, without any clear need.

Let's optimize it by explicit draining of all stocks on css offlining.  As
draining is performed asynchronously, and is skipped if any parallel
draining is happening, it's cheap.

Link: http://lkml.kernel.org/r/20180827162621.30187-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Matthew Wilcox
3159f943aa xarray: Replace exceptional entries
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries.  This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry).  It is also a change in emphasis; exceptional entries are
intimidating and different.  As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2018-09-29 22:47:49 -04:00
Johannes Weiner
3100dab2aa mm: memcontrol: print proper OOM header when no eligible victim left
When the memcg OOM killer runs out of killable tasks, it currently
prints a WARN with no further OOM context.  This has caused some user
confusion.

Warnings indicate a kernel problem.  In a reported case, however, the
situation was triggered by a nonsensical memcg configuration (hard limit
set to 0).  But without any VM context this wasn't obvious from the
report, and it took some back and forth on the mailing list to identify
what is actually a trivial issue.

Handle this OOM condition like we handle it in the global OOM killer:
dump the full OOM context and tell the user we ran out of tasks.

This way the user can identify misconfigurations easily by themselves
and rectify the problem - without having to go through the hassle of
running into an obscure but unsettling warning, finding the appropriate
kernel mailing list and waiting for a kernel developer to remote-analyze
that the memcg configuration caused this.

If users cannot make sense of why the OOM killer was triggered or why it
failed, they will still report it to the mailing list, we know that from
experience.  So in case there is an actual kernel bug causing this,
kernel developers will very likely hear about it.

Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04 16:45:02 -07:00
Roman Gushchin
3d8b38eb81 mm, oom: introduce memory.oom.group
For some workloads an intervention from the OOM killer can be painful.
Killing a random task can bring the workload into an inconsistent state.

Historically, there are two common solutions for this
problem:
1) enabling panic_on_oom,
2) using a userspace daemon to monitor OOMs and kill
   all outstanding processes.

Both approaches have their downsides: rebooting on each OOM is an obvious
waste of capacity, and handling all in userspace is tricky and requires a
userspace agent, which will monitor all cgroups for OOMs.

In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate
the necessity of enabling panic_on_oom.  Also, it can simplify the cgroup
management for userspace applications.

This commit introduces a new knob for cgroup v2 memory controller:
memory.oom.group.  The knob determines whether the cgroup should be
treated as an indivisible workload by the OOM killer.  If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not
a leaf cgroup) are killed together or not at all.

To determine which cgroup has to be killed, we do traverse the cgroup
hierarchy from the victim task's cgroup up to the OOMing cgroup (or root)
and looking for the highest-level cgroup with memory.oom.group set.

Tasks with the OOM protection (oom_score_adj set to -1000) are treated as
an exception and are never killed.

This patch doesn't change the OOM victim selection algorithm.

Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Shakeel Butt
8de7ecc648 memcg: reduce memcg tree traversals for stats collection
Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times
to collect the stats while cgroup-v2's memory_stat_show traverses the
memcg tree thrice.  On a large machine, a couple thousand memcgs is very
normal and if the churn is high and memcgs stick around during to several
reasons, tens of thousands of nodes in memcg tree can exist.  This patch
has refactored and shared the stat collection code between cgroup-v1 and
cgroup-v2 and has reduced the tree traversal to just one.

I ran a simple benchmark which reads the root_mem_cgroup's stat file
1000 times in the presense of 2500 memcgs on cgroup-v1. The results are:

Without the patch:
$ time ./read-root-stat-1000-times

real    0m1.663s
user    0m0.000s
sys     0m1.660s

With the patch:
$ time ./read-root-stat-1000-times

real    0m0.468s
user    0m0.000s
sys     0m0.467s

Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Bruce Merry <bmerry@ska.ac.za>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Kirill Tkhai
f90280d6b7 mm/vmscan.c: clear shrinker bit if there are no objects related to memcg
To avoid further unneed calls of do_shrink_slab() for shrinkers, which
already do not have any charged objects in a memcg, their bits have to
be cleared.

This patch introduces a lockless mechanism to do that without races
without parallel list lru add.  After do_shrink_slab() returns
SHRINK_EMPTY the first time, we clear the bit and call it once again.
Then we restore the bit, if the new return value is different.

Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers
two situations:

1)list_lru_add()     shrink_slab_memcg
    list_add_tail()    for_each_set_bit() <--- read bit
                         do_shrink_slab() <--- missed list update (no barrier)
    <MB>                 <MB>
    set_bit()            do_shrink_slab() <--- seen list update

This situation, when the first do_shrink_slab() sees set bit, but it
doesn't see list update (i.e., race with the first element queueing), is
rare.  So we don't add <MB> before the first call of do_shrink_slab()
instead of this to do not slow down generic case.  Also, it's need the
second call as seen in below in (2).

2)list_lru_add()      shrink_slab_memcg()
    list_add_tail()     ...
    set_bit()           ...
  ...                   for_each_set_bit()
  do_shrink_slab()        do_shrink_slab()
    clear_bit()           ...
  ...                     ...
  list_lru_add()          ...
    list_add_tail()       clear_bit()
    <MB>                  <MB>
    set_bit()             do_shrink_slab()

The barriers guarantee that the second do_shrink_slab() in the right
side task sees list update if really cleared the bit.  This case is
drawn in the code comment.

[Results/performance of the patchset]

After the whole patchset applied the below test shows signify increase
of performance:

  $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
  $mkdir /sys/fs/cgroup/memory/ct
  $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
      $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i;
			    echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
			    mkdir -p s/$i; mount -t tmpfs $i s/$i;
			    touch s/$i/file; done

Then, 5 sequential calls of drop caches:

  $time echo 3 > /proc/sys/vm/drop_caches

1)Before:
  0.00user 13.78system 0:13.78elapsed 99%CPU
  0.00user 5.59system 0:05.60elapsed 99%CPU
  0.00user 5.48system 0:05.48elapsed 99%CPU
  0.00user 8.35system 0:08.35elapsed 99%CPU
  0.00user 8.34system 0:08.35elapsed 99%CPU

2)After
  0.00user 1.10system 0:01.10elapsed 99%CPU
  0.00user 0.00system 0:00.01elapsed 64%CPU
  0.00user 0.01system 0:00.01elapsed 82%CPU
  0.00user 0.00system 0:00.01elapsed 64%CPU
  0.00user 0.01system 0:00.01elapsed 82%CPU

The results show the performance increases at least in 548 times.

Shakeel Butt tested this patchset with fork-bomb on his configuration:

 > I created 255 memcgs, 255 ext4 mounts and made each memcg create a
 > file containing few KiBs on corresponding mount. Then in a separate
 > memcg of 200 MiB limit ran a fork-bomb.
 >
 > I ran the "perf record -ag -- sleep 60" and below are the results:
 >
 > Without the patch series:
 > Samples: 4M of event 'cycles', Event count (approx.): 3279403076005
 > +  36.40%            fb.sh  [kernel.kallsyms]    [k] shrink_slab
 > +  18.97%            fb.sh  [kernel.kallsyms]    [k] list_lru_count_one
 > +   6.75%            fb.sh  [kernel.kallsyms]    [k] super_cache_count
 > +   0.49%            fb.sh  [kernel.kallsyms]    [k] down_read_trylock
 > +   0.44%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_iter
 > +   0.27%            fb.sh  [kernel.kallsyms]    [k] up_read
 > +   0.21%            fb.sh  [kernel.kallsyms]    [k] osq_lock
 > +   0.13%            fb.sh  [kernel.kallsyms]    [k] shmem_unused_huge_count
 > +   0.08%            fb.sh  [kernel.kallsyms]    [k] shrink_node_memcg
 > +   0.08%            fb.sh  [kernel.kallsyms]    [k] shrink_node
 >
 > With the patch series:
 > Samples: 4M of event 'cycles', Event count (approx.): 2756866824946
 > +  47.49%            fb.sh  [kernel.kallsyms]    [k] down_read_trylock
 > +  30.72%            fb.sh  [kernel.kallsyms]    [k] up_read
 > +   9.51%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_iter
 > +   1.69%            fb.sh  [kernel.kallsyms]    [k] shrink_node_memcg
 > +   1.35%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_protected
 > +   1.05%            fb.sh  [kernel.kallsyms]    [k] queued_spin_lock_slowpath
 > +   0.85%            fb.sh  [kernel.kallsyms]    [k] _raw_spin_lock
 > +   0.78%            fb.sh  [kernel.kallsyms]    [k] lruvec_lru_size
 > +   0.57%            fb.sh  [kernel.kallsyms]    [k] shrink_node
 > +   0.54%            fb.sh  [kernel.kallsyms]    [k] queue_work_on
 > +   0.46%            fb.sh  [kernel.kallsyms]    [k] shrink_slab_memcg

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai
fae91d6d8b mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance
Introduce set_shrinker_bit() function to set shrinker-related bit in
memcg shrinker bitmap, and set the bit after the first item is added and
in case of reparenting destroyed memcg's items.

This will allow next patch to make shrinkers be called only, in case of
they have charged objects at the moment, and to improve shrink_slab()
performance.

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00