mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 06:21:34 +07:00
37c92dc303
13952 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
edf445ad7c |
Merge branch 'hugepage-fallbacks' (hugepatch patches from David Rientjes)
Merge hugepage allocation updates from David Rientjes: "We (mostly Linus, Andrea, and myself) have been discussing offlist how to implement a sane default allocation strategy for hugepages on NUMA platforms. With these reverts in place, the page allocator will happily allocate a remote hugepage immediately rather than try to make a local hugepage available. This incurs a substantial performance degradation when memory compaction would have otherwise made a local hugepage available. This series reverts those reverts and attempts to propose a more sane default allocation strategy specifically for hugepages. Andrea acknowledges this is likely to fix the swap storms that he originally reported that resulted in the patches that removed __GFP_THISNODE from hugepage allocations. The immediate goal is to return 5.3 to the behavior the kernel has implemented over the past several years so that remote hugepages are not immediately allocated when local hugepages could have been made available because the increased access latency is untenable. The next goal is to introduce a sane default allocation strategy for hugepages allocations in general regardless of the configuration of the system so that we prevent thrashing of local memory when compaction is unlikely to succeed and can prefer remote hugepages over remote native pages when the local node is low on memory." Note on timing: this reverts the hugepage VM behavior changes that got introduced fairly late in the 5.3 cycle, and that fixed a huge performance regression for certain loads that had been around since 4.18. Andrea had this note: "The regression of 4.18 was that it was taking hours to start a VM where 3.10 was only taking a few seconds, I reported all the details on lkml when it was finally tracked down in August 2018. https://lore.kernel.org/linux-mm/20180820032640.9896-2-aarcange@redhat.com/ __GFP_THISNODE in MADV_HUGEPAGE made the above enterprise vfio workload degrade like in the "current upstream" above. And it still would have been that bad as above until 5.3-rc5" where the bad behavior ends up happening as you fill up a local node, and without that change, you'd get into the nasty swap storm behavior due to compaction working overtime to make room for more memory on the nodes. As a result 5.3 got the two performance fix reverts in rc5. However, David Rientjes then noted that those performance fixes in turn regressed performance for other loads - although not quite to the same degree. He suggested reverting the reverts and instead replacing them with two small changes to how hugepage allocations are done (patch descriptions rephrased by me): - "avoid expensive reclaim when compaction may not succeed": just admit that the allocation failed when you're trying to allocate a huge-page and compaction wasn't successful. - "allow hugepage fallback to remote nodes when madvised": when that node-local huge-page allocation failed, retry without forcing the local node. but by then I judged it too late to replace the fixes for a 5.3 release. So 5.3 was released with behavior that harked back to the pre-4.18 logic. But now we're in the merge window for 5.4, and we can see if this alternate model fixes not just the horrendous swap storm behavior, but also restores the performance regression that the late reverts caused. Fingers crossed. * emailed patches from David Rientjes <rientjes@google.com>: mm, page_alloc: allow hugepage fallback to remote nodes when madvised mm, page_alloc: avoid expensive reclaim when compaction may not succeed Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask"" Revert "Revert "mm, thp: restore node-local hugepage allocations"" |
||
David Rientjes
|
76e654cc91 |
mm, page_alloc: allow hugepage fallback to remote nodes when madvised
For systems configured to always try hard to allocate transparent hugepages (thp defrag setting of "always") or for memory that has been explicitly madvised to MADV_HUGEPAGE, it is often better to fallback to remote memory to allocate the hugepage if the local allocation fails first. The point is to allow the initial call to __alloc_pages_node() to attempt to defragment local memory to make a hugepage available, if possible, rather than immediately fallback to remote memory. Local hugepages will always have a better access latency than remote (huge)pages, so an attempt to make a hugepage available locally is always preferred. If memory compaction cannot be successful locally, however, it is likely better to fallback to remote memory. This could take on two forms: either allow immediate fallback to remote memory or do per-zone watermark checks. It would be possible to fallback only when per-zone watermarks fail for order-0 memory, since that would require local reclaim for all subsequent faults so remote huge allocation is likely better than thrashing the local zone for large workloads. In this case, it is assumed that because the system is configured to try hard to allocate hugepages or the vma is advised to explicitly want to try hard for hugepages that remote allocation is better when local allocation and memory compaction have both failed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
b39d0ee263 |
mm, page_alloc: avoid expensive reclaim when compaction may not succeed
Memory compaction has a couple significant drawbacks as the allocation order increases, specifically: - isolate_freepages() is responsible for finding free pages to use as migration targets and is implemented as a linear scan of memory starting at the end of a zone, - failing order-0 watermark checks in memory compaction does not account for how far below the watermarks the zone actually is: to enable migration, there must be *some* free memory available. Per the above, watermarks are not always suffficient if isolate_freepages() cannot find the free memory but it could require hundreds of MBs of reclaim to even reach this threshold (read: potentially very expensive reclaim with no indication compaction can be successful), and - if compaction at this order has failed recently so that it does not even run as a result of deferred compaction, looping through reclaim can often be pointless. For hugepage allocations, these are quite substantial drawbacks because these are very high order allocations (order-9 on x86) and falling back to doing reclaim can potentially be *very* expensive without any indication that compaction would even be successful. Reclaim itself is unlikely to free entire pageblocks and certainly no reliance should be put on it to do so in isolation (recall lumpy reclaim). This means we should avoid reclaim and simply fail hugepage allocation if compaction is deferred. It is also not helpful to thrash a zone by doing excessive reclaim if compaction may not be able to access that memory. If order-0 watermarks fail and the allocation order is sufficiently large, it is likely better to fail the allocation rather than thrashing the zone. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
19deb7695e |
Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask""
This reverts commit |
||
David Rientjes
|
ac79f78dab |
Revert "Revert "mm, thp: restore node-local hugepage allocations""
This reverts commit
|
||
Linus Torvalds
|
0576f0602a |
Fix hardened usercopy under CONFIG_DEBUG_VIRTUAL
-----BEGIN PGP SIGNATURE----- Comment: Kees Cook <kees@outflux.net> iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl2NA6MWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJtBfD/9vC8kFze4MthmOFUmfX8THDUeA 6thvjsnHEE0PuOtpfii7QlzjXWy4v5NaOun5UhjXL1OPpxyewxcEylj190+aIw4H xbjdCIcNbDNS0IHODnBeFMIx3U5vSUykddw3MVH9Hng3IH0mOo3KZH2Gee8yXaRb Q2dqyBfvUEZ348qOnWDHPmNe7+y78VhvS99ofXa6WoXFk7D7l+x9QhTFGAXPdYOc BULI1Nr5b46gTgEf8czAUJXUgDXlJ8+qLLUE7c7n+4bHRTZQnWPahifutjfYdTQ6 4iqcWOKdcnXV44Pp6+s7LvHIZJ0KP2jozfrDF/QZjt/a00LTumj7++UUSNlgsY5t tJuCHH0lATLgnnIyaS8OID01tkvsxe8WWHGR/9/DwTk1qKZbT3DGfe04l1fGnROD 3+B4ib5UfAtg+2iwULEo9yyxEcTTo/CrR9Z7H77lD6oCDzWDqA7Krrd73T7SfrIE t0uaekvXI1dY8sx3Xm422d9a2/kfA7Hbi8h0yqY0JzVc1mRc1P8GIeqT8AoWRnOK fK2PkqxTsAJRvrGa5xH+t04vuRahNuG7QNtLKOQFyBRmy5vmT5KbgnFk/PdkZxNn S281w3SoXcxd9FSwaumFUgekSDASOrpEtsVa8wNpPR2fiIE/LgJ5rH8W5tfahCZP ZPkyK1LsFfqQ+EO18w== =wXwZ -----END PGP SIGNATURE----- Merge tag 'usercopy-v5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull usercopy fix from Kees Cook: "Fix hardened usercopy under CONFIG_DEBUG_VIRTUAL" * tag 'usercopy-v5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: usercopy: Avoid HIGHMEM pfn warning |
||
Minchan Kim
|
d616d51265 |
mm: factor out common parts between MADV_COLD and MADV_PAGEOUT
There are many common parts between MADV_COLD and MADV_PAGEOUT. This patch factor them out to save code duplication. Link: http://lkml.kernel.org/r/20190726023435.214162-6-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: kbuild test robot <lkp@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
1a4e58cce8 |
mm: introduce MADV_PAGEOUT
When a process expects no accesses to a certain memory range for a long time, it could hint kernel that the pages can be reclaimed instantly but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall. MADV_PAGEOUT can be used by a process to mark a memory range as not expected to be used for a long time so that kernel reclaims *any LRU* pages instantly. The hint can help kernel in deciding which pages to evict proactively. A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit intentionally because it's automatically bounded by PMD size. If PMD size(e.g., 256) makes some trouble, we could fix it later by limit it to SWAP_CLUSTER_MAX[1]. - man-page material MADV_PAGEOUT (since Linux x.x) Do not expect access in the near future so pages in the specified regions could be reclaimed instantly regardless of memory pressure. Thus, access in the range after successful operation could cause major page fault but never lose the up-to-date contents unlike MADV_DONTNEED. Pages belonging to a shared mapping are only processed if a write access is allowed for the calling process. MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/ [minchan@kernel.org: clear PG_active on MADV_PAGEOUT] Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
8940b34a4e |
mm: change PAGEREF_RECLAIM_CLEAN with PAGE_REFRECLAIM
The local variable references in shrink_page_list is PAGEREF_RECLAIM_CLEAN as default. It is for preventing to reclaim dirty pages when CMA try to migrate pages. Strictly speaking, we don't need it because CMA didn't allow to write out by .may_writepage = 0 in reclaim_clean_pages_from_list. Moreover, it has a problem to prevent anonymous pages's swap out even though force_reclaim = true in shrink_page_list on upcoming patch. So this patch makes references's default value to PAGEREF_RECLAIM and rename force_reclaim with ignore_references to make it more clear. This is a preparatory work for next patch. Link: http://lkml.kernel.org/r/20190726023435.214162-3-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: kbuild test robot <lkp@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
9c276cc65a |
mm: introduce MADV_COLD
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7. - Background The Android terminology used for forking a new process and starting an app from scratch is a cold start, while resuming an existing app is a hot start. While we continually try to improve the performance of cold starts, hot starts will always be significantly less power hungry as well as faster so we are trying to make hot start more likely than cold start. To increase hot start, Android userspace manages the order that apps should be killed in a process called ActivityManagerService. ActivityManagerService tracks every Android app or service that the user could be interacting with at any time and translates that into a ranked list for lmkd(low memory killer daemon). They are likely to be killed by lmkd if the system has to reclaim memory. In that sense they are similar to entries in any other cache. Those apps are kept alive for opportunistic performance improvements but those performance improvements will vary based on the memory requirements of individual workloads. - Problem Naturally, cached apps were dominant consumers of memory on the system. However, they were not significant consumers of swap even though they are good candidate for swap. Under investigation, swapping out only begins once the low zone watermark is hit and kswapd wakes up, but the overall allocation rate in the system might trip lmkd thresholds and cause a cached process to be killed(we measured performance swapping out vs. zapping the memory by killing a process. Unsurprisingly, zapping is 10x times faster even though we use zram which is much faster than real storage) so kill from lmkd will often satisfy the high zone watermark, resulting in very few pages actually being moved to swap. - Approach The approach we chose was to use a new interface to allow userspace to proactively reclaim entire processes by leveraging platform information. This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages that are known to be cold from userspace and to avoid races with lmkd by reclaiming apps as soon as they entered the cached state. Additionally, it could provide many chances for platform to use much information to optimize memory efficiency. To achieve the goal, the patchset introduce two new options for madvise. One is MADV_COLD which will deactivate activated pages and the other is MADV_PAGEOUT which will reclaim private pages instantly. These new options complement MADV_DONTNEED and MADV_FREE by adding non-destructive ways to gain some free memory space. MADV_PAGEOUT is similar to MADV_DONTNEED in a way that it hints the kernel that memory region is not currently needed and should be reclaimed immediately; MADV_COLD is similar to MADV_FREE in a way that it hints the kernel that memory region is not currently needed and should be reclaimed when memory pressure rises. This patch (of 5): When a process expects no accesses to a certain memory range, it could give a hint to kernel that the pages can be reclaimed when memory pressure happens but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_COLD hint to madvise(2) syscall. MADV_COLD can be used by a process to mark a memory range as not expected to be used in the near future. The hint can help kernel in deciding which pages to evict early during memory pressure. It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves active file page -> inactive file LRU active anon page -> inacdtive anon LRU Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file LRU's head because MADV_COLD is a little bit different symantic. MADV_FREE means it's okay to discard when the memory pressure because the content of the page is *garbage* so freeing such pages is almost zero overhead since we don't need to swap out and access afterward causes just minor fault. Thus, it would make sense to put those freeable pages in inactive file LRU to compete other used-once pages. It makes sense for implmentaion point of view, too because it's not swapbacked memory any longer until it would be re-dirtied. Even, it could give a bonus to make them be reclaimed on swapless system. However, MADV_COLD doesn't mean garbage so reclaiming them requires swap-out/in in the end so it's bigger cost. Since we have designed VM LRU aging based on cost-model, anonymous cold pages would be better to position inactive anon's LRU list, not file LRU. Furthermore, it would help to avoid unnecessary scanning if system doesn't have a swap device. Let's start simpler way without adding complexity at this moment. However, keep in mind, too that it's a caveat that workloads with a lot of pages cache are likely to ignore MADV_COLD on anonymous memory because we rarely age anonymous LRU lists. * man-page material MADV_COLD (since Linux x.x) Pages in the specified regions will be treated as less-recently-accessed compared to pages in the system with similar access frequencies. In contrast to MADV_FREE, the contents of the region are preserved regardless of subsequent writes to pages. MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Catalin Marinas
|
ce18d171cb |
mm: untag user pointers in mmap/munmap/mremap/brk
There isn't a good reason to differentiate between the user address space layout modification syscalls and the other memory permission/attributes ones (e.g. mprotect, madvise) w.r.t. the tagged address ABI. Untag the user addresses on entry to these functions. Link: http://lkml.kernel.org/r/20190821164730.47450-2-catalin.marinas@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Andrey Konovalov <andreyknvl@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Szabolcs Nagy <szabolcs.nagy@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Dave P Martin <Dave.Martin@arm.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
5d65e7a7d8 |
mm: untag user pointers in get_vaddr_frames
This patch is a part of a series that extends kernel ABI to allow to pass tagged user pointers (with the top byte set to something else other than 0x00) as syscall arguments. get_vaddr_frames uses provided user pointers for vma lookups, which can only by done with untagged pointers. Instead of locating and changing all callers of this function, perform untagging in it. Link: http://lkml.kernel.org/r/28f05e49c92b2a69c4703323d6c12208f3d881fe.1563904656.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jens Wiklander <jens.wiklander@linaro.org> Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
f965259419 |
mm: untag user pointers in mm/gup.c
This patch is a part of a series that extends kernel ABI to allow to pass tagged user pointers (with the top byte set to something else other than 0x00) as syscall arguments. mm/gup.c provides a kernel interface that accepts user addresses and manipulates user pages directly (for example get_user_pages, that is used by the futex syscall). Since a user can provided tagged addresses, we need to handle this case. Add untagging to gup.c functions that use user addresses for vma lookups. Link: http://lkml.kernel.org/r/4731bddba3c938658c10ff4ed55cc01c60f4c8f8.1563904656.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jens Wiklander <jens.wiklander@linaro.org> Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Konovalov
|
057d338910 |
mm: untag user pointers passed to memory syscalls
This patch is a part of a series that extends kernel ABI to allow to pass tagged user pointers (with the top byte set to something else other than 0x00) as syscall arguments. This patch allows tagged pointers to be passed to the following memory syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect, mremap, msync, munlock, move_pages. The mmap and mremap syscalls do not currently accept tagged addresses. Architectures may interpret the tag as a background colour for the corresponding vma. Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Eric Auger <eric.auger@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jens Wiklander <jens.wiklander@linaro.org> Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
315cc066b8 |
augmented rbtree: add new RB_DECLARE_CALLBACKS_MAX macro
Add RB_DECLARE_CALLBACKS_MAX, which generates augmented rbtree callbacks for the case where the augmented value is a scalar whose definition follows a max(f(node)) pattern. This actually covers all present uses of RB_DECLARE_CALLBACKS, and saves some (source) code duplication in the various RBCOMPUTE function definitions. [walken@google.com: fix mm/vmalloc.c] Link: http://lkml.kernel.org/r/CANN689FXgK13wDYNh1zKxdipeTuALG4eKvKpsdZqKFJ-rvtGiQ@mail.gmail.com [walken@google.com: re-add check to check_augmented()] Link: http://lkml.kernel.org/r/20190727022027.GA86863@google.com Link: http://lkml.kernel.org/r/20190703040156.56953-3-walken@google.com Signed-off-by: Michel Lespinasse <walken@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
e55d9d9bfb |
memcg, kmem: do not fail __GFP_NOFAIL charges
Thomas has noticed the following NULL ptr dereference when using cgroup v1 kmem limit: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42 Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015 RIP: 0010:create_empty_buffers+0x24/0x100 Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149 RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00 RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000 FS: 00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0 Call Trace: create_page_buffers+0x4d/0x60 __block_write_begin_int+0x8e/0x5a0 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0 ? jbd2__journal_start+0xd7/0x1f0 ext4_da_write_begin+0x112/0x3d0 generic_perform_write+0xf1/0x1b0 ? file_update_time+0x70/0x140 __generic_file_write_iter+0x141/0x1a0 ext4_file_write_iter+0xef/0x3b0 __vfs_write+0x17e/0x1e0 vfs_write+0xa5/0x1a0 ksys_write+0x57/0xd0 do_syscall_64+0x55/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg fails __GFP_NOFAIL charge when the kmem limit is reached. This is a wrong behavior because nofail allocations are not allowed to fail. Normal charge path simply forces the charge even if that means to cross the limit. Kmem accounting should be doing the same. Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com> Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Thomas Lindroth <thomas.lindroth@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qian Cai
|
2b38d01b4d |
mm/zsmalloc.c: fix a -Wunused-function warning
set_zspage_inuse() was introduced in the commit |
||
Vitaly Wool
|
068619e32f |
zswap: do not map same object twice
zswap_writeback_entry() maps a handle to read swpentry first, and then in the most common case it would map the same handle again. This is ok when zbud is the backend since its mapping callback is plain and simple, but it slows things down for z3fold. Since there's hardly a point in unmapping a handle _that_ fast as zswap_writeback_entry() does when it reads swpentry, the suggestion is to keep the handle mapped till the end. Link: http://lkml.kernel.org/r/20190916004640.b453167d3556c4093af4cf7d@gmail.com Signed-off-by: Vitaly Wool <vitalywool@gmail.com> Reviewed-by: Dan Streetman <ddstreet@ieee.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hui Zhu
|
d2fcd82bb8 |
zswap: use movable memory if zpool support allocate movable memory
This is the third version that was updated according to the comments from Sergey Senozhatsky https://lkml.org/lkml/2019/5/29/73 and Shakeel Butt https://lkml.org/lkml/2019/6/4/973 zswap compresses swap pages into a dynamically allocated RAM-based memory pool. The memory pool should be zbud, z3fold or zsmalloc. All of them will allocate unmovable pages. It will increase the number of unmovable page blocks that will bad for anti-fragment. zsmalloc support page migration if request movable page: handle = zs_malloc(zram->mem_pool, comp_len, GFP_NOIO | __GFP_HIGHMEM | __GFP_MOVABLE); And commit "zpool: Add malloc_support_movable to zpool_driver" add zpool_malloc_support_movable check malloc_support_movable to make sure if a zpool support allocate movable memory. This commit let zswap allocate block with gfp __GFP_HIGHMEM | __GFP_MOVABLE if zpool support allocate movable memory. Following part is test log in a pc that has 8G memory and 2G swap. Without this commit: ~# echo lz4 > /sys/module/zswap/parameters/compressor ~# echo zsmalloc > /sys/module/zswap/parameters/zpool ~# echo 1 > /sys/module/zswap/parameters/enabled ~# swapon /swapfile ~# cd /home/teawater/kernel/vm-scalability/ /home/teawater/kernel/vm-scalability# export unit_size=$((9 * 1024 * 1024 * 1024)) /home/teawater/kernel/vm-scalability# ./case-anon-w-seq 2717908992 bytes / 4826062 usecs = 549973 KB/s 2717908992 bytes / 4864201 usecs = 545661 KB/s 2717908992 bytes / 4867015 usecs = 545346 KB/s 2717908992 bytes / 4915485 usecs = 539968 KB/s 397853 usecs to free memory 357820 usecs to free memory 421333 usecs to free memory 420454 usecs to free memory /home/teawater/kernel/vm-scalability# cat /proc/pagetypeinfo Page block order: 9 Pages per block: 512 Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10 Node 0, zone DMA, type Unmovable 1 1 1 0 2 1 1 0 1 0 0 Node 0, zone DMA, type Movable 0 0 0 0 0 0 0 0 0 1 3 Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type HighAtomic 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type CMA 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type Unmovable 6 5 8 6 6 5 4 1 1 1 0 Node 0, zone DMA32, type Movable 25 20 20 19 22 15 14 11 11 5 767 Node 0, zone DMA32, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type HighAtomic 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type CMA 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone Normal, type Unmovable 4753 5588 5159 4613 3712 2520 1448 594 188 11 0 Node 0, zone Normal, type Movable 16 3 457 2648 2143 1435 860 459 223 224 296 Node 0, zone Normal, type Reclaimable 0 0 44 38 11 2 0 0 0 0 0 Node 0, zone Normal, type HighAtomic 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone Normal, type CMA 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone Normal, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Number of blocks type Unmovable Movable Reclaimable HighAtomic CMA Isolate Node 0, zone DMA 1 7 0 0 0 0 Node 0, zone DMA32 4 1652 0 0 0 0 Node 0, zone Normal 931 1485 15 0 0 0 With this commit: ~# echo lz4 > /sys/module/zswap/parameters/compressor ~# echo zsmalloc > /sys/module/zswap/parameters/zpool ~# echo 1 > /sys/module/zswap/parameters/enabled ~# swapon /swapfile ~# cd /home/teawater/kernel/vm-scalability/ /home/teawater/kernel/vm-scalability# export unit_size=$((9 * 1024 * 1024 * 1024)) /home/teawater/kernel/vm-scalability# ./case-anon-w-seq 2717908992 bytes / 4689240 usecs = 566020 KB/s 2717908992 bytes / 4760605 usecs = 557535 KB/s 2717908992 bytes / 4803621 usecs = 552543 KB/s 2717908992 bytes / 5069828 usecs = 523530 KB/s 431546 usecs to free memory 383397 usecs to free memory 456454 usecs to free memory 224487 usecs to free memory /home/teawater/kernel/vm-scalability# cat /proc/pagetypeinfo Page block order: 9 Pages per block: 512 Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10 Node 0, zone DMA, type Unmovable 1 1 1 0 2 1 1 0 1 0 0 Node 0, zone DMA, type Movable 0 0 0 0 0 0 0 0 0 1 3 Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type HighAtomic 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type CMA 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type Unmovable 10 8 10 9 10 4 3 2 3 0 0 Node 0, zone DMA32, type Movable 18 12 14 16 16 11 9 5 5 6 775 Node 0, zone DMA32, type Reclaimable 0 0 0 0 0 0 0 0 0 0 1 Node 0, zone DMA32, type HighAtomic 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type CMA 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone Normal, type Unmovable 2669 1236 452 118 37 14 4 1 2 3 0 Node 0, zone Normal, type Movable 3850 6086 5274 4327 3510 2494 1520 934 438 220 470 Node 0, zone Normal, type Reclaimable 56 93 155 124 47 31 17 7 3 0 0 Node 0, zone Normal, type HighAtomic 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone Normal, type CMA 0 0 0 0 0 0 0 0 0 0 0 Node 0, zone Normal, type Isolate 0 0 0 0 0 0 0 0 0 0 0 Number of blocks type Unmovable Movable Reclaimable HighAtomic CMA Isolate Node 0, zone DMA 1 7 0 0 0 0 Node 0, zone DMA32 4 1650 2 0 0 0 Node 0, zone Normal 79 2326 26 0 0 0 You can see that the number of unmovable page blocks is decreased when the kernel has this commit. Link: http://lkml.kernel.org/r/20190605100630.13293-2-teawaterz@linux.alibaba.com Signed-off-by: Hui Zhu <teawaterz@linux.alibaba.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hui Zhu
|
c165f25d23 |
zpool: add malloc_support_movable to zpool_driver
As a zpool_driver, zsmalloc can allocate movable memory because it support migate pages. But zbud and z3fold cannot allocate movable memory. Add malloc_support_movable to zpool_driver. If a zpool_driver support allocate movable memory, set it to true. And add zpool_malloc_support_movable check malloc_support_movable to make sure if a zpool support allocate movable memory. Link: http://lkml.kernel.org/r/20190605100630.13293-1-teawaterz@linux.alibaba.com Signed-off-by: Hui Zhu <teawaterz@linux.alibaba.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miles Chen
|
28eb3c8087 |
shmem: fix obsolete comment in shmem_getpage_gfp()
Replace "fault_mm" with "vmf" in code comment because commit
|
||
Mike Rapoport
|
f3bc0dba31 |
mm/madvise: reduce code duplication in error handling paths
madvise_behavior() converts -ENOMEM to -EAGAIN in several places using identical code. Move that code to a common error handling path. No functional changes. Link: http://lkml.kernel.org/r/1564640896-1210-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ivan Khoronzhuk
|
76f3495077 |
mm: mmap: increase sockets maximum memory size pgoff for 32bits
The AF_XDP sockets umem mapping interface uses XDP_UMEM_PGOFF_FILL_RING and XDP_UMEM_PGOFF_COMPLETION_RING offsets. These offsets are established already and are part of the configuration interface. But for 32-bit systems, using AF_XDP socket configuration, these values are too large to pass the maximum allowed file size verification. The offsets can be tuned off, but instead of changing the existing interface, let's extend the max allowed file size for sockets. No one has been using this until this patch with 32 bits as without this fix af_xdp sockets can't be used at all, so it unblocks af_xdp socket usage for 32bit systems. All list of mmap cbs for sockets was verified for side effects and all of them contain dummy cb - sock_no_mmap() at this moment, except the following: xsk_mmap() - it's what this fix is needed for. tcp_mmap() - doesn't have obvious issues with pgoff - no any references on it. packet_mmap() - return -EINVAL if it's even set. Link: http://lkml.kernel.org/r/20190812124326.32146-1-ivan.khoronzhuk@linaro.org Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Björn Töpel <bjorn.topel@intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Magnus Karlsson <magnus.karlsson@intel.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
73848a9711 |
mm/mmap.c: refine find_vma_prev() with rb_last()
When addr is out of range of the whole rb_tree, pprev will point to the right-most node. rb_tree facility already provides a helper function, rb_last(), to do this task. We can leverage this instead of reimplementing it. This patch refines find_vma_prev() with rb_last() to make it a little nicer to read. [akpm@linux-foundation.org: little cleanup, per Vlastimil] Link: http://lkml.kernel.org/r/20190809001928.4950-1-richardw.yang@linux.intel.com Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexandre Ghiti
|
e7142bf5d2 |
arm64, mm: make randomization selected by generic topdown mmap layout
This commits selects ARCH_HAS_ELF_RANDOMIZE when an arch uses the generic topdown mmap layout functions so that this security feature is on by default. Note that this commit also removes the possibility for arm64 to have elf randomization and no MMU: without MMU, the security added by randomization is worth nothing. Link: http://lkml.kernel.org/r/20190730055113.23635-6-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: James Hogan <jhogan@kernel.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexandre Ghiti
|
67f3977f80 |
arm64, mm: move generic mmap layout functions to mm
arm64 handles top-down mmap layout in a way that can be easily reused by other architectures, so make it available in mm. It then introduces a new config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT that can be set by other architectures to benefit from those functions. Note that this new config depends on MMU being enabled, if selected without MMU support, a warning will be thrown. Link: http://lkml.kernel.org/r/20190730055113.23635-5-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Suggested-by: Christoph Hellwig <hch@infradead.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: James Hogan <jhogan@kernel.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexandre Ghiti
|
649775be63 |
mm, fs: move randomize_stack_top from fs to mm
Patch series "Provide generic top-down mmap layout functions", v6. This series introduces generic functions to make top-down mmap layout easily accessible to architectures, in particular riscv which was the initial goal of this series. The generic implementation was taken from arm64 and used successively by arm, mips and finally riscv. Note that in addition the series fixes 2 issues: - stack randomization was taken into account even if not necessary. - [1] fixed an issue with mmap base which did not take into account randomization but did not report it to arm and mips, so by moving arm64 into a generic library, this problem is now fixed for both architectures. This work is an effort to factorize architecture functions to avoid code duplication and oversights as in [1]. [1]: https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1429066.html This patch (of 14): This preparatory commit moves this function so that further introduction of generic topdown mmap layout is contained only in mm/util.c. Link: http://lkml.kernel.org/r/20190730055113.23635-2-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: Kees Cook <keescook@chromium.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: James Hogan <jhogan@kernel.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
27e1f82731 |
khugepaged: enable collapse pmd for pte-mapped THP
khugepaged needs exclusive mmap_sem to access page table. When it fails to lock mmap_sem, the page will fault in as pte-mapped THP. As the page is already a THP, khugepaged will not handle this pmd again. This patch enables the khugepaged to retry collapse the page table. struct mm_slot (in khugepaged.c) is extended with an array, containing addresses of pte-mapped THPs. We use array here for simplicity. We can easily replace it with more advanced data structures when needed. In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to collapse the page table. Since collapse may happen at an later time, some pages may already fault in. collapse_pte_mapped_thp() is added to properly handle these pages. collapse_pte_mapped_thp() also double checks whether all ptes in this pmd are mapping to the same THP. This is necessary because some subpage of the THP may be replaced, for example by uprobe. In such cases, it is not possible to collapse the pmd. [kirill.shutemov@linux.intel.com: add comments for retract_page_tables()] Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
bfe7b00de6 |
mm, thp: introduce FOLL_SPLIT_PMD
Introduce a new foll_flag: FOLL_SPLIT_PMD. As the name says FOLL_SPLIT_PMD splits huge pmd for given mm_struct, the underlining huge page stays as-is. FOLL_SPLIT_PMD is useful for cases where we need to use regular pages, but would switch back to huge page and huge pmd on. One of such example is uprobe. The following patches use FOLL_SPLIT_PMD in uprobe. Link: http://lkml.kernel.org/r/20190815164525.1848545-4-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
010c164a5f |
mm: move memcmp_pages() and pages_identical()
Patch series "THP aware uprobe", v13. This patchset makes uprobe aware of THPs. Currently, when uprobe is attached to text on THP, the page is split by FOLL_SPLIT. As a result, uprobe eliminates the performance benefit of THP. This set makes uprobe THP-aware. Instead of FOLL_SPLIT, we introduces FOLL_SPLIT_PMD, which only split PMD for uprobe. After all uprobes within the THP are removed, the PTE-mapped pages are regrouped as huge PMD. This set (plus a few THP patches) is also available at https://github.com/liu-song-6/linux/tree/uprobe-thp This patch (of 6): Move memcmp_pages() to mm/util.c and pages_identical() to mm.h, so that we can use them in other files. Link: http://lkml.kernel.org/r/20190815164525.1848545-2-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <matthew.wilcox@oracle.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
87eaceb3fa |
mm: thp: make deferred split shrinker memcg aware
Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. [yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai] Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
0a432dcbeb |
mm: shrinker: make shrinker not depend on memcg kmem
Currently shrinker is just allocated and can work when memcg kmem is enabled. But, THP deferred split shrinker is not slab shrinker, it doesn't make too much sense to have such shrinker depend on memcg kmem. It should be able to reclaim THP even though memcg kmem is disabled. Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker. When memcg kmem is disabled, just such shrinkers can be called in shrinking memcg slab. [yang.shi@linux.alibaba.com: add comment] Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
7ae88534cd |
mm: move mem_cgroup_uncharge out of __page_cache_release()
A later patch makes THP deferred split shrinker memcg aware, but it needs page->mem_cgroup information in THP destructor, which is called after mem_cgroup_uncharge() now. So move mem_cgroup_uncharge() from __page_cache_release() to compound page destructor, which is called by both THP and other compound pages except HugeTLB. And call it in __put_single_page() for single order page. Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
364c1eebe4 |
mm: thp: extract split_queue_* into a struct
Patch series "Make deferred split shrinker memcg aware", v6. Currently THP deferred split shrinker is not memcg aware, this may cause premature OOM with some configuration. For example the below test would run into premature OOM easily: $ cgcreate -g memory:thp $ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes $ cgexec -g memory:thp transhuge-stress 4000 transhuge-stress comes from kernel selftest. It is easy to hit OOM, but there are still a lot THP on the deferred split queue, memcg direct reclaim can't touch them since the deferred split shrinker is not memcg aware. Convert deferred split shrinker memcg aware by introducing per memcg deferred split queue. The THP should be on either per node or per memcg deferred split queue if it belongs to a memcg. When the page is immigrated to the other memcg, it will be immigrated to the target memcg's deferred split queue too. Reuse the second tail page's deferred_list for per memcg list since the same THP can't be on multiple deferred split queues. Make deferred split shrinker not depend on memcg kmem since it is not slab. It doesn't make sense to not shrink THP even though memcg kmem is disabled. With the above change the test demonstrated above doesn't trigger OOM even though with cgroup.memory=nokmem. This patch (of 4): Put split_queue, split_queue_lock and split_queue_len into a struct in order to reduce code duplication when we convert deferred_split to memcg aware in the later patches. Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
09d91cda0e |
mm,thp: avoid writes to file with THP in pagecache
In previous patch, an application could put part of its text section in THP via madvise(). These THPs will be protected from writes when the application is still running (TXTBSY). However, after the application exits, the file is available for writes. This patch avoids writes to file THP by dropping page cache for the file when the file is open for write. A new counter nr_thps is added to struct address_space. In do_dentry_open(), if the file is open for write and nr_thps is non-zero, we drop page cache for the whole file. Link: http://lkml.kernel.org/r/20190801184244.3169074-8-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
99cb0dbd47 |
mm,thp: add read-only THP support for (non-shmem) FS
This patch is (hopefully) the first step to enable THP for non-shmem filesystems. This patch enables an application to put part of its text sections to THP via madvise, for example: madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE); We tried to reuse the logic for THP on tmpfs. Currently, write is not supported for non-shmem THP. khugepaged will only process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests (see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is execve(). This requirement limits non-shmem THP to text sections. The next patch will handle writes, which would only happen when the all the vmas with VM_DENYWRITE are unmapped. An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this feature. [songliubraving@fb.com: fix build without CONFIG_SHMEM] Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com [songliubraving@fb.com: fix double unlock in collapse_file()] Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
579c571e2e |
khugepaged: rename collapse_shmem() and khugepaged_scan_shmem()
Next patch will add khugepaged support of non-shmem files. This patch renames these two functions to reflect the new functionality: collapse_shmem() => collapse_file() khugepaged_scan_shmem() => khugepaged_scan_file() Link: http://lkml.kernel.org/r/20190801184244.3169074-6-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
60fbf0ab5d |
mm,thp: stats for file backed THP
In preparation for non-shmem THP, this patch adds a few stats and exposes them in /proc/meminfo, /sys/bus/node/devices/<node>/meminfo, and /proc/<pid>/task/<tid>/smaps. This patch is mostly a rewrite of Kirill A. Shutemov's earlier version: https://lkml.kernel.org/r/20170126115819.58875-5-kirill.shutemov@linux.intel.com/ Link: http://lkml.kernel.org/r/20190801184244.3169074-5-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
520e5ba415 |
filemap: update offset check in filemap_fault()
With THP, current check of offset: VM_BUG_ON_PAGE(page->index != offset, page); is no longer accurate. Update it to: VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); Link: http://lkml.kernel.org/r/20190801184244.3169074-4-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
31895438e7 |
filemap: check compound_head(page)->mapping in pagecache_get_page()
Similar to previous patch, pagecache_get_page() avoids race condition with truncate by checking page->mapping == mapping. This does not work for compound pages. This patch let it check compound_head(page)->mapping instead. Link: http://lkml.kernel.org/r/20190801184244.3169074-3-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Song Liu
|
585e5a7bab |
filemap: check compound_head(page)->mapping in filemap_fault()
Patch series "Enable THP for text section of non-shmem files", v10; This patchset follows up discussion at LSF/MM 2019. The motivation is to put text section of an application in THP, and thus reduces iTLB miss rate and improves performance. Both Facebook and Oracle showed strong interests to this feature. To make reviews easier, this set aims a mininal valid product. Current version of the work does not have any changes to file system specific code. This comes with some limitations (discussed later). This set enables an application to "hugify" its text section by simply running something like: madvise(0x600000, 0x80000, MADV_HUGEPAGE); Before this call, the /proc/<pid>/maps looks like: 00400000-074d0000 r-xp 00000000 00:27 2006927 app After this call, part of the text section is split out and mapped to THP: 00400000-00425000 r-xp 00000000 00:27 2006927 app 00600000-00e00000 r-xp 00200000 00:27 2006927 app <<< on THP 00e00000-074d0000 r-xp 00a00000 00:27 2006927 app Limitations: 1. This only works for text section (vma with VM_DENYWRITE). 2. Original limitation #2 is removed in v3. We gated this feature with an experimental config, READ_ONLY_THP_FOR_FS. Once we get better support on the write path, we can remove the config and enable it by default. Tested cases: 1. Tested with btrfs and ext4. 2. Tested with real work application (memcache like caching service). 3. Tested with "THP aware uprobe": https://patchwork.kernel.org/project/linux-mm/list/?series=131339 This patch (of 7): Currently, filemap_fault() avoids race condition with truncate by checking page->mapping == mapping. This does not work for compound pages. This patch let it check compound_head(page)->mapping instead. Link: http://lkml.kernel.org/r/20190801184244.3169074-2-songliubraving@fb.com Signed-off-by: Song Liu <songliubraving@fb.com> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pingfan Liu
|
276f756d70 |
mm/migrate.c: clean up useless code in migrate_vma_collect_pmd()
Remove unused 'pfn' variable. Link: http://lkml.kernel.org/r/1565167272-21453-1-git-send-email-kernelfans@gmail.com Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jan Kara <jack@suse.cz> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
f60858f9d3 |
hugetlbfs: don't retry when pool page allocations start to fail
When allocating hugetlbfs pool pages via /proc/sys/vm/nr_hugepages, the pages will be interleaved between all nodes of the system. If nodes are not equal, it is quite possible for one node to fill up before the others. When this happens, the code still attempts to allocate pages from the full node. This results in calls to direct reclaim and compaction which slow things down considerably. When allocating pool pages, note the state of the previous allocation for each node. If previous allocation failed, do not use the aggressive retry algorithm on successive attempts. The allocation will still succeed if there is memory available, but it will not try as hard to free up memory. Link: http://lkml.kernel.org/r/20190806014744.15446-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
4943308556 |
mm, compaction: raise compaction priority after it withdrawns
Mike Kravetz reports that "hugetlb allocations could stall for minutes or hours when should_compact_retry() would return true more often then it should. Specifically, this was in the case where compact_result was COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being made." The problem is that the compaction_withdrawn() test in should_compact_retry() includes compaction outcomes that are only possible on low compaction priority, and results in a retry without increasing the priority. This may result in furter reclaim, and more incomplete compaction attempts. With this patch, compaction priority is raised when possible, or should_compact_retry() returns false. The COMPACT_SKIPPED result doesn't really fit together with the other outcomes in compaction_withdrawn(), as that's a result caused by insufficient order-0 pages, not due to low compaction priority. With this patch, it is moved to a new compaction_needs_reclaim() function, and for that outcome we keep the current logic of retrying if it looks like reclaim will be able to help. Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com Reported-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
5ee04716c4 |
mm, reclaim: cleanup should_continue_reclaim()
After commit "mm, reclaim: make should_continue_reclaim perform dryrun detection", closer look at the function shows, that nr_reclaimed == 0 means the function will always return false. And since non-zero nr_reclaimed implies non_zero nr_scanned, testing nr_scanned serves no purpose, and so does the testing for __GFP_RETRY_MAYFAIL. This patch thus cleans up the function to test only !nr_reclaimed upfront, and remove the __GFP_RETRY_MAYFAIL test and nr_scanned parameter completely. Comment is also updated, explaining that approximating "full LRU list has been scanned" with nr_scanned == 0 didn't really work. Link: http://lkml.kernel.org/r/20190806014744.15446-3-mike.kravetz@oracle.com Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hillf Danton
|
1c6c15971e |
mm, reclaim: make should_continue_reclaim perform dryrun detection
Patch series "address hugetlb page allocation stalls", v2. Allocation of hugetlb pages via sysctl or procfs can stall for minutes or hours. A simple example on a two node system with 8GB of memory is as follows: echo 4096 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages echo 4096 > /proc/sys/vm/nr_hugepages Obviously, both allocation attempts will fall short of their 8GB goal. However, one or both of these commands may stall and not be interruptible. The issues were initially discussed in mail thread [1] and RFC code at [2]. This series addresses the issues causing the stalls. There are two distinct fixes, a cleanup, and an optimization. The reclaim patch by Hillf and compaction patch by Vlasitmil address corner cases in their respective areas. hugetlb page allocation could stall due to either of these issues. Vlasitmil added a cleanup patch after Hillf's modifications. The hugetlb patch by Mike is an optimization suggested during the debug and development process. [1] http://lkml.kernel.org/r/d38a095e-dc39-7e82-bb76-2c9247929f07@oracle.com [2] http://lkml.kernel.org/r/20190724175014.9935-1-mike.kravetz@oracle.com This patch (of 4): Address the issue of should_continue_reclaim returning true too often for __GFP_RETRY_MAYFAIL attempts when !nr_reclaimed and nr_scanned. This was observed during hugetlb page allocation causing stalls for minutes or hours. We can stop reclaiming pages if compaction reports it can make a progress. There might be side-effects for other high-order allocations that would potentially benefit from reclaiming more before compaction so that they would be faster and less likely to stall. However, the consequences of premature/over-reclaim are considered worse. We can also bail out of reclaiming pages if we know that there are not enough inactive lru pages left to satisfy the costly allocation. We can give up reclaiming pages too if we see dryrun occur, with the certainty of plenty of inactive pages. IOW with dryrun detected, we are sure we have reclaimed as many pages as we could. Link: http://lkml.kernel.org/r/20190806014744.15446-2-mike.kravetz@oracle.com Signed-off-by: Hillf Danton <hdanton@sina.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
0158115f70 |
memcg, kmem: deprecate kmem.limit_in_bytes
Cgroup v1 memcg controller has exposed a dedicated kmem limit to users which turned out to be really a bad idea because there are paths which cannot shrink the kernel memory usage enough to get below the limit (e.g. because the accounted memory is not reclaimable). There are cases when the failure is even not allowed (e.g. __GFP_NOFAIL). This means that the kmem limit is in excess to the hard limit without any way to shrink and thus completely useless. OOM killer cannot be invoked to handle the situation because that would lead to a premature oom killing. As a result many places might see ENOMEM returning from kmalloc and result in unexpected errors. E.g. a global OOM killer when there is a lot of free memory because ENOMEM is translated into VM_FAULT_OOM in #PF path and therefore pagefault_out_of_memory would result in OOM killer. Please note that the kernel memory is still accounted to the overall limit along with the user memory so removing the kmem specific limit should still allow to contain kernel memory consumption. Unlike the kmem one, though, it invokes memory reclaim and targeted memcg oom killing if necessary. Start the deprecation process by crying to the kernel log. Let's see whether there are relevant usecases and simply return to EINVAL in the second stage if nobody complains in few releases. [akpm@linux-foundation.org: tweak documentation text] Link: http://lkml.kernel.org/r/20190911151612.GI4023@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Thomas Lindroth <thomas.lindroth@gmail.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qian Cai
|
4d0e3230a5 |
mm/memcontrol.c: fix a -Wunused-function warning
mem_cgroup_id_get() was introduced in commit |
||
Michal Hocko
|
1eb41bb07e |
mm, oom: consider present pages for the node size
constrained_alloc() calculates the size of the oom domain by using node_spanned_pages which is incorrect because this is the full range of the physical memory range that the numa node occupies rather than the memory that backs that range which is represented by node_present_pages. Sparsely populated nodes (e.g. after memory hot remove or simply sparse due to memory layout) can have really a large difference between the two. This shouldn't really cause any real user observable problems because the oom calculates a ratio against totalpages and used memory cannot exceed present pages but it is confusing and wrong from code point of view. Link: http://lkml.kernel.org/r/20190829163443.899-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yi Wang
|
f364f06b34 |
mm/oom_kill.c: fix oom_cpuset_eligible() comment
Commit
|