For the SD .shutdown callback we re-use the SD suspend function since
it performs the relevant actions.
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
By moving code from the mmc_suspend|resume_host down into each
.suspend|resume bus_ops callback, we get a more flexible solution.
Some nice side effects are that we get a better understanding of each
bus_ops suspend|resume sequence and the common code don't have to take
care of specific corner cases, especially for the SDIO case.
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Tested-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Aggressive power management is suitable when saving power is
essential. At request inactivity timeout, aka pm runtime
autosuspend timeout, the card will be suspended.
Once a new request arrives, the card will be re-initalized and
thus the first request will suffer from a latency. This latency
is card-specific, experiments has shown in general that SD-cards
has quite poor initialization time, around 300ms-1100ms. eMMC is
not surprisingly far better but still a couple of hundreds of ms
has been observed.
Except for the request latency, it is important to know that
suspending the card will also prevent the card from executing
internal house-keeping operations in idle mode. This could mean
degradation in performance.
To use this feature make sure the request inactivity timeout is
chosen carefully. This has not been done as a part of this patch.
Enable this feature by using host cap MMC_CAP_AGGRESSIVE_PM and
by setting CONFIG_MMC_UNSAFE_RESUME.
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Once the mmc blkdevice is being probed, runtime pm will be enabled.
By using runtime autosuspend, the power save operations can be done
when request inactivity occurs for a certain time. Right now the
selected timeout value is set to 3 s. Obviously this value will likely
need to be configurable somehow since it needs to be trimmed depending
on the power save algorithm.
For SD-combo cards, we are still leaving the enablement of runtime PM
to the SDIO init sequence since it depends on the capabilities of the
SDIO func driver.
Moreover, when the blk device is being suspended, we make sure the device
will be runtime resumed. The reason for doing this is that we want the
host suspend sequence to be unaware of any runtime power save operations
done for the card in this phase. Thus it can just handle the suspend as
the card is fully powered from a runtime perspective.
Finally, this patch prepares to make it possible to move BKOPS handling
into the runtime callbacks for the mmc bus_ops. Thus IDLE BKOPS can be
accomplished.
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Only execute tuning for sd and sdio devices that are using
SDR50 or SDR104.
Make sure clock is hold during tuning for sdio devices.
Signed-off-by: Fredrik Soderstedt <fredrik.soderstedt@stericsson.com>
Acked-by: Johan Rudholm <jrudholm@gmail.com>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
4d55c5a1 ("mmc: sdhci: enable preset value after uhs initialization")
added preset value support and enabled it by default during sd card init.
Below are the enhancements introduced by this patch:
1. In current code, preset value is enabled after setting clock finished,
which means the clock is manually set by driver firstly and then suddenly
switched to preset value at this point. So the first setting is useless
and unnecessary. What's more, the first clock setting may differ from the
preset one. The better way is enable preset value just after switch to
UHS mode so the preset value can take effect immediately. So move preset
value enable from mmc_sd_init_card to sdhci_set_ios which will be called
during set timing.
2. In current code, preset value is disabled at the beginning of
mmc_attach_sd. It's too late since low freq (400khz) should be set in
mmc_power_up. So move preset value disable to sdhci_set_ios which will
be called during power up.
3. host->clock and ios->drv_type should also be updated according to the
preset value if it's enabled. Current code missed this.
4. This patch also introduce a quirk to disable preset value in case
preset value doesn't work.
This patch has been verified on sdhci-pxav3 platform with both preset
enabled and disabled.
Signed-off-by: Kevin Liu <kliu5@marvell.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
When switching SD and SDIO cards from 3.3V to 1.8V signal levels, the
clock should be gated for 5 ms during the step. After enabling the
clock, the host should wait for at least 1 ms before checking for
failure. Failure by the card to switch is indicated by dat[0:3] being
pulled low. The host should check for this condition and power-cycle
the card if failure is indicated.
Add a retry mechanism for the SDIO case.
If the voltage switch fails repeatedly, give up and continue the
initialization using the original voltage.
This patch places a couple of requirements on the host driver:
1) mmc_set_ios with ios.clock = 0 must gate the clock
2) mmc_power_off must actually cut the power to the card
3) The card_busy host_ops member must be implemented
if these requirements are not fulfilled, the 1.8V signal voltage switch
will still be attempted but may not be successful.
Signed-off-by: Johan Rudholm <johan.rudholm@stericsson.com>
Signed-off-by: Kevin Liu <kliu5@marvell.com>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org>
Tested-by: Wei WANG <wei_wang@realsil.com.cn>
Signed-off-by: Chris Ball <cjb@laptop.org>
Allow callers to access the start_signal_voltage_switch host_ops
member without going through any cmd11 logic. This is mostly a
preparation for the following signal voltage switch patch.
Also, reset ios.signal_voltage to its original value if
start_signal_voltage_switch fails.
Signed-off-by: Johan Rudholm <johan.rudholm@stericsson.com>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org>
Tested-by: Wei WANG <wei_wang@realsil.com.cn>
Signed-off-by: Chris Ball <cjb@laptop.org>
Add a call to mmc_set_signal_voltage() to set signal voltage to 3.3v in
mmc_power_up so that we do not need to touch signal voltage setting in
mmc/sd/sdio init functions and rescan function.
For mmc/sd cards, when doing a suspend/resume cycle, consider the unsafe
resume case, the card will lose its power and when powered on again, we
will set signal voltage to 3.3v in mmc_power_up before its resume function
gets called, which will re-init the card.
And for sdio cards, when doing a suspend/resume cycle, consider the unsafe
resume case, the card will either lose its power or not depending on if it
wants to wakeup the host. If power is not maintained, it is the same case as
mmc/sd cards. If power is maintained, mmc_power_up will not be called and
the card's signal voltage will remain at the last setting.
Signed-off-by: Aaron Lu <aaron.lu@amd.com>
Tested-by: Venkatraman S <svenkatr@ti.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Host has different current capabilities at different voltages, we need
to record these settings seperately. The defined voltages are 1.8/3.0/3.3.
For other voltages, we do not touch current limit setting.
Before we set the current limit for the sd card, find out the host's
operating voltage first and then find out the current capabilities of
the host at that voltage to set the current limit.
Signed-off-by: Aaron Lu <aaron.lu@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
In mmc_read_switch, just do a one time mode 0 switch command to get the
support bits information, no need to do multiple times as the support
bits do not change with different arguments.
And no need to check current limit support bits, as these bits are
fixed according to the signal voltage. If the signal voltage is 1.8V,
the support bits would be 0xf and if the signal voltage is 3.3V, the
support bits would be 0x01. We will check host's ability to set the
current limit.
Signed-off-by: Aaron Lu <aaron.lu@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
The effect of the existing code is that we continue blindly when we
should warn about an invalid allocation unit.
Reported-by: dcb314@hotmail.com
Resolves-bug: https://bugzilla.kernel.org/show_bug.cgi?id=44061
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
max_current_caps can return 0 if not available from the sd controller.
If no regulator is present or the regulator specifies a current
less then 200ma, we no longer still set the 200mA caps bit anyway.
Signed-off-by: Philip Rakity <prakity@marvell.com>
Reviewed-by: Aaron Lu <aaron_lu@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
When mmc_host is not spi mode, mmc/sd is doing mmc_deselect_cards().
mmc_deselect_cards could be returned error.
If returned error, we can know something wrong when enter suspend.
Signed-off-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Even if cards supports 1.8V I/O voltage those should anyway be
initialized at 3.3V I/O according to (e)MMC, SD and SDIO specs.
Some eMMC and embedded SDIO devices are able to be initialized
at 1.8V as well, but it is better to be safe.
Do note that initialization in this context means that the card
has been completely powered off, otherwise the card will remain
at the last I/O voltage level that were negotitiated.
Due to the above being taken care of the suspend/resume issues
for UHS-I SD-cards has been fixed.
Signed-off-by: Ulf Hansson <ulf.hansson@stericsson.com>
Acked-by: Philip Rakity <prakity@marvell.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Subhash Jadavani <subhashj@codeaurora.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Ensure clocks are always enabled before any interaction with the
host controller driver. This makes sure that there is no race
between host execution and the core layer turning off clocks
in different context with clock gating framework.
Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Per Forlin <per.forlin@stericsson.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
This patch adds the support of the HS200 bus speed for eMMC 4.5 devices.
The eMMC 4.5 devices have support for 200MHz bus speed. The function
prototype of the tuning function is modified to handle the tuning
command number which is different in sd and mmc case.
Signed-off-by: Girish K S <girish.shivananjappa@linaro.org>
Signed-off-by: Philip Rakity <prakity@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Add a function mmc_detect_card_removed() which upper layers can use to
determine immediately if a card has been removed. This function should
be called after an I/O request fails so that all queued I/O requests
can be errored out immediately instead of waiting for the card device
to be removed.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Acked-by: Sujit Reddy Thumma <sthumma@codeaurora.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
This patch adds support for sdio UHS cards per the version 3.0
spec.
UHS mode is only enabled for version 3.0 cards when both the
host and the controller support UHS modes.
1.8v signaling support is removed if both the card and the
host do not support UHS. This is done to maintain
compatibility and some system/card combinations break when
1.8v signaling is enabled when the host does not support UHS.
Signed-off-by: Philip Rakity <prakity@marvell.com>
Signed-off-by: Aaron Lu <Aaron.lu@amd.com>
Reviewed-by: Arindam Nath <arindam.nath@amd.com>
Tested-by: Bing Zhao <bzhao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Add new macros for the high speed 50MHz case, rather than having
a confusing reuse of the value for UHS SDR50, which is 100MHz.
Reported-by: Aaron Lu <aaron.lu@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Once the implicit use of module.h is prevented, these files will
fail to find the stat.h header content.
Fix up the implicit usage expectations in advance of the cleanup.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Here is Essential conditions to indicate Version 3.00 Card
(SD_SPEC=2 and SD_SPEC3=1) :
(1) The card shall support CMD6
(2) The card shall support CMD8
(3) The card shall support CMD42
(4) User area capacity shall be up to 2GB (SDSC) or 32GB (SDHC)
User area capacity shall be more than or equal to 32GB and
up to 2TB (SDXC)
(5) Speed Class shall be supported (SDHC or SDXC)
So even if SD card doesn't support any of the newly defined
UHS-I bus speed mode, it can advertise itself as SD3.0 cards
as long as it supports all the essential conditions of
SD3.0 cards. Given this, these type of cards should atleast
run in High Speed mode @50MHZ if it supports HS.
But current initialization sequence for SD3.0 cards is
such that these non-UHS-I SD3.0 cards runs in Default
Speed mode @25MHz.
This patch makes sure that these non-UHS-I SD3.0 cards run
in High Speed Mode @50MHz.
Tested this patch with SanDisk Extreme SDHC 8GB Class 10 card.
Reported-by: "Hiremath, Vaibhav" <hvaibhav@ti.com>
Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
All the files using printk function for displaying kernel messages
in the mmc driver have been replaced with corresponding macro.
Signed-off-by: Girish K S <girish.shivananjappa@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Earlier all cards where initiated with bus mode set as OPENDRAIN, and then
later switched to PUSHPULL. According to the MMC/SD/SDIO specifications
only MMC cards use OPENDRAIN during init. For both SD and SDIO the bus
mode shall be PUSHPULL before attempting to init the card.
The consequence of having incorrect bus mode can lead to not being able
to detect the card. Therefore the default behavior have now been changed
to PUSHPULL in mmc_power_up, and will only be temporarily switched when
trying to attach or init a MMC card.
Signed-off-by: Stefan Nilsson XK <stefan.xk.nilsson@stericsson.com>
Signed-off-by: Ulf HANSSON <ulf.hansson@stericsson.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
During a rescan operation mmc_attach(sd|mmc|sdio) functions are
called. The error handling in these function can trigger a detach
of the bus, which also meant a power off. This is not notified by
the rescan operation which then continues to the next attach function.
If a power off has been done, the framework must never send any
new commands to the host driver, without first doing a new power up.
This will most likely trigger any host driver to hang.
Moving power off out of detach and instead handle power off
separately when it is actually needed, solves the issue.
Signed-off-by: Ulf Hansson <ulf.hansson@stericsson.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Cc: <stable@kernel.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
mmc_sd_init_uhs_card function sets the driver type, current limit
and bus speed mode on card as well as on host controller side.
Currently bus speed mode is set by sending CMD6 to card and
immediately setting the timing mode in host controller. But
then before initiating tuning sequence, it also tries to set
current limit by sending CMD6 to card which results in data
timeout errors in controller if bus speed mode is SDR50/SDR104 mode.
So basically bus speed mode should be set only after current limit
is set in the card and immediately after setting the bus speed mode,
tuning sequence should be initiated.
Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org>
Reviewed-by: Arindam Nath <arindam.nath@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Non default Drive Strength cannot be set automatically. It is a function
of the board design and only if there is a specific platform handler can
it be set. The platform handler needs to take into account the board
design. Pass to the platform code the necessary information.
For example: The card and host controller may indicate they support HIGH
and LOW drive strength. There is no way to know what should be chosen
without specific board knowledge. Setting HIGH may lead to reflections
and setting LOW may not suffice. There is no mechanism (like ethernet
duplex or speed pulses) to determine what should be done automatically.
If no platform handler is defined -- use the default value.
Signed-off-by: Philip Rakity <prakity@marvell.com>
Reviewed-by: Arindam Nath <arindam.nath@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
SD cards operating at UHS104 or better support SET_BLOCK_COUNT.
Signed-off-by: Andrei Warkentin <andreiw@motorola.com>
Reviewed-by: Arindam Nath <arindam.nath@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
eMMC chips do not use CMD11 when changing voltage. Add extra
argument to call to indicate if CMD11 needs to be sent.
Signed-off-by: Philip Rakity <prakity@marvell.com>
Reviewed-by: Arindam Nath <arindam.nath@amd.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
According to the Host Controller spec v3.00, setting Preset Value Enable
in the Host Control2 register lets SDCLK Frequency Select, Clock Generator
Select and Driver Strength Select to be set automatically by the Host
Controller based on the UHS-I mode set. This patch enables this feature.
Since Preset Value Enable makes sense only for UHS-I cards, we enable this
feature after successfull UHS-I initialization. We also reset Preset Value
Enable next time before initialization.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Host Controller needs tuning during initialization to operate SDR50
and SDR104 UHS-I cards. Whether SDR50 mode actually needs tuning is
indicated by bit 45 of the Host Controller Capabilities register.
A new command CMD19 has been defined in the Physical Layer spec
v3.01 to request the card to send tuning pattern.
We enable Buffer Read Ready interrupt at the very begining of tuning
procedure, because that is the only interrupt generated by the Host
Controller during tuning. We program the block size to 64 in the
Block Size register. We make sure that DMA Enable and Multi Block
Select in the Transfer Mode register are set to 0 before actually
sending CMD19. The tuning block is sent by the card to the Host
Controller using DAT lines, so we set Data Present Select (bit 5) in
the Command register. The Host Controller is responsible for doing
the verfication of tuning block sent by the card at the hardware
level. After sending CMD19, we wait for Buffer Read Ready interrupt.
In case we don't receive an interrupt after the specified timeout
value, we fall back on fixed sampling clock by setting Execute
Tuning (bit 6) and Sampling Clock Select (bit 7) of Host Control2
register to 0. Before exiting the tuning procedure, we disable Buffer
Read Ready interrupt and re-enable other interrupts.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Since only UHS-I cards respond with S18A set in response to ACMD41,
we set the card as ultra-high-speed after successfull initialization.
We need to decide whether a card is SDXC based on the C_SIZE field
of CSDv2.0 register. According to Physical Layer spec v3.01, the
minimum value of C_SIZE for SDXC card is 00FFFFh.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
We decide on the current limit to be set for the card based on the
Capability of Host Controller to provide current at 1.8V signalling,
and the maximum current limit of the card as indicated by CMD6
mode 0. We then set the current limit for the card using CMD6 mode 1.
As per the Physical Layer Spec v3.01, the current limit switch is
only applicable for SDR50, SDR104, and DDR50 bus speed modes. For
other UHS-I modes, we set the default current limit of 200mA.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
This patch adds support for setting UHS-I bus speed mode during UHS-I
initialization procedure. Since both the host and card can support
more than one bus speed, we select the highest speed based on both of
their capabilities. First we set the bus speed mode for the card using
CMD6 mode 1, and then we program the host controller to support the
required speed mode. We also set High Speed Enable in case one of the
UHS-I modes is selected. We take care to reset SD clock before setting
UHS mode in the Host Control2 register, and then re-enable it as per
the Host Controller spec v3.00. We then set the clock frequency for
the UHS-I mode selected.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
This patch adds support for setting driver strength during UHS-I
initialization procedure. Since UHS-I cards set S18A (bit 24) in
response to ACMD41, we use this as a base for UHS-I initialization.
We modify the parameter list of mmc_sd_get_cid() so that we can
save the ROCR from ACMD41 to check whether bit 24 is set.
We decide whether the Host Controller supports A, C, or D driver
type depending on the Capabilities register. Driver type B is
suported by default. We then set the appropriate driver type for
the card using CMD6 mode 1. As per Host Controller spec v3.00, we
set driver type for the host only if Preset Value Enable in the
Host Control2 register is not set. SDHCI_HOST_CONTROL has been
renamed to SDHCI_HOST_CONTROL1 to conform to the spec.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
SD cards which conform to Physical Layer Spec v3.01 can support
additional Bus Speed Modes, Driver Strength, and Current Limit
other than the default values. We use CMD6 mode 0 to read these
additional card functions. The values read here will be used
during UHS-I initialization steps.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
Host Controller v3.00 adds another Capabilities register. Apart
from other things, this new register indicates whether the Host
Controller supports SDR50, SDR104, and DDR50 UHS-I modes. The spec
doesn't mention about explicit support for SDR12 and SDR25 UHS-I
modes, so the Host Controller v3.00 should support them by default.
Also if the controller supports SDR104 mode, it will also support
SDR50 mode as well. So depending on the host support, we set the
corresponding MMC_CAP_* flags. One more new register. Host Control2
is added in v3.00, which is used during Signal Voltage Switch
procedure described below.
Since as per v3.00 spec, UHS-I supported hosts should set S18R
to 1, we set S18R (bit 24) of OCR before sending ACMD41. We also
need to set XPC (bit 28) of OCR in case the host can supply >150mA.
This support is indicated by the Maximum Current Capabilities
register of the Host Controller.
If the response of ACMD41 has both CCS and S18A set, we start the
signal voltage switch procedure, which if successfull, will switch
the card from 3.3V signalling to 1.8V signalling. Signal voltage
switch procedure adds support for a new command CMD11 in the
Physical Layer Spec v3.01. As part of this procedure, we need to
set 1.8V Signalling Enable (bit 3) of Host Control2 register, which
if remains set after 5ms, means the switch to 1.8V signalling is
successfull. Otherwise, we clear bit 24 of OCR and retry the
initialization sequence. When we remove the card, and insert the
same or another card, we need to make sure that we start with 3.3V
signalling voltage. So we call mmc_set_signal_voltage() with
MMC_SIGNAL_VOLTAGE_330 set so that we are back to 3.3V signalling
voltage before we actually start initializing the card.
Tested by Zhangfei Gao with a Toshiba uhs card and general hs card,
on mmp2 in SDMA mode.
Signed-off-by: Arindam Nath <arindam.nath@amd.com>
Reviewed-by: Philip Rakity <prakity@marvell.com>
Tested-by: Philip Rakity <prakity@marvell.com>
Acked-by: Zhangfei Gao <zhangfei.gao@marvell.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
So we know the implementation and prototypes agree with each other.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Reviewed-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Rewrite and clean up mmc_rescan() to properly retry frequencies lower
than 400kHz. Failures can happen both in sd_send_* calls and
mmc_attach_*. Break out "mmc_rescan_try_freq" from the frequency
selection loop. Symmetrize claim/release logic in mmc_attach_* API,
and move the sd_send_* calls there to make mmc_rescan easier to read.
Signed-off-by: Andy Ross <andy.ross@windriver.com>
Reviewed-and-Tested-by: Hein Tibosch <hein_tibosch@yahoo.es>
Reviewed-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
JMicron 388 SD/MMC combo controller supports the 1.8V low-voltage for
SD, but MMC doesn't work with the low-voltage, resulting in an error
at probing.
This patch adds the support for multiple voltage mask per device type,
so that SD works with 1.8V while MMC forces 3.3V. Here new ocr_avail_*
fields for each device are introduced, so that the actual OCR mask is
switched dynamically.
Also, the restriction of low-voltage in core/sd.c is removed when the
bit is allowed explicitly via ocr_avail_sd mask.
This patch was rewritten from scratch based on Aries' original code.
Signed-off-by: Aries Lee <arieslee@jmicron.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Reviewed-by: Chris Ball <cjb@laptop.org>
Signed-off-by: Chris Ball <cjb@laptop.org>
Allow power save/restore and their relevant mmc_bus_ops handlers
exit with a return value.
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Luciano Coelho <luciano.coelho@nokia.com>
Signed-off-by: Chris Ball <cjb@laptop.org>
There are two checks that need to be made when determining whether a
card is removable. A host controller may set MMC_CAP_NONREMOVABLE if the
controller does not support removing cards (e.g. eMMC), in which case
the card is physically non-removable. Also the 'mmc_assume_removable'
module parameter can be configured at module load time, in which case
the card may be logically non-removable.
A helper function keeps the logic in one place so that code always
checks both conditions.
Because this new function is likely to be called from modules we now
need to export the mmc_assume_removable symbol.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Tested-by: Jaehoon Chung <jh80.chung@samsung.com>
Acked-by: Wolfram Sang <w.sang@pengutronix.de>
Signed-off-by: Chris Ball <cjb@laptop.org>
SD/MMC cards tend to support an erase operation. In addition, eMMC v4.4
cards can support secure erase, trim and secure trim operations that are
all variants of the basic erase command.
SD/MMC device attributes "erase_size" and "preferred_erase_size" have been
added.
"erase_size" is the minimum size, in bytes, of an erase operation. For
MMC, "erase_size" is the erase group size reported by the card. Note that
"erase_size" does not apply to trim or secure trim operations where the
minimum size is always one 512 byte sector. For SD, "erase_size" is 512
if the card is block-addressed, 0 otherwise.
SD/MMC cards can erase an arbitrarily large area up to and
including the whole card. When erasing a large area it may
be desirable to do it in smaller chunks for three reasons:
1. A single erase command will make all other I/O on the card
wait. This is not a problem if the whole card is being erased, but
erasing one partition will make I/O for another partition on the
same card wait for the duration of the erase - which could be a
several minutes.
2. To be able to inform the user of erase progress.
3. The erase timeout becomes too large to be very useful.
Because the erase timeout contains a margin which is multiplied by
the size of the erase area, the value can end up being several
minutes for large areas.
"erase_size" is not the most efficient unit to erase (especially for SD
where it is just one sector), hence "preferred_erase_size" provides a good
chunk size for erasing large areas.
For MMC, "preferred_erase_size" is the high-capacity erase size if a card
specifies one, otherwise it is based on the capacity of the card.
For SD, "preferred_erase_size" is the allocation unit size specified by
the card.
"preferred_erase_size" is in bytes.
Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Madhusudhan Chikkature <madhu.cr@ti.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Gardiner <bengardiner@nanometrics.ca>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series adds support for SD combo cards to MMC/SD driver stack.
SD combo consists of SD memory and SDIO parts in one package. Since the
parts have a separate SD command sets, after initialization, they can be
treated as independent cards on one bus.
Changes are divided into two patches. First is just moving initialization
code around so that SD memory part init can be called from SDIO init.
Second patch is a proper change enabling SD memory along SDIO. I tried to
move as much no-op changes to the first patch so that it's easier to
follow the required changes to initialization flow for SDIO cards.
This is based on Simplified SDIO spec v.2.00. The init sequence is
slightly modified to follow current SD memory init implementation.
Command sequences, assuming SD memory and SDIO indeed ignore unknown
commands, are the same as before for both parts.
This patch:
Prepare for SD-combo (IO+mem) support by splitting SD memory
card init and related functions.
Signed-off-by: Michal Miroslaw <mirq-linux@rere.qmqm.pl>
Cc: Adrian Hunter <adrian.hunter@nokia.com>
Cc: Chris Ball <cjb@laptop.org>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Some people run general-purpose distribution kernels on netbooks with
a card that is physically non-removable or logically non-removable
(e.g. used for /home) and cannot be cleanly unmounted during suspend.
Add a module parameter to set whether cards are assumed removable or
non-removable, with the default set by CONFIG_MMC_UNSAFE_RESUME.
In general, it is not possible to tell whether a card present in an MMC
slot after resume is the same that was there before suspend. So there are
two possible behaviours, each of which will cause data loss in some cases:
CONFIG_MMC_UNSAFE_RESUME=n (default): Cards are assumed to be removed
during suspend. Any filesystem on them must be unmounted before suspend;
otherwise, buffered writes will be lost.
CONFIG_MMC_UNSAFE_RESUME=y: Cards are assumed to remain present during
suspend. They must not be swapped during suspend; otherwise, buffered
writes will be flushed to the wrong card.
Currently the choice is made at compile time and this allows that to be
overridden at module load time.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Wouter van Heyst <larstiq@larstiq.dyndns.org>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Especially for SDIO drivers which may have special conditions/errors to
report, it is a good thing to relay the returned error code back to upper
layers.
This also allows for the rationalization of the resume path where code to
"remove" a no-longer-existing or replaced card was duplicated into the
MMC, SD and SDIO bus drivers.
In the SDIO case, if a function suspend method returns an error, then all
previously suspended functions are resumed and the error returned. An
exception is made for -ENOSYS which the core interprets as "we don't
support suspend so just kick the card out for suspend and return success".
When resuming SDIO cards, the core code only validates the manufacturer
and product IDs to make sure the same kind of card is still present before
invoking functions resume methods. It's the function driver's
responsibility to perform further tests to confirm that the actual same
card is present (same MAC address, etc.) and return an error otherwise.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some time ago, I have send a patch to the mmc_spi subsystem changing the
error codes. This was after a discussion with Pierre about using EINVAL
only for non-recoverable errors. This patch was accepted as
http://git.kernel.org/linus/fdd858db7113ca64132de390188d7ca00701013d
Unfortunately, several weeks later, I realized that this patch has opened
a little can of worms because there are SD cards on the market which
a) claim that they support the switch command
AND
b) refuse to execute this command if operating in SPI mode.
So, such a card would get unusuable in an embedded linux system in SPI
mode, because the init sequence terminates with an error.
This patch adds the missing error codes to the caller of the switch
command and restores the old behaviour to fail gracefully if these
commands can not execute.
Signed-off-by: Wolfgang Muees <wolfgang.mues@auerswald.de>
Cc: <linux-mmc@vger.kernel.org>
Cc: <stable@kernel.org> [2.6.31.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Power can be saved by powering off cards that are not in use. This is
similar to suspend / resume except it is under the control of the driver,
and does not require any power management support. It can only be used
when the driver can monitor whether the card is removed, otherwise it is
unsafe. This is possible because, unlike suspend, the driver still
receives card detect and / or cover switch interrupts.
Signed-off-by: Adrian Hunter <adrian.hunter@nokia.com>
Acked-by: Matt Fleming <matt@console-pimps.org>
Cc: Ian Molton <ian@mnementh.co.uk>
Cc: "Roberto A. Foglietta" <roberto.foglietta@gmail.com>
Cc: Jarkko Lavinen <jarkko.lavinen@nokia.com>
Cc: Denis Karpov <ext-denis.2.karpov@nokia.com>
Cc: Pierre Ossman <pierre@ossman.eu>
Cc: Philip Langdale <philipl@overt.org>
Cc: "Madhusudhan" <madhu.cr@ti.com>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>