Define a new function, tracing_set_time_stamp_abs(), which can be used
to enable or disable the use of absolute timestamps rather than time
deltas for a trace array.
Only the interface is added here; a subsequent patch will add the
underlying implementation.
Link: http://lkml.kernel.org/r/ce96119de44c7fe0ee44786d15254e9b493040d3.1516069914.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Baohong Liu <baohong.liu@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull poll annotations from Al Viro:
"This introduces a __bitwise type for POLL### bitmap, and propagates
the annotations through the tree. Most of that stuff is as simple as
'make ->poll() instances return __poll_t and do the same to local
variables used to hold the future return value'.
Some of the obvious brainos found in process are fixed (e.g. POLLIN
misspelled as POLL_IN). At that point the amount of sparse warnings is
low and most of them are for genuine bugs - e.g. ->poll() instance
deciding to return -EINVAL instead of a bitmap. I hadn't touched those
in this series - it's large enough as it is.
Another problem it has caught was eventpoll() ABI mess; select.c and
eventpoll.c assumed that corresponding POLL### and EPOLL### were
equal. That's true for some, but not all of them - EPOLL### are
arch-independent, but POLL### are not.
The last commit in this series separates userland POLL### values from
the (now arch-independent) kernel-side ones, converting between them
in the few places where they are copied to/from userland. AFAICS, this
is the least disruptive fix preserving poll(2) ABI and making epoll()
work on all architectures.
As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
it will trigger only on what would've triggered EPOLLWRBAND on other
architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
at all on sparc. With this patch they should work consistently on all
architectures"
* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
make kernel-side POLL... arch-independent
eventpoll: no need to mask the result of epi_item_poll() again
eventpoll: constify struct epoll_event pointers
debugging printk in sg_poll() uses %x to print POLL... bitmap
annotate poll(2) guts
9p: untangle ->poll() mess
->si_band gets POLL... bitmap stored into a user-visible long field
ring_buffer_poll_wait() return value used as return value of ->poll()
the rest of drivers/*: annotate ->poll() instances
media: annotate ->poll() instances
fs: annotate ->poll() instances
ipc, kernel, mm: annotate ->poll() instances
net: annotate ->poll() instances
apparmor: annotate ->poll() instances
tomoyo: annotate ->poll() instances
sound: annotate ->poll() instances
acpi: annotate ->poll() instances
crypto: annotate ->poll() instances
block: annotate ->poll() instances
x86: annotate ->poll() instances
...
In bringing back the context checks, the code checks first if its normal
(non-interrupt) context, and then for NMI then IRQ then softirq. The final
check is redundant. Since the if branch is only hit if the context is one of
NMI, IRQ, or SOFTIRQ, if it's not NMI or IRQ there's no reason to check if
it is SOFTIRQ. The current code returns the same result even if its not a
SOFTIRQ. Which is confusing.
pc & SOFTIRQ_OFFSET ? 2 : RB_CTX_SOFTIRQ
Is redundant as RB_CTX_SOFTIRQ *is* 2!
Fixes: a0e3a18f4b ("ring-buffer: Bring back context level recursive checks")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Commit 1a149d7d3f ("ring-buffer: Rewrite trace_recursive_(un)lock() to be
simpler") replaced the context level recursion checks with a simple counter.
This would prevent the ring buffer code from recursively calling itself more
than the max number of contexts that exist (Normal, softirq, irq, nmi). But
this change caused a lockup in a specific case, which was during suspend and
resume using a global clock. Adding a stack dump to see where this occurred,
the issue was in the trace global clock itself:
trace_buffer_lock_reserve+0x1c/0x50
__trace_graph_entry+0x2d/0x90
trace_graph_entry+0xe8/0x200
prepare_ftrace_return+0x69/0xc0
ftrace_graph_caller+0x78/0xa8
queued_spin_lock_slowpath+0x5/0x1d0
trace_clock_global+0xb0/0xc0
ring_buffer_lock_reserve+0xf9/0x390
The function graph tracer traced queued_spin_lock_slowpath that was called
by trace_clock_global. This pointed out that the trace_clock_global() is not
reentrant, as it takes a spin lock. It depended on the ring buffer recursive
lock from letting that happen.
By removing the context detection and adding just a max number of allowable
recursions, it allowed the trace_clock_global() to be entered again and try
to retake the spinlock it already held, causing a deadlock.
Fixes: 1a149d7d3f ("ring-buffer: Rewrite trace_recursive_(un)lock() to be simpler")
Reported-by: David Weinehall <david.weinehall@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
To free the reader page that is allocated with ring_buffer_alloc_read_page(),
ring_buffer_free_read_page() must be called. For faster performance, this
page can be reused by the ring buffer to avoid having to free and allocate
new pages.
The issue arises when the page is used with a splice pipe into the
networking code. The networking code may up the page counter for the page,
and keep it active while sending it is queued to go to the network. The
incrementing of the page ref does not prevent it from being reused in the
ring buffer, and this can cause the page that is being sent out to the
network to be modified before it is sent by reading new data.
Add a check to the page ref counter, and only reuse the page if it is not
being used anywhere else.
Cc: stable@vger.kernel.org
Fixes: 73a757e631 ("ring-buffer: Return reader page back into existing ring buffer")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Two info bits were added to the "commit" part of the ring buffer data page
when returned to be consumed. This was to inform the user space readers that
events have been missed, and that the count may be stored at the end of the
page.
What wasn't handled, was the splice code that actually called a function to
return the length of the data in order to zero out the rest of the page
before sending it up to user space. These data bits were returned with the
length making the value negative, and that negative value was not checked.
It was compared to PAGE_SIZE, and only used if the size was less than
PAGE_SIZE. Luckily PAGE_SIZE is unsigned long which made the compare an
unsigned compare, meaning the negative size value did not end up causing a
large portion of memory to be randomly zeroed out.
Cc: stable@vger.kernel.org
Fixes: 66a8cb95ed ("ring-buffer: Add place holder recording of dropped events")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This fixes the following warning when building with clang:
kernel/trace/ring_buffer.c:1842:1: error: unused function
'__rb_data_page_index' [-Werror,-Wunused-function]
Link: http://lkml.kernel.org/r/20170518001415.5223-1-mka@chromium.org
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
- Now allow module init functions to be traced
- Clean up some unused or not used by config events (saves space)
- Clean up of trace histogram code
- Add support for preempt and interrupt enabled/disable events
- Other various clean ups
-----BEGIN PGP SIGNATURE-----
iQHIBAABCgAyFiEEPm6V/WuN2kyArTUe1a05Y9njSUkFAloPGgkUHHJvc3RlZHRA
Z29vZG1pcy5vcmcACgkQ1a05Y9njSUmfaAwAjge5FWBCBQeby8tVuw4RGAorRgl5
IFuijFSygcKRMhQFP6B+haHsezeCbNaBBtIncXhoJGDC5XuhUhr9foYf1SChEmYp
tCOK2o71FgZ8yG539IYCVjG9cJZxPLM0OI7RQ8hcMETAr+eiXPXxHrmrm9kdBtYM
ZAQERvqI5yu2HWIb87KBc38H0rgYrOJKZt9Rx20as/aqAME7hFvYErFlcnxdmHo+
LmovJOQBCTicNJ4TXJc418JaUWi9cm/A3uhW3o5aLMoRAxCc/8FD+dq2rg4qlHDH
tOtK6pwIPHfqRZ3nMLXXWhaa+w+swsxBOnegkvgP2xCyibKjFgh9kzcpaj41w3x1
0FCfvS7flx9ob//fAB8kxLvJyY5p3Qp3xdvj0+gp2qa3Ga5lSqcMzS419TLY1Yfa
Jpi2oAagDqP94m0EjAGTkhZMOrsFIDr49g3h7nqz3T3Z54luyXniDoYoO11d+dUF
vCUiIJz/PsQIE3NVViZiaRtcLVXneLHISmnz
=h3F2
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from
- allow module init functions to be traced
- clean up some unused or not used by config events (saves space)
- clean up of trace histogram code
- add support for preempt and interrupt enabled/disable events
- other various clean ups
* tag 'trace-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (30 commits)
tracing, thermal: Hide cpu cooling trace events when not in use
tracing, thermal: Hide devfreq trace events when not in use
ftrace: Kill FTRACE_OPS_FL_PER_CPU
perf/ftrace: Small cleanup
perf/ftrace: Fix function trace events
perf/ftrace: Revert ("perf/ftrace: Fix double traces of perf on ftrace:function")
tracing, dma-buf: Remove unused trace event dma_fence_annotate_wait_on
tracing, memcg, vmscan: Hide trace events when not in use
tracing/xen: Hide events that are not used when X86_PAE is not defined
tracing: mark trace_test_buffer as __maybe_unused
printk: Remove superfluous memory barriers from printk_safe
ftrace: Clear hashes of stale ips of init memory
tracing: Add support for preempt and irq enable/disable events
tracing: Prepare to add preempt and irq trace events
ftrace/kallsyms: Have /proc/kallsyms show saved mod init functions
ftrace: Add freeing algorithm to free ftrace_mod_maps
ftrace: Save module init functions kallsyms symbols for tracing
ftrace: Allow module init functions to be traced
ftrace: Add a ftrace_free_mem() function for modules to use
tracing: Reimplement log2
...
Patch series "kmemcheck: kill kmemcheck", v2.
As discussed at LSF/MM, kill kmemcheck.
KASan is a replacement that is able to work without the limitation of
kmemcheck (single CPU, slow). KASan is already upstream.
We are also not aware of any users of kmemcheck (or users who don't
consider KASan as a suitable replacement).
The only objection was that since KASAN wasn't supported by all GCC
versions provided by distros at that time we should hold off for 2
years, and try again.
Now that 2 years have passed, and all distros provide gcc that supports
KASAN, kill kmemcheck again for the very same reasons.
This patch (of 4):
Remove kmemcheck annotations, and calls to kmemcheck from the kernel.
[alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs]
Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com
Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current method to prevent the ring buffer from entering into a recursize
loop is to use a bitmask and set the bit that maps to the current context
(normal, softirq, irq or NMI), and if that bit was already set, it is
considered a recursive loop.
New code is being added that may require the ring buffer to be entered a
second time in the current context. The recursive locking prevents that from
happening. Instead of mapping a bitmask to the current context, just allow 4
levels of nesting in the ring buffer. This matches the 4 context levels that
it can already nest. It is highly unlikely to have more than two levels,
thus it should be fine when we add the second entry into the ring buffer. If
that proves to be a problem, we can always up the number to 8.
An added benefit is that reading preempt_count() to get the current level
adds a very slight but noticeable overhead. This removes that need.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Chunyu Hu reported:
"per_cpu trace directories and files are created for all possible cpus,
but only the cpus which have ever been on-lined have their own per cpu
ring buffer (allocated by cpuhp threads). While trace_buffers_open, the
open handler for trace file 'trace_pipe_raw' is always trying to access
field of ring_buffer_per_cpu, and would panic with the NULL pointer.
Align the behavior of trace_pipe_raw with trace_pipe, that returns -NODEV
when openning it if that cpu does not have trace ring buffer.
Reproduce:
cat /sys/kernel/debug/tracing/per_cpu/cpu31/trace_pipe_raw
(cpu31 is never on-lined, this is a 16 cores x86_64 box)
Tested with:
1) boot with maxcpus=14, read trace_pipe_raw of cpu15.
Got -NODEV.
2) oneline cpu15, read trace_pipe_raw of cpu15.
Get the raw trace data.
Call trace:
[ 5760.950995] RIP: 0010:ring_buffer_alloc_read_page+0x32/0xe0
[ 5760.961678] tracing_buffers_read+0x1f6/0x230
[ 5760.962695] __vfs_read+0x37/0x160
[ 5760.963498] ? __vfs_read+0x5/0x160
[ 5760.964339] ? security_file_permission+0x9d/0xc0
[ 5760.965451] ? __vfs_read+0x5/0x160
[ 5760.966280] vfs_read+0x8c/0x130
[ 5760.967070] SyS_read+0x55/0xc0
[ 5760.967779] do_syscall_64+0x67/0x150
[ 5760.968687] entry_SYSCALL64_slow_path+0x25/0x25"
This was introduced by the addition of the feature to reuse reader pages
instead of re-allocating them. The problem is that the allocation of a
reader page (which is per cpu) does not check if the cpu is online and set
up for the ring buffer.
Link: http://lkml.kernel.org/r/1500880866-1177-1-git-send-email-chuhu@redhat.com
Cc: stable@vger.kernel.org
Fixes: 73a757e631 ("ring-buffer: Return reader page back into existing ring buffer")
Reported-by: Chunyu Hu <chuhu@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
ftrace can fail to allocate per-CPU ring buffer on systems with a large
number of CPUs coupled while large amounts of cache happening in the
page cache. Currently the ring buffer allocation doesn't retry in the VM
implementation even if direct-reclaim made some progress but still
wasn't able to find a free page. On retrying I see that the allocations
almost always succeed. The retry doesn't happen because __GFP_NORETRY is
used in the tracer to prevent the case where we might OOM, however if we
drop __GFP_NORETRY, we risk destabilizing the system if OOM killer is
triggered. To prevent this situation, use the __GFP_RETRY_MAYFAIL flag
introduced recently [1].
Tested the following still succeeds without destabilizing a system with
1GB memory.
echo 300000 > /sys/kernel/debug/tracing/buffer_size_kb
[1] https://marc.info/?l=linux-mm&m=149820805124906&w=2
Link: http://lkml.kernel.org/r/20170713021416.8897-1-joelaf@google.com
Cc: Tim Murray <timmurray@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
o Pretty much a full rewrite of the processing of function plugins.
i.e. echo do_IRQ:stacktrace > set_ftrace_filter
o The rewrite was needed to add plugins to be unique to tracing instances.
i.e. mkdir instance/foo; cd instances/foo; echo do_IRQ:stacktrace > set_ftrace_filter
The old way was written very hacky. This removes a lot of those hacks.
o New "function-fork" tracing option. When set, pids in the set_ftrace_pid
will have their children added when the processes with their pids
listed in the set_ftrace_pid file forks.
o Exposure of "maxactive" for kretprobe in kprobe_events
o Allow for builtin init functions to be traced by the function tracer
(via the kernel command line). Module init function tracing will come
in the next release.
o Added more selftests, and have selftests also test in an instance.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJZCRchFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
zuIH/RsLUb8Hj6GmhAvn/tblUDzWyqlXX2h79VVlo/XrWayHYNHnKOmua1WwMZC6
xESXb/AffAc89VWTkKsrwaK7yfRPG6+w8zTZOcFuXSBpqSGG/oey9Fxj5Wqqpche
oJ2UY7ngxANAipkP5GxdYTafFSoWhGZGfUUtW+5tAHoFHzqO2lOjO8olbXP69sON
kVX/b461S20cVvRe5H/F0klXLSc37Tlp5YznXy4H4V4HcJSN1Fb6/uozOXALZ4se
SBpVMWmVVoGJorzj+ic7gVOeohvC8RnR400HbeMVwaI0Lj50noidDj/5Hv8F7T+D
h1B8vATNZLFAFUOSHINCBIu6Vj0=
=t8mg
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"New features for this release:
- Pretty much a full rewrite of the processing of function plugins.
i.e. echo do_IRQ:stacktrace > set_ftrace_filter
- The rewrite was needed to add plugins to be unique to tracing
instances. i.e. mkdir instance/foo; cd instances/foo; echo
do_IRQ:stacktrace > set_ftrace_filter The old way was written very
hacky. This removes a lot of those hacks.
- New "function-fork" tracing option. When set, pids in the
set_ftrace_pid will have their children added when the processes
with their pids listed in the set_ftrace_pid file forks.
- Exposure of "maxactive" for kretprobe in kprobe_events
- Allow for builtin init functions to be traced by the function
tracer (via the kernel command line). Module init function tracing
will come in the next release.
- Added more selftests, and have selftests also test in an instance"
* tag 'trace-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (60 commits)
ring-buffer: Return reader page back into existing ring buffer
selftests: ftrace: Allow some event trigger tests to run in an instance
selftests: ftrace: Have some basic tests run in a tracing instance too
selftests: ftrace: Have event tests also run in an tracing instance
selftests: ftrace: Make func_event_triggers and func_traceonoff_triggers tests do instances
selftests: ftrace: Allow some tests to be run in a tracing instance
tracing/ftrace: Allow for instances to trigger their own stacktrace probes
tracing/ftrace: Allow for the traceonoff probe be unique to instances
tracing/ftrace: Enable snapshot function trigger to work with instances
tracing/ftrace: Allow instances to have their own function probes
tracing/ftrace: Add a better way to pass data via the probe functions
ftrace: Dynamically create the probe ftrace_ops for the trace_array
tracing: Pass the trace_array into ftrace_probe_ops functions
tracing: Have the trace_array hold the list of registered func probes
ftrace: If the hash for a probe fails to update then free what was initialized
ftrace: Have the function probes call their own function
ftrace: Have each function probe use its own ftrace_ops
ftrace: Have unregister_ftrace_function_probe_func() return a value
ftrace: Add helper function ftrace_hash_move_and_update_ops()
ftrace: Remove data field from ftrace_func_probe structure
...
When reading the ring buffer for consuming, it is optimized for splice,
where a page is taken out of the ring buffer (zero copy) and sent to the
reading consumer. When the read is finished with the page, it calls
ring_buffer_free_read_page(), which simply frees the page. The next time the
reader needs to get a page from the ring buffer, it must call
ring_buffer_alloc_read_page() which allocates and initializes a reader page
for the ring buffer to be swapped into the ring buffer for a new filled page
for the reader.
The problem is that there's no reason to actually free the page when it is
passed back to the ring buffer. It can hold it off and reuse it for the next
iteration. This completely removes the interaction with the page_alloc
mechanism.
Using the trace-cmd utility to record all events (causing trace-cmd to
require reading lots of pages from the ring buffer, and calling
ring_buffer_alloc/free_read_page() several times), and also assigning a
stack trace trigger to the mm_page_alloc event, we can see how many times
the ring_buffer_alloc_read_page() needed to allocate a page for the ring
buffer.
Before this change:
# trace-cmd record -e all -e mem_page_alloc -R stacktrace sleep 1
# trace-cmd report |grep ring_buffer_alloc_read_page | wc -l
9968
After this change:
# trace-cmd record -e all -e mem_page_alloc -R stacktrace sleep 1
# trace-cmd report |grep ring_buffer_alloc_read_page | wc -l
4
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
I noticed that reading the snapshot file when it is empty no longer gives a
status. It suppose to show the status of the snapshot buffer as well as how
to allocate and use it. For example:
># cat snapshot
# tracer: nop
#
#
# * Snapshot is allocated *
#
# Snapshot commands:
# echo 0 > snapshot : Clears and frees snapshot buffer
# echo 1 > snapshot : Allocates snapshot buffer, if not already allocated.
# Takes a snapshot of the main buffer.
# echo 2 > snapshot : Clears snapshot buffer (but does not allocate or free)
# (Doesn't have to be '2' works with any number that
# is not a '0' or '1')
But instead it just showed an empty buffer:
># cat snapshot
# tracer: nop
#
# entries-in-buffer/entries-written: 0/0 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
What happened was that it was using the ring_buffer_iter_empty() function to
see if it was empty, and if it was, it showed the status. But that function
was returning false when it was empty. The reason was that the iter header
page was on the reader page, and the reader page was empty, but so was the
buffer itself. The check only tested to see if the iter was on the commit
page, but the commit page was no longer pointing to the reader page, but as
all pages were empty, the buffer is also.
Cc: stable@vger.kernel.org
Fixes: 651e22f270 ("ring-buffer: Always reset iterator to reader page")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In case of error, the function kthread_run() returns ERR_PTR()
and never returns NULL. The NULL test in the return value check
should be replaced with IS_ERR().
Link: http://lkml.kernel.org/r/1466184839-14927-1-git-send-email-weiyj_lk@163.com
Cc: stable@vger.kernel.org
Fixes: 6c43e554a ("ring-buffer: Add ring buffer startup selftest")
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
o STM can hook into the function tracer
o Function filtering now supports more advance glob matching
o Ftrace selftests updates and added tests
o Softirq tag in traces now show only softirqs
o ARM nop added to non traced locations at compile time
o New trace_marker_raw file that allows for binary input
o Optimizations to the ring buffer
o Removal of kmap in trace_marker
o Wakeup and irqsoff tracers now adhere to the set_graph_notrace file
o Other various fixes and clean ups
Note, there are two patches marked for stable. These were discovered
near the end of the 4.9 rc release cycle. By the time I had them tested
it was just a matter of days before 4.9 would be released, and I
figured I would just submit them in the merge window. They are old
bugs and not critical. Nothing non-root could abuse.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJYUrFHFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
2+AIAIr20kSQV/nA5htGAeCTobVk3WUxY6bvjd9mIJDKPP19akNLyREW0G3KnfCr
yhx4aFRZG98fRu/6F8qieRosyN36lADDVYHelMFHMpcTOpE2aZGjaaOuNGxOEA9v
FmMPTX+K3+dzKyFP4l68R3+5JuQ1/AqLTioTWeLW8IDQ2OOVsjD8+0BuXrNKMJDY
o6U4Hk5U/vn+zHc6BmgBzloAXemBd7iJ1t5V3FRRGvm8yv3HU85Twc5ofGeYTWvB
J8PboEywRlIzxg0Kd8mxnMI5PgaKZSEc2ub8E7cY/CZ5PYpDE2xDA2hJmJgfYp00
1VW+DHRpRZfElsCcya6S6P4bs5Y=
=MGZ/
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This release has a few updates:
- STM can hook into the function tracer
- Function filtering now supports more advance glob matching
- Ftrace selftests updates and added tests
- Softirq tag in traces now show only softirqs
- ARM nop added to non traced locations at compile time
- New trace_marker_raw file that allows for binary input
- Optimizations to the ring buffer
- Removal of kmap in trace_marker
- Wakeup and irqsoff tracers now adhere to the set_graph_notrace file
- Other various fixes and clean ups"
* tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (42 commits)
selftests: ftrace: Shift down default message verbosity
kprobes/trace: Fix kprobe selftest for newer gcc
tracing/kprobes: Add a helper method to return number of probe hits
tracing/rb: Init the CPU mask on allocation
tracing: Use SOFTIRQ_OFFSET for softirq dectection for more accurate results
tracing/fgraph: Have wakeup and irqsoff tracers ignore graph functions too
fgraph: Handle a case where a tracer ignores set_graph_notrace
tracing: Replace kmap with copy_from_user() in trace_marker writing
ftrace/x86_32: Set ftrace_stub to weak to prevent gcc from using short jumps to it
tracing: Allow benchmark to be enabled at early_initcall()
tracing: Have system enable return error if one of the events fail
tracing: Do not start benchmark on boot up
tracing: Have the reg function allow to fail
ring-buffer: Force rb_end_commit() and rb_set_commit_to_write() inline
ring-buffer: Froce rb_update_write_stamp() to be inlined
ring-buffer: Force inline of hotpath helper functions
tracing: Make __buffer_unlock_commit() always_inline
tracing: Make tracepoint_printk a static_key
ring-buffer: Always inline rb_event_data()
ring-buffer: Make rb_reserve_next_event() always inlined
...
Before commit b32614c034 ("tracing/rb: Convert to hotplug state
machine") the allocated cpumask was initialized to the mask of ONLINE or
POSSIBLE CPUs. After the CPU hotplug changes the buffer initialisation
moved to trace_rb_cpu_prepare() but I forgot to initially set the
cpumask to zero. This is done now.
Link: http://lkml.kernel.org/r/20161207133133.hzkcqfllxcdi3joz@linutronix.de
Fixes: b32614c034 ("tracing/rb: Convert to hotplug state machine")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Before commit b32614c034 ("tracing/rb: Convert to hotplug state machine")
the allocated cpumask was initialized to the mask of online or possible
CPUs. After the CPU hotplug changes the buffer initialization moved to
trace_rb_cpu_prepare() but the cpumask is allocated with alloc_cpumask()
and therefor has random content. As a consequence the cpu buffers are not
initialized and a later access dereferences a NULL pointer.
Use zalloc_cpumask() instead so trace_rb_cpu_prepare() initializes the
buffers properly.
Fixes: b32614c034 ("tracing/rb: Convert to hotplug state machine")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20161207133133.hzkcqfllxcdi3joz@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine. The notifier in struct
ring_buffer is replaced by the multi instance interface. Upon
__ring_buffer_alloc() invocation, cpuhp_state_add_instance() will invoke
the trace_rb_cpu_prepare() on each CPU.
This callback may now fail. This means __ring_buffer_alloc() will fail and
cleanup (like previously) and during a CPU up event this failure will not
allow the CPU to come up.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20161126231350.10321-7-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Both rb_end_commit() and rb_set_commit_to_write() are in the fast path of
the ring buffer recording. Make sure they are always inlined.
Link: http://lkml.kernel.org/r/20161121183700.GW26852@two.firstfloor.org
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function rb_update_write_stamp() is in the hotpath of the ring buffer
recording. Make sure that it is inlined as well. There's not many places
that call it.
Link: http://lkml.kernel.org/r/20161121183700.GW26852@two.firstfloor.org
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There's several small helper functions in ring_buffer.c that are used in the
hot path. For some reason, even though they are marked inline, gcc tends not
to enforce it. Make sure these functions are always inlined.
Link: http://lkml.kernel.org/r/20161121183700.GW26852@two.firstfloor.org
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The rb_event_data() is the fast path of getting the ring buffer data from an
event. Externally, ring_buffer_event_data() is used to access this function.
But unfortunately, rb_event_data() is not inlined, and calling
ring_buffer_event_data() causes that function to be called again. Force
rb_event_data() to be inlined to lower the number of operations needed when
calling ring_buffer_event_data().
Link: http://lkml.kernel.org/r/20161121183700.GW26852@two.firstfloor.org
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function rb_reserved_next_event() is called by two functions:
ring_buffer_lock_reserve() and ring_buffer_write(). This is in a very hot
path of the tracing code, and it is best that they are not functions. The
two callers are basically wrapers for rb_reserver_next_event(). Removing the
function calls can save execution time in the hotpath of tracing.
Link: http://lkml.kernel.org/r/20161121183700.GW26852@two.firstfloor.org
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If the size passed to ring_buffer_resize() is greater than MAX_LONG - BUF_PAGE_SIZE
then the DIV_ROUND_UP() will return zero.
Here's the details:
# echo 18014398509481980 > /sys/kernel/debug/tracing/buffer_size_kb
tracing_entries_write() processes this and converts kb to bytes.
18014398509481980 << 10 = 18446744073709547520
and this is passed to ring_buffer_resize() as unsigned long size.
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
Where DIV_ROUND_UP(a, b) is (a + b - 1)/b
BUF_PAGE_SIZE is 4080 and here
18446744073709547520 + 4080 - 1 = 18446744073709551599
where 18446744073709551599 is still smaller than 2^64
2^64 - 18446744073709551599 = 17
But now 18446744073709551599 / 4080 = 4521260802379792
and size = size * 4080 = 18446744073709551360
This is checked to make sure its still greater than 2 * 4080,
which it is.
Then we convert to the number of buffer pages needed.
nr_page = DIV_ROUND_UP(size, BUF_PAGE_SIZE)
but this time size is 18446744073709551360 and
2^64 - (18446744073709551360 + 4080 - 1) = -3823
Thus it overflows and the resulting number is less than 4080, which makes
3823 / 4080 = 0
an nr_pages is set to this. As we already checked against the minimum that
nr_pages may be, this causes the logic to fail as well, and we crash the
kernel.
There's no reason to have the two DIV_ROUND_UP() (that's just result of
historical code changes), clean up the code and fix this bug.
Cc: stable@vger.kernel.org # 3.5+
Fixes: 83f40318da ("ring-buffer: Make removal of ring buffer pages atomic")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The size variable to change the ring buffer in ftrace is a long. The
nr_pages used to update the ring buffer based on the size is int. On 64 bit
machines this can cause an overflow problem.
For example, the following will cause the ring buffer to crash:
# cd /sys/kernel/debug/tracing
# echo 10 > buffer_size_kb
# echo 8556384240 > buffer_size_kb
Then you get the warning of:
WARNING: CPU: 1 PID: 318 at kernel/trace/ring_buffer.c:1527 rb_update_pages+0x22f/0x260
Which is:
RB_WARN_ON(cpu_buffer, nr_removed);
Note each ring buffer page holds 4080 bytes.
This is because:
1) 10 causes the ring buffer to have 3 pages.
(10kb requires 3 * 4080 pages to hold)
2) (2^31 / 2^10 + 1) * 4080 = 8556384240
The value written into buffer_size_kb is shifted by 10 and then passed
to ring_buffer_resize(). 8556384240 * 2^10 = 8761737461760
3) The size passed to ring_buffer_resize() is then divided by BUF_PAGE_SIZE
which is 4080. 8761737461760 / 4080 = 2147484672
4) nr_pages is subtracted from the current nr_pages (3) and we get:
2147484669. This value is saved in a signed integer nr_pages_to_update
5) 2147484669 is greater than 2^31 but smaller than 2^32, a signed int
turns into the value of -2147482627
6) As the value is a negative number, in update_pages_handler() it is
negated and passed to rb_remove_pages() and 2147482627 pages will
be removed, which is much larger than 3 and it causes the warning
because not all the pages asked to be removed were removed.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=118001
Cc: stable@vger.kernel.org # 2.6.28+
Fixes: 7a8e76a382 ("tracing: unified trace buffer")
Reported-by: Hao Qin <QEver.cn@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When crossing over to a new page, commit the current work. This will allow
readers to get data with less latency, and also simplifies the work to get
timestamps working for interrupted events.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The first commit of a buffer page updates the timestamp of that page. No
need to have the update to the next page add the timestamp too. It will only
be replaced by the first commit on that page anyway.
Only update to a page if it contains an event.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As cpu_buffer->tail_page may be modified by interrupts at almost any time,
the flow of logic is very important. Do not let gcc get smart with
re-reading cpu_buffer->tail_page by adding READ_ONCE() around most of its
accesses.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Commit fcc742eaad "ring-buffer: Add event descriptor to simplify passing
data" added a descriptor that holds various data instead of passing around
several variables through parameters. The problem was that one of the
parameters was modified in a function and the code was designed not to have
an effect on that modified parameter. Now that the parameter is a
descriptor and any modifications to it are non-volatile, the size of the
data could be unnecessarily expanded.
Remove the extra space added if a timestamp was added and the event went
across the page.
Cc: stable@vger.kernel.org # 4.3+
Fixes: fcc742eaad "ring-buffer: Add event descriptor to simplify passing data"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Do not update the read stamp after swapping out the reader page from the
write buffer. If the reader page is swapped out of the buffer before an
event is written to it, then the read_stamp may get an out of date
timestamp, as the page timestamp is updated on the first commit to that
page.
rb_get_reader_page() only returns a page if it has an event on it, otherwise
it will return NULL. At that point, check if the page being returned has
events and has not been read yet. Then at that point update the read_stamp
to match the time stamp of the reader page.
Cc: stable@vger.kernel.org # 2.6.30+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Make rb_event_is_commit() return bool to improve readability
due to this particular function only using either one or zero as its
return value.
No functional change.
Link: http://lkml.kernel.org/r/1443537816-5788-7-git-send-email-bywxiaobai@163.com
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Make rb_is_reader_page() return bool to improve readability due to this
particular function only using either true or false as its return value.
No functional change.
Link: http://lkml.kernel.org/r/1443537816-5788-4-git-send-email-bywxiaobai@163.com
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The commit a4543a2fa9 "ring-buffer: Get timestamp after event is
allocated" is needed for some future work. But after adding it, there is a
race somewhere that causes the saved timestamp to have a slight shift, and
get ahead of the actual timestamp and make it look like time goes backwards.
I'm still looking into why this happens, but in the mean time, this is
holding up other work to get in. I'm reverting the change for now (which
makes the problem go away), and will add it back after I know what is wrong
and fix it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Functions in ring-buffer.c have gotten interleaved between different
use cases. Move the functions around to get like functions closer
together. This may or may not help gcc keep cache locality, but it
makes it a little easier to work with the code.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Now that events only add time extends after it is committed, in case
an event comes in before it can discard the allocated event, the time
extend needs to be stored within the event. If the event is bigger
than then size needed for the time extend, padding must be added.
The minimum padding size is 8 bytes. Thus if the event is 12 bytes
(size of time extend + 4), there will not be enough room to add both
the time extend and padding. Make sure all events are either 8 bytes
or 16 or more bytes.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Move the capturing of the timestamp to after an event is allocated.
If the event is not a commit (where it is an event that preempted
another event), then no timestamp is needed, because the delta of
nested events is always zero.
If the event starts on a new page, no delta needs to be calculated
as the full timestamp will be added to the page header, and the
event will have a delta of zero.
Now if the event requires a time extend (the delta does not fit
in the 27 bit delta slot in the header), then the event is discarded,
the length is extended to hold the TIME_EXTEND event that allows for
a 59 bit delta, and the commit is tried again.
If the event can't be discarded (another event came in after it),
then the TIME_EXTEND is added directly to the allocated event and
the rest of the event is given padding.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Requiring a extended time stamp is an uncommon occurrence, and it is
best to do it out of line when needed.
Add a noinline function that handles the extended timestamp and
have it called with an unlikely to completely move it out of the
fast path.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add rb_event_info descriptor to pass event info to functions a bit
easier than using a bunch of parameters. This will also allow for
changing the code around a bit to find better fast paths.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The tracing_off_permanent() call is a way to disable all ring_buffers.
Nothing uses it and nothing should use it, as tracing_off() and
friends are better, as they disable the ring buffers related to
tracing. The tracing_off_permanent() even disabled non tracing
ring buffers. This is a bit drastic, and was added to handle NMIs
doing outputs that could corrupt the ring buffer when only tracing
used them. It is now obsolete and adds a little overhead, it should
be removed.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently, if an NMI does a dump of a ring buffer, it disables
all ring buffers from ever doing any writes again. This is because
it wont take the locks for the cpu_buffer and this can cause
corruption if it preempted a read, or a read happens on another
CPU for the current cpu buffer. This is a bit overkill.
First, it should at least try to take the lock, and if it fails
then disable it. Also, there's no need to disable all ring
buffers, even those that are unrelated to what is being read.
Only disable the per cpu ring buffer that is being read if
it can not get the lock for it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ring_buffer_write() function isn't protected by the trace recursive
writes. Luckily, this function is not used as much and is unlikely
to ever recurse. But it should still have the protection, because
even a call to ring_buffer_lock_reserve() could cause ring buffer
corruption if called when ring_buffer_write() is being used.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently the trace_recursive checks are only done if CONFIG_TRACING
is enabled. That was because there use to be a dependency with tracing
for the recursive checks (it used the task_struct trace recursive
variable). But now it uses its own variable and there is no dependency.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Instead of using a global per_cpu variable to perform the recursive
checks into the ring buffer, use the already existing per_cpu descriptor
that is part of the ring buffer itself.
Not only does this simplify the code, it also allows for one ring buffer
to be used within the guts of the use of another ring buffer. For example
trace_printk() can now be used within the ring buffer to record changes
done by an instance into the main ring buffer. The recursion checks
will prevent the trace_printk() itself from causing recursive issues
with the main ring buffer (it is just ignored), but the recursive
checks wont prevent the trace_printk() from recording other ring buffers.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The term "ftrace" is really the infrastructure of the function hooks,
and not the trace events. Rename ftrace_event.h to trace_events.h to
represent the trace_event infrastructure and decouple the term ftrace
from it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
A clean up of the recursive protection code changed
val = this_cpu_read(current_context);
val--;
val &= this_cpu_read(current_context);
to
val = this_cpu_read(current_context);
val &= val & (val - 1);
Which has a duplicate use of '&' as the above is the same as
val = val & (val - 1);
Actually, it would be best to remove that line altogether and
just add it to where it is used.
And Christoph even mentioned that it can be further compacted to
just a single line:
__this_cpu_and(current_context, __this_cpu_read(current_context) - 1);
Link: http://lkml.kernel.org/alpine.DEB.2.11.1503271423580.23114@gentwo.org
Suggested-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
It has come to my attention that this_cpu_read/write are horrible on
architectures other than x86. Worse yet, they actually disable
preemption or interrupts! This caused some unexpected tracing results
on ARM.
101.356868: preempt_count_add <-ring_buffer_lock_reserve
101.356870: preempt_count_sub <-ring_buffer_lock_reserve
The ring_buffer_lock_reserve has recursion protection that requires
accessing a per cpu variable. But since preempt_disable() is traced, it
too got traced while accessing the variable that is suppose to prevent
recursion like this.
The generic version of this_cpu_read() and write() are:
#define this_cpu_generic_read(pcp) \
({ typeof(pcp) ret__; \
preempt_disable(); \
ret__ = *this_cpu_ptr(&(pcp)); \
preempt_enable(); \
ret__; \
})
#define this_cpu_generic_to_op(pcp, val, op) \
do { \
unsigned long flags; \
raw_local_irq_save(flags); \
*__this_cpu_ptr(&(pcp)) op val; \
raw_local_irq_restore(flags); \
} while (0)
Which is unacceptable for locations that know they are within preempt
disabled or interrupt disabled locations.
Paul McKenney stated that __this_cpu_() versions produce much better code on
other architectures than this_cpu_() does, if we know that the call is done in
a preempt disabled location.
I also changed the recursive_unlock() to use two local variables instead
of accessing the per_cpu variable twice.
Link: http://lkml.kernel.org/r/20150317114411.GE3589@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/20150317104038.312e73d1@gandalf.local.home
Cc: stable@vger.kernel.org
Acked-by: Christoph Lameter <cl@linux.com>
Reported-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>
Tested-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When an application connects to the ring buffer via splice, it can only
read full pages. Splice does not work with partial pages. If there is
not enough data to fill a page, the splice command will either block
or return -EAGAIN (if set to nonblock).
Code was added where if the page is not full, to just sleep again.
The problem is, it will get woken up again on the next event. That
is, when something is written into the ring buffer, if there is a waiter
it will wake it up. The waiter would then check the buffer, see that
it still does not have enough data to fill a page and go back to sleep.
To make matters worse, when the waiter goes back to sleep, it could
cause another event, which would wake it back up again to see it
doesn't have enough data and sleep again. This produces a tremendous
overhead and fills the ring buffer with noise.
For example, recording sched_switch on an idle system for 10 seconds
produces 25,350,475 events!!!
Create another wait queue for those waiters wanting full pages.
When an event is written, it only wakes up waiters if there's a full
page of data. It does not wake up the waiter if the page is not yet
full.
After this change, recording sched_switch on an idle system for 10
seconds produces only 800 events. Getting rid of 25,349,675 useless
events (99.9969% of events!!), is something to take seriously.
Cc: stable@vger.kernel.org # 3.16+
Cc: Rabin Vincent <rabin@rab.in>
Fixes: e30f53aad2 "tracing: Do not busy wait in buffer splice"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The creation of tracing files and directories is for the most part
encapsulated in helper functions in trace.c. Other files do not need to
include debugfs.h or fs.h, as they may have needed to in the past.
Remove them from the files that do not need them.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to the
seq_file code as well in another tree.
Some of the other goodies include:
o Added some "!" (NOT) logic to the tracing filter.
o Fixed the frame pointer logic to the x86_64 mcount trampolines
o Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated
and be called directly by functions that only have a single hook
to them.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUhbLGAAoJEEjnJuOKh9ldRV4H/3NcLbgGB2iu96la1zdYE6pG
Q7cDJMxXK80YIIL70h9G0IItcD4t62LMb72lfBnMGRj3msgFb3AgISW57EuI0Pxk
xk24wuIPoTG2S7v9sc3SboNFwO8qbtIjxD2OBmqIUrGo2sZIiGjyj3gX7mCY3uzL
WB2bUOSFz/22OgaANinR5EELHA3pZZCf54Vz1K9ndmtK0xp0j1a7xJShD6TrMdYv
mZ3zH5ViIhW4A3mdcMceh6fy2JLQAiEKF0uPTvcMMz7NlVul0mxyL/+10P7AE/3R
Ehw4fzmm4NDshPDtBOkKH0LsppgXzuItFuQUTpact3JlqTg++bV6onSsrkt1hlY=
=Z7Cm
-----END PGP SIGNATURE-----
Merge tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"There was a lot of clean ups and minor fixes. One of those clean ups
was to the trace_seq code. It also removed the return values to the
trace_seq_*() functions and use trace_seq_has_overflowed() to see if
the buffer filled up or not. This is similar to work being done to
the seq_file code as well in another tree.
Some of the other goodies include:
- Added some "!" (NOT) logic to the tracing filter.
- Fixed the frame pointer logic to the x86_64 mcount trampolines
- Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems.
That is, the ftrace trampoline can be dynamically allocated and be
called directly by functions that only have a single hook to them"
* tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (55 commits)
tracing: Truncated output is better than nothing
tracing: Add additional marks to signal very large time deltas
Documentation: describe trace_buf_size parameter more accurately
tracing: Allow NOT to filter AND and OR clauses
tracing: Add NOT to filtering logic
ftrace/fgraph/x86: Have prepare_ftrace_return() take ip as first parameter
ftrace/x86: Get rid of ftrace_caller_setup
ftrace/x86: Have save_mcount_regs macro also save stack frames if needed
ftrace/x86: Add macro MCOUNT_REG_SIZE for amount of stack used to save mcount regs
ftrace/x86: Simplify save_mcount_regs on getting RIP
ftrace/x86: Have save_mcount_regs store RIP in %rdi for first parameter
ftrace/x86: Rename MCOUNT_SAVE_FRAME and add more detailed comments
ftrace/x86: Move MCOUNT_SAVE_FRAME out of header file
ftrace/x86: Have static tracing also use ftrace_caller_setup
ftrace/x86: Have static function tracing always test for function graph
kprobes: Add IPMODIFY flag to kprobe_ftrace_ops
ftrace, kprobes: Support IPMODIFY flag to find IP modify conflict
kprobes/ftrace: Recover original IP if pre_handler doesn't change it
tracing/trivial: Fix typos and make an int into a bool
tracing: Deletion of an unnecessary check before iput()
...
Remove checking the return value of all trace_seq_puts(). It was wrong
anyway as only the last return value mattered. But as the trace_seq_puts()
is going to be a void function in the future, we should not be checking
the return value of it anyway.
Just return !trace_seq_has_overflowed() instead.
Reviewed-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
On a !PREEMPT kernel, attempting to use trace-cmd results in a soft
lockup:
# trace-cmd record -e raw_syscalls:* -F false
NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [trace-cmd:61]
...
Call Trace:
[<ffffffff8105b580>] ? __wake_up_common+0x90/0x90
[<ffffffff81092e25>] wait_on_pipe+0x35/0x40
[<ffffffff810936e3>] tracing_buffers_splice_read+0x2e3/0x3c0
[<ffffffff81093300>] ? tracing_stats_read+0x2a0/0x2a0
[<ffffffff812d10ab>] ? _raw_spin_unlock+0x2b/0x40
[<ffffffff810dc87b>] ? do_read_fault+0x21b/0x290
[<ffffffff810de56a>] ? handle_mm_fault+0x2ba/0xbd0
[<ffffffff81095c80>] ? trace_event_buffer_lock_reserve+0x40/0x80
[<ffffffff810951e2>] ? trace_buffer_lock_reserve+0x22/0x60
[<ffffffff81095c80>] ? trace_event_buffer_lock_reserve+0x40/0x80
[<ffffffff8112415d>] do_splice_to+0x6d/0x90
[<ffffffff81126971>] SyS_splice+0x7c1/0x800
[<ffffffff812d1edd>] tracesys_phase2+0xd3/0xd8
The problem is this: tracing_buffers_splice_read() calls
ring_buffer_wait() to wait for data in the ring buffers. The buffers
are not empty so ring_buffer_wait() returns immediately. But
tracing_buffers_splice_read() calls ring_buffer_read_page() with full=1,
meaning it only wants to read a full page. When the full page is not
available, tracing_buffers_splice_read() tries to wait again with
ring_buffer_wait(), which again returns immediately, and so on.
Fix this by adding a "full" argument to ring_buffer_wait() which will
make ring_buffer_wait() wait until the writer has left the reader's
page, i.e. until full-page reads will succeed.
Link: http://lkml.kernel.org/r/1415645194-25379-1-git-send-email-rabin@rab.in
Cc: stable@vger.kernel.org # 3.16+
Fixes: b1169cc69b ("tracing: Remove mock up poll wait function")
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Commit 651e22f270 "ring-buffer: Always reset iterator to reader page"
fixed one bug but in the process caused another one. The reset is to
update the header page, but that fix also changed the way the cached
reads were updated. The cache reads are used to test if an iterator
needs to be updated or not.
A ring buffer iterator, when created, disables writes to the ring buffer
but does not stop other readers or consuming reads from happening.
Although all readers are synchronized via a lock, they are only
synchronized when in the ring buffer functions. Those functions may
be called by any number of readers. The iterator continues down when
its not interrupted by a consuming reader. If a consuming read
occurs, the iterator starts from the beginning of the buffer.
The way the iterator sees that a consuming read has happened since
its last read is by checking the reader "cache". The cache holds the
last counts of the read and the reader page itself.
Commit 651e22f270 changed what was saved by the cache_read when
the rb_iter_reset() occurred, making the iterator never match the cache.
Then if the iterator calls rb_iter_reset(), it will go into an
infinite loop by checking if the cache doesn't match, doing the reset
and retrying, just to see that the cache still doesn't match! Which
should never happen as the reset is suppose to set the cache to the
current value and there's locks that keep a consuming reader from
having access to the data.
Fixes: 651e22f270 "ring-buffer: Always reset iterator to reader page"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Epoll on trace_pipe can sometimes hang in a weird case. If the ring buffer is
empty when we set waiters_pending but an event shows up exactly at that moment
we can miss being woken up by the ring buffers irq work. Since
ring_buffer_empty() is inherently racey we will sometimes think that the buffer
is not empty. So we don't get woken up and we don't think there are any events
even though there were some ready when we added the watch, which makes us hang.
This patch fixes this by making sure that we are actually on the wait list
before we set waiters_pending, and add a memory barrier to make sure
ring_buffer_empty() is going to be correct.
Link: http://lkml.kernel.org/p/1408989581-23727-1-git-send-email-jbacik@fb.com
Cc: stable@vger.kernel.org # 3.10+
Cc: Martin Lau <kafai@fb.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
rarely ever hit, and requires the user to do something that users rarely
do. It took a few special test cases to even trigger this bug,
and one of them was just one test in the process of finishing up as another
one started.
Both bugs have to do with the ring buffer iterator rb_iter_peek(), but one
is more indirect than the other.
The fist bug fix is simply an increase in the safety net loop counter.
The counter makes sure that the rb_iter_peek() only iterates the number
of times we expect it can, and no more. Well, there was one way it could
iterate one more than we expected, and that caused the ring buffer
to shutdown with a nasty warning. The fix was simply to up that counter by
one.
The other bug has to be with rb_iter_reset() (called by rb_iter_peek()).
This happens when a user reads both the trace_pipe and trace files.
The trace_pipe is a consuming read and does not use the ring buffer
iterator, but the trace file is not a consuming read and does use the
ring buffer iterator. When the trace file is being read, if it detects
that a consuming read occurred, it resets the iterator and starts over.
But the reset code that does this (rb_iter_reset()), checks if the
reader_page is linked to the ring buffer or not, and will look into
the ring buffer itself if it is not. This is wrong, as it should always
try to read the reader page first. Not to mention, the code that looked
into the ring buffer did it wrong, and used the header_page "read" offset
to start reading on that page. That offset is bogus for pages in the
writable ring buffer, and was corrupting the iterator, and it would start
returning bogus events.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJT44tRAAoJEKQekfcNnQGuMVIH/3evbjKT+w6Kon4S0LfLSejl
YDsXYkeO/lGiO3MnUveqq1jfw2+yHtyBVUipvfG0A61urMUhyUvjveph8Ec2cQ4Q
qHl0J28vDfF5tpKiYzygRN01wHD6GXYh+XZSChkA4ItzzD8K51lsZT1Yd+I2pTy2
DgH01EEEYiwYJcih+T4vlbKqYju6pwgxqKNCTv0RdVXUPya/tG9X2Nf8VGQTbmKS
FIO73qObYR+P9iXGIuPfyOxk2EvBiWS15WownZmfhZZxOIKx9IrDYwTsiV1+AJw+
sJFER1ulobYGDtGDa9yyrNJQr6wgbrfCDELnNKmdLUTlSwgZjLXpE2HEmlelY/s=
=5mQl
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull trace file read iterator fixes from Steven Rostedt:
"This contains a fix for two long standing bugs. Both of which are
rarely ever hit, and requires the user to do something that users
rarely do. It took a few special test cases to even trigger this bug,
and one of them was just one test in the process of finishing up as
another one started.
Both bugs have to do with the ring buffer iterator rb_iter_peek(), but
one is more indirect than the other.
The fist bug fix is simply an increase in the safety net loop counter.
The counter makes sure that the rb_iter_peek() only iterates the
number of times we expect it can, and no more. Well, there was one
way it could iterate one more than we expected, and that caused the
ring buffer to shutdown with a nasty warning. The fix was simply to
up that counter by one.
The other bug has to be with rb_iter_reset() (called by
rb_iter_peek()). This happens when a user reads both the trace_pipe
and trace files. The trace_pipe is a consuming read and does not use
the ring buffer iterator, but the trace file is not a consuming read
and does use the ring buffer iterator. When the trace file is being
read, if it detects that a consuming read occurred, it resets the
iterator and starts over. But the reset code that does this
(rb_iter_reset()), checks if the reader_page is linked to the ring
buffer or not, and will look into the ring buffer itself if it is not.
This is wrong, as it should always try to read the reader page first.
Not to mention, the code that looked into the ring buffer did it
wrong, and used the header_page "read" offset to start reading on that
page. That offset is bogus for pages in the writable ring buffer, and
was corrupting the iterator, and it would start returning bogus
events"
* tag 'trace-fixes-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ring-buffer: Always reset iterator to reader page
ring-buffer: Up rb_iter_peek() loop count to 3
When performing a consuming read, the ring buffer swaps out a
page from the ring buffer with a empty page and this page that
was swapped out becomes the new reader page. The reader page
is owned by the reader and since it was swapped out of the ring
buffer, writers do not have access to it (there's an exception
to that rule, but it's out of scope for this commit).
When reading the "trace" file, it is a non consuming read, which
means that the data in the ring buffer will not be modified.
When the trace file is opened, a ring buffer iterator is allocated
and writes to the ring buffer are disabled, such that the iterator
will not have issues iterating over the data.
Although the ring buffer disabled writes, it does not disable other
reads, or even consuming reads. If a consuming read happens, then
the iterator is reset and starts reading from the beginning again.
My tests would sometimes trigger this bug on my i386 box:
WARNING: CPU: 0 PID: 5175 at kernel/trace/trace.c:1527 __trace_find_cmdline+0x66/0xaa()
Modules linked in:
CPU: 0 PID: 5175 Comm: grep Not tainted 3.16.0-rc3-test+ #8
Hardware name: /DG965MQ, BIOS MQ96510J.86A.0372.2006.0605.1717 06/05/2006
00000000 00000000 f09c9e1c c18796b3 c1b5d74c f09c9e4c c103a0e3 c1b5154b
f09c9e78 00001437 c1b5d74c 000005f7 c10bd85a c10bd85a c1cac57c f09c9eb0
ed0e0000 f09c9e64 c103a185 00000009 f09c9e5c c1b5154b f09c9e78 f09c9e80^M
Call Trace:
[<c18796b3>] dump_stack+0x4b/0x75
[<c103a0e3>] warn_slowpath_common+0x7e/0x95
[<c10bd85a>] ? __trace_find_cmdline+0x66/0xaa
[<c10bd85a>] ? __trace_find_cmdline+0x66/0xaa
[<c103a185>] warn_slowpath_fmt+0x33/0x35
[<c10bd85a>] __trace_find_cmdline+0x66/0xaa^M
[<c10bed04>] trace_find_cmdline+0x40/0x64
[<c10c3c16>] trace_print_context+0x27/0xec
[<c10c4360>] ? trace_seq_printf+0x37/0x5b
[<c10c0b15>] print_trace_line+0x319/0x39b
[<c10ba3fb>] ? ring_buffer_read+0x47/0x50
[<c10c13b1>] s_show+0x192/0x1ab
[<c10bfd9a>] ? s_next+0x5a/0x7c
[<c112e76e>] seq_read+0x267/0x34c
[<c1115a25>] vfs_read+0x8c/0xef
[<c112e507>] ? seq_lseek+0x154/0x154
[<c1115ba2>] SyS_read+0x54/0x7f
[<c188488e>] syscall_call+0x7/0xb
---[ end trace 3f507febd6b4cc83 ]---
>>>> ##### CPU 1 buffer started ####
Which was the __trace_find_cmdline() function complaining about the pid
in the event record being negative.
After adding more test cases, this would trigger more often. Strangely
enough, it would never trigger on a single test, but instead would trigger
only when running all the tests. I believe that was the case because it
required one of the tests to be shutting down via delayed instances while
a new test started up.
After spending several days debugging this, I found that it was caused by
the iterator becoming corrupted. Debugging further, I found out why
the iterator became corrupted. It happened with the rb_iter_reset().
As consuming reads may not read the full reader page, and only part
of it, there's a "read" field to know where the last read took place.
The iterator, must also start at the read position. In the rb_iter_reset()
code, if the reader page was disconnected from the ring buffer, the iterator
would start at the head page within the ring buffer (where writes still
happen). But the mistake there was that it still used the "read" field
to start the iterator on the head page, where it should always start
at zero because readers never read from within the ring buffer where
writes occur.
I originally wrote a patch to have it set the iter->head to 0 instead
of iter->head_page->read, but then I questioned why it wasn't always
setting the iter to point to the reader page, as the reader page is
still valid. The list_empty(reader_page->list) just means that it was
successful in swapping out. But the reader_page may still have data.
There was a bug report a long time ago that was not reproducible that
had something about trace_pipe (consuming read) not matching trace
(iterator read). This may explain why that happened.
Anyway, the correct answer to this bug is to always use the reader page
an not reset the iterator to inside the writable ring buffer.
Cc: stable@vger.kernel.org # 2.6.28+
Fixes: d769041f86 "ring_buffer: implement new locking"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
After writting a test to try to trigger the bug that caused the
ring buffer iterator to become corrupted, I hit another bug:
WARNING: CPU: 1 PID: 5281 at kernel/trace/ring_buffer.c:3766 rb_iter_peek+0x113/0x238()
Modules linked in: ipt_MASQUERADE sunrpc [...]
CPU: 1 PID: 5281 Comm: grep Tainted: G W 3.16.0-rc3-test+ #143
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
0000000000000000 ffffffff81809a80 ffffffff81503fb0 0000000000000000
ffffffff81040ca1 ffff8800796d6010 ffffffff810c138d ffff8800796d6010
ffff880077438c80 ffff8800796d6010 ffff88007abbe600 0000000000000003
Call Trace:
[<ffffffff81503fb0>] ? dump_stack+0x4a/0x75
[<ffffffff81040ca1>] ? warn_slowpath_common+0x7e/0x97
[<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238
[<ffffffff810c138d>] ? rb_iter_peek+0x113/0x238
[<ffffffff810c14df>] ? ring_buffer_iter_peek+0x2d/0x5c
[<ffffffff810c6f73>] ? tracing_iter_reset+0x6e/0x96
[<ffffffff810c74a3>] ? s_start+0xd7/0x17b
[<ffffffff8112b13e>] ? kmem_cache_alloc_trace+0xda/0xea
[<ffffffff8114cf94>] ? seq_read+0x148/0x361
[<ffffffff81132d98>] ? vfs_read+0x93/0xf1
[<ffffffff81132f1b>] ? SyS_read+0x60/0x8e
[<ffffffff8150bf9f>] ? tracesys+0xdd/0xe2
Debugging this bug, which triggers when the rb_iter_peek() loops too
many times (more than 2 times), I discovered there's a case that can
cause that function to legitimately loop 3 times!
rb_iter_peek() is different than rb_buffer_peek() as the rb_buffer_peek()
only deals with the reader page (it's for consuming reads). The
rb_iter_peek() is for traversing the buffer without consuming it, and as
such, it can loop for one more reason. That is, if we hit the end of
the reader page or any page, it will go to the next page and try again.
That is, we have this:
1. iter->head > iter->head_page->page->commit
(rb_inc_iter() which moves the iter to the next page)
try again
2. event = rb_iter_head_event()
event->type_len == RINGBUF_TYPE_TIME_EXTEND
rb_advance_iter()
try again
3. read the event.
But we never get to 3, because the count is greater than 2 and we
cause the WARNING and return NULL.
Up the counter to 3.
Cc: stable@vger.kernel.org # 2.6.37+
Fixes: 69d1b839f7 "ring-buffer: Bind time extend and data events together"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
to the ftrace function callback infrastructure. It's introducing a
way to allow different functions to call directly different trampolines
instead of all calling the same "mcount" one.
The only user of this for now is the function graph tracer, which always
had a different trampoline, but the function tracer trampoline was called
and did basically nothing, and then the function graph tracer trampoline
was called. The difference now, is that the function graph tracer
trampoline can be called directly if a function is only being traced by
the function graph trampoline. If function tracing is also happening on
the same function, the old way is still done.
The accounting for this takes up more memory when function graph tracing
is activated, as it needs to keep track of which functions it uses.
I have a new way that wont take as much memory, but it's not ready yet
for this merge window, and will have to wait for the next one.
Another big change was the removal of the ftrace_start/stop() calls that
were used by the suspend/resume code that stopped function tracing when
entering into suspend and resume paths. The stop of ftrace was done
because there was some function that would crash the system if one called
smp_processor_id()! The stop/start was a big hammer to solve the issue
at the time, which was when ftrace was first introduced into Linux.
Now ftrace has better infrastructure to debug such issues, and I found
the problem function and labeled it with "notrace" and function tracing
can now safely be activated all the way down into the guts of suspend
and resume.
Other changes include clean ups of uprobe code.
Clean up of the trace_seq() code.
And other various small fixes and clean ups to ftrace and tracing.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJT35zXAAoJEKQekfcNnQGuOz0H/38zqM0nLFhrgvz3EPk2UOjn
xqpX8qyb2V7TJZL+IqeXU2a5cQZl5ba0D4WtBGpxbTae3CJYiuQ87iKUNFoH0om5
FDpn80igb368k8V3qRdRsziKVCCf0XBd/NkHJXc0ZkfXGyzB2Ga4bBxALxp2gj9y
bnO+vKo6+tWYKG4hyQb4P3LRXUrK8/LWEsPr39cH2QH1Rdj69Lx9CgrCdUVJmwcb
Bj8hEiLXL/RYCFNn79A3wNTUvW0rG/AOIf4SLqXtasSRZ0ToaU0ZyDnrNv+0Ol47
rX8tSk+LfXchL9hpIvjCf1vlAYq3pO02favteR/jip3lx/dTjEDE4RJ9qtJzZ4Q=
=fwQY
-----END PGP SIGNATURE-----
Merge tag 'trace-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This pull request has a lot of work done. The main thing is the
changes to the ftrace function callback infrastructure. It's
introducing a way to allow different functions to call directly
different trampolines instead of all calling the same "mcount" one.
The only user of this for now is the function graph tracer, which
always had a different trampoline, but the function tracer trampoline
was called and did basically nothing, and then the function graph
tracer trampoline was called. The difference now, is that the
function graph tracer trampoline can be called directly if a function
is only being traced by the function graph trampoline. If function
tracing is also happening on the same function, the old way is still
done.
The accounting for this takes up more memory when function graph
tracing is activated, as it needs to keep track of which functions it
uses. I have a new way that wont take as much memory, but it's not
ready yet for this merge window, and will have to wait for the next
one.
Another big change was the removal of the ftrace_start/stop() calls
that were used by the suspend/resume code that stopped function
tracing when entering into suspend and resume paths. The stop of
ftrace was done because there was some function that would crash the
system if one called smp_processor_id()! The stop/start was a big
hammer to solve the issue at the time, which was when ftrace was first
introduced into Linux. Now ftrace has better infrastructure to debug
such issues, and I found the problem function and labeled it with
"notrace" and function tracing can now safely be activated all the way
down into the guts of suspend and resume
Other changes include clean ups of uprobe code, clean up of the
trace_seq() code, and other various small fixes and clean ups to
ftrace and tracing"
* tag 'trace-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (57 commits)
ftrace: Add warning if tramp hash does not match nr_trampolines
ftrace: Fix trampoline hash update check on rec->flags
ring-buffer: Use rb_page_size() instead of open coded head_page size
ftrace: Rename ftrace_ops field from trampolines to nr_trampolines
tracing: Convert local function_graph functions to static
ftrace: Do not copy old hash when resetting
tracing: let user specify tracing_thresh after selecting function_graph
ring-buffer: Always run per-cpu ring buffer resize with schedule_work_on()
tracing: Remove function_trace_stop and HAVE_FUNCTION_TRACE_MCOUNT_TEST
s390/ftrace: remove check of obsolete variable function_trace_stop
arm64, ftrace: Remove check of obsolete variable function_trace_stop
Blackfin: ftrace: Remove check of obsolete variable function_trace_stop
metag: ftrace: Remove check of obsolete variable function_trace_stop
microblaze: ftrace: Remove check of obsolete variable function_trace_stop
MIPS: ftrace: Remove check of obsolete variable function_trace_stop
parisc: ftrace: Remove check of obsolete variable function_trace_stop
sh: ftrace: Remove check of obsolete variable function_trace_stop
sparc64,ftrace: Remove check of obsolete variable function_trace_stop
tile: ftrace: Remove check of obsolete variable function_trace_stop
ftrace: x86: Remove check of obsolete variable function_trace_stop
...
There's a helper function to get a ring buffer page size (the number
of bytes of data recorded on the page), called rb_page_size().
Use that instead of open coding it.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The code for resizing the trace ring buffers has to run the per-cpu
resize on the CPU itself. The code was using preempt_off() and
running the code for the current CPU directly, otherwise calling
schedule_work_on().
At least on RT this could result in the following:
|BUG: sleeping function called from invalid context at kernel/rtmutex.c:673
|in_atomic(): 1, irqs_disabled(): 0, pid: 607, name: bash
|3 locks held by bash/607:
|CPU: 0 PID: 607 Comm: bash Not tainted 3.12.15-rt25+ #124
|(rt_spin_lock+0x28/0x68)
|(free_hot_cold_page+0x84/0x3b8)
|(free_buffer_page+0x14/0x20)
|(rb_update_pages+0x280/0x338)
|(ring_buffer_resize+0x32c/0x3dc)
|(free_snapshot+0x18/0x38)
|(tracing_set_tracer+0x27c/0x2ac)
probably via
|cd /sys/kernel/debug/tracing/
|echo 1 > events/enable ; sleep 2
|echo 1024 > buffer_size_kb
If we just always use schedule_work_on(), there's no need for the
preempt_off(). So do that.
Link: http://lkml.kernel.org/p/1405537633-31518-1-git-send-email-cminyard@mvista.com
Reported-by: Stanislav Meduna <stano@meduna.org>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
ring_buffer_poll_wait() should always put the poll_table to its wait_queue
even there is immediate data available. Otherwise, the following epoll and
read sequence will eventually hang forever:
1. Put some data to make the trace_pipe ring_buffer read ready first
2. epoll_ctl(efd, EPOLL_CTL_ADD, trace_pipe_fd, ee)
3. epoll_wait()
4. read(trace_pipe_fd) till EAGAIN
5. Add some more data to the trace_pipe ring_buffer
6. epoll_wait() -> this epoll_wait() will block forever
~ During the epoll_ctl(efd, EPOLL_CTL_ADD,...) call in step 2,
ring_buffer_poll_wait() returns immediately without adding poll_table,
which has poll_table->_qproc pointing to ep_poll_callback(), to its
wait_queue.
~ During the epoll_wait() call in step 3 and step 6,
ring_buffer_poll_wait() cannot add ep_poll_callback() to its wait_queue
because the poll_table->_qproc is NULL and it is how epoll works.
~ When there is new data available in step 6, ring_buffer does not know
it has to call ep_poll_callback() because it is not in its wait queue.
Hence, block forever.
Other poll implementation seems to call poll_wait() unconditionally as the very
first thing to do. For example, tcp_poll() in tcp.c.
Link: http://lkml.kernel.org/p/20140610060637.GA14045@devbig242.prn2.facebook.com
Cc: stable@vger.kernel.org # 2.6.27
Fixes: 2a2cc8f7c4 "ftrace: allow the event pipe to be polled"
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Martin Lau <kafai@fb.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The per_cpu buffers are created one per possible CPU. But these do
not mean that those CPUs are online, nor do they even exist.
With the addition of the ring buffer polling, it assumes that the
caller polls on an existing buffer. But this is not the case if
the user reads trace_pipe from a CPU that does not exist, and this
causes the kernel to crash.
Simple fix is to check the cpu against buffer bitmask against to see
if the buffer was allocated or not and return -ENODEV if it is
not.
More updates were done to pass the -ENODEV back up to userspace.
Link: http://lkml.kernel.org/r/5393DB61.6060707@oracle.com
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: stable@vger.kernel.org # 3.10+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Subsystems that want to register CPU hotplug callbacks, as well as perform
initialization for the CPUs that are already online, often do it as shown
below:
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
This is wrong, since it is prone to ABBA deadlocks involving the
cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
with CPU hotplug operations).
Instead, the correct and race-free way of performing the callback
registration is:
cpu_notifier_register_begin();
for_each_online_cpu(cpu)
init_cpu(cpu);
/* Note the use of the double underscored version of the API */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_notifier_register_done();
Fix the tracing ring-buffer code by using this latter form of callback
registration.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Each sub-buffer (buffer page) has a full 64 bit timestamp. The events on
that page use a 27 bit delta against that timestamp in order to save on
bits written to the ring buffer. If the time between events is larger than
what the 27 bits can hold, a "time extend" event is added to hold the
entire 64 bit timestamp again and the events after that hold a delta from
that timestamp.
As a "time extend" is always paired with an event, it is logical to just
allocate the event with the time extend, to make things a bit more efficient.
Unfortunately, when the pairing code was written, it removed the "delta = 0"
from the first commit on a page, causing the events on the page to be
slightly skewed.
Fixes: 69d1b839f7 "ring-buffer: Bind time extend and data events together"
Cc: stable@vger.kernel.org # 2.6.37+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There have some mismatch between comments with
real function name, update it.
This patch also add some missed function arguments
description.
Link: http://lkml.kernel.org/r/51E3B3B2.4080307@huawei.com
Signed-off-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
For string without format specifiers, use trace_seq_puts()
or trace_seq_putc().
Link: http://lkml.kernel.org/r/51E3B3AC.1000605@huawei.com
Signed-off-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com>
[ fixed a trace_seq_putc(s, " ") to trace_seq_putc(s, ' ') ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The tracing infrastructure sets up for possible CPUs, but it uses
the ring buffer polling, it is possible to call the ring buffer
polling code with a CPU that hasn't been allocated. This will cause
a kernel oops when it access a ring buffer cpu buffer that is part
of the possible cpus but hasn't been allocated yet as the CPU has never
been online.
Reported-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Tested-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Along with the usual minor fixes and clean ups there are a few major
changes with this pull request.
1) Multiple buffers for the ftrace facility
This feature has been requested by many people over the last few years.
I even heard that Google was about to implement it themselves. I finally
had time and cleaned up the code such that you can now create multiple
instances of the ftrace buffer and have different events go to different
buffers. This way, a low frequency event will not be lost in the noise
of a high frequency event.
Note, currently only events can go to different buffers, the tracers
(ie. function, function_graph and the latency tracers) still can only
be written to the main buffer.
2) The function tracer triggers have now been extended.
The function tracer had two triggers. One to enable tracing when a
function is hit, and one to disable tracing. Now you can record a
stack trace on a single (or many) function(s), take a snapshot of the
buffer (copy it to the snapshot buffer), and you can enable or disable
an event to be traced when a function is hit.
3) A perf clock has been added.
A "perf" clock can be chosen to be used when tracing. This will cause
ftrace to use the same clock as perf uses, and hopefully this will make
it easier to interleave the perf and ftrace data for analysis.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQEcBAABAgAGBQJRfnTPAAoJEOdOSU1xswtMqYYH/1WIdrwXmxHflErnYkCIr3sU
QtYae2K5A1HcgiqOvRJrdWMOt016iMx5CaQQyBFM1vvMiPY0sTWRmwNxDfZzz9LN
10jRvWEzZSLtzl+a9mkFWLEpr5nR/QODOxkWFCnRWscp46sp04LSTxGDYsOnPQZB
sam/AQ1h4xA+DqDBChm9BDEUEPorGleTlN54LBaCGgSFGvrbF+eAg2s4vHNAQAvQ
8d5xjSE9zC7J+FqbVxvJTbKI3+EqKL6hMsJKsKfi0SI+FuxBaFMSltXck5zKyTI4
HpNJzXCmw+v90Tju7oMkPHh6RTbESPCHoGU+wqE52fM6m7oScVeuI/kfc6USwU4=
=W1n+
-----END PGP SIGNATURE-----
Merge tag 'trace-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Along with the usual minor fixes and clean ups there are a few major
changes with this pull request.
1) Multiple buffers for the ftrace facility
This feature has been requested by many people over the last few
years. I even heard that Google was about to implement it themselves.
I finally had time and cleaned up the code such that you can now
create multiple instances of the ftrace buffer and have different
events go to different buffers. This way, a low frequency event will
not be lost in the noise of a high frequency event.
Note, currently only events can go to different buffers, the tracers
(ie function, function_graph and the latency tracers) still can only
be written to the main buffer.
2) The function tracer triggers have now been extended.
The function tracer had two triggers. One to enable tracing when a
function is hit, and one to disable tracing. Now you can record a
stack trace on a single (or many) function(s), take a snapshot of the
buffer (copy it to the snapshot buffer), and you can enable or disable
an event to be traced when a function is hit.
3) A perf clock has been added.
A "perf" clock can be chosen to be used when tracing. This will cause
ftrace to use the same clock as perf uses, and hopefully this will
make it easier to interleave the perf and ftrace data for analysis."
* tag 'trace-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (82 commits)
tracepoints: Prevent null probe from being added
tracing: Compare to 1 instead of zero for is_signed_type()
tracing: Remove obsolete macro guard _TRACE_PROFILE_INIT
ftrace: Get rid of ftrace_profile_bits
tracing: Check return value of tracing_init_dentry()
tracing: Get rid of unneeded key calculation in ftrace_hash_move()
tracing: Reset ftrace_graph_filter_enabled if count is zero
tracing: Fix off-by-one on allocating stat->pages
kernel: tracing: Use strlcpy instead of strncpy
tracing: Update debugfs README file
tracing: Fix ftrace_dump()
tracing: Rename trace_event_mutex to trace_event_sem
tracing: Fix comment about prefix in arch_syscall_match_sym_name()
tracing: Convert trace_destroy_fields() to static
tracing: Move find_event_field() into trace_events.c
tracing: Use TRACE_MAX_PRINT instead of constant
tracing: Use pr_warn_once instead of open coded implementation
ring-buffer: Add ring buffer startup selftest
tracing: Bring Documentation/trace/ftrace.txt up to date
tracing: Add "perf" trace_clock
...
Conflicts:
kernel/trace/ftrace.c
kernel/trace/trace.c
When testing my large changes to the ftrace system, there was
a bug that looked like the ring buffer was dropping events.
I wrote up a quick integrity checker of the ring buffer to
see if it was.
Although the bug ended up being something stupid I did in ftrace,
and had nothing to do with the ring buffer, I figured if I spent
the time to write up this test, I might as well include it in the
kernel.
I cleaned it up a bit, as the original version was rather ugly.
Not saying this version is pretty, but it's a beauty queen
compared to what I original wrote.
To enable the start up test, set CONFIG_RING_BUFFER_STARTUP_TEST.
Note, it runs for 10 seconds, so it will slow your boot time
by at least 10 more seconds.
What it does is documented in both the comments and the Kconfig
help.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ring buffer updates when done while the ring buffer is active,
needs to be completed on the CPU that is used for the ring buffer
per_cpu buffer. To accomplish this, schedule_work_on() is used to
schedule work on the given CPU.
Now there's no reason to use schedule_work_on() if the process
doing the update happens to be on the CPU that it is processing.
It has already filled the requirement. Instead, just do the work
and continue.
This is needed for tracing_snapshot_alloc() where it may be called
really early in boot, where the work queues have not been set up yet.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The move of blocked readers to the ring buffer left out the
init of the wait queue that is used. Tests missed this due to running
stress tests against the buffers, which didn't allow for any
readers to end up waiting. Running a simple read and wait triggered
a bug.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Move the logic to wake up on ring buffer data into the ring buffer
code itself. This simplifies the tracing code a lot and also has the
added benefit that waiters on one of the instance buffers can be woken
only when data is added to that instance instead of data added to
any instance.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This adds core architecture support for Imagination's Meta processor
cores, followed by some later miscellaneous arch/metag cleanups and
fixes which I kept separate to ease review:
- Support for basic Meta 1 (ATP) and Meta 2 (HTP) core architecture
- A few fixes all over, particularly for symbol prefixes
- A few privilege protection fixes
- Several cleanups (setup.c includes, split out a lot of metag_ksyms.c)
- Fix some missing exports
- Convert hugetlb to use vm_unmapped_area()
- Copy device tree to non-init memory
- Provide dma_get_sgtable()
Signed-off-by: James Hogan <james.hogan@imgtec.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJRMmVXAAoJEKHZs+irPybfivgP/inEXqJyfw59omQdjwvYcU/a
/u0MJ3UKSNS3U+HknfaFCy/Nwk1dqPLjqqyVC1V6AbUPBXlaEwGcimlNRx2uRjdq
Uh96upMLHsNuF/xiiR477g3RwY0egIJdM1R1bGi3mZ3vVrNQGF+wbni6f61xCWGz
M/4rDglpQvE79oLhYdgj6tidZtHQT0YWtERA9W90zkQWXGYmpFPKBKbfZAi5+rKQ
U6Gpg26orUugzXNaxltJEYKE8gjLTppEabx8DARnItZ4zCMy4dw5RBJ35RFvQw6e
eSmfgTy9w9WqBMY2+QMSgU0KQt1IITCzX7OlOXC0jALQJXoU0WWbOELlBVQLCwF1
T0OcR/5ZP/hIlOk5Dh+e9U3AtbASXdMtqA0ZUe78woH1CBf7Nc/0c0vRg23EdMh8
lnHDJxT/UqskoOYLI4kgWbEdLDy4uTh19U2pVi7VCo7ksLB9Bj9Xc8VSKgscSXTl
OwzN+c4Jgtu8FDFTp+Af4AT8pYGJ08j8L2ErsV2sOv3Q44U5WXdrMz3GSgwXj8+4
wZk3HvdkQVkMD5sJCUZgAswaN6BnbB0pHdCz4wMQ8jR/Ogs015Ipk64Ecym9S/4n
uES7PnDtt/4lb5EyX2ScbvdnZTAFTaaP7OOhC77BOQvbQjIW1tkAcxWJqRry86uS
iM0BFgK6Ohx3geqa5Ft0
=65cR
-----END PGP SIGNATURE-----
Merge tag 'metag-v3.9-rc1-v4' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/metag
Pull new ImgTec Meta architecture from James Hogan:
"This adds core architecture support for Imagination's Meta processor
cores, followed by some later miscellaneous arch/metag cleanups and
fixes which I kept separate to ease review:
- Support for basic Meta 1 (ATP) and Meta 2 (HTP) core architecture
- A few fixes all over, particularly for symbol prefixes
- A few privilege protection fixes
- Several cleanups (setup.c includes, split out a lot of
metag_ksyms.c)
- Fix some missing exports
- Convert hugetlb to use vm_unmapped_area()
- Copy device tree to non-init memory
- Provide dma_get_sgtable()"
* tag 'metag-v3.9-rc1-v4' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/metag: (61 commits)
metag: Provide dma_get_sgtable()
metag: prom.h: remove declaration of metag_dt_memblock_reserve()
metag: copy devicetree to non-init memory
metag: cleanup metag_ksyms.c includes
metag: move mm/init.c exports out of metag_ksyms.c
metag: move usercopy.c exports out of metag_ksyms.c
metag: move setup.c exports out of metag_ksyms.c
metag: move kick.c exports out of metag_ksyms.c
metag: move traps.c exports out of metag_ksyms.c
metag: move irq enable out of irqflags.h on SMP
genksyms: fix metag symbol prefix on crc symbols
metag: hugetlb: convert to vm_unmapped_area()
metag: export clear_page and copy_page
metag: export metag_code_cache_flush_all
metag: protect more non-MMU memory regions
metag: make TXPRIVEXT bits explicit
metag: kernel/setup.c: sort includes
perf: Enable building perf tools for Meta
metag: add boot time LNKGET/LNKSET check
metag: add __init to metag_cache_probe()
...
Some 32 bit architectures require 64 bit values to be aligned (for
example Meta which has 64 bit read/write instructions). These require 8
byte alignment of event data too, so use
!CONFIG_HAVE_64BIT_ALIGNED_ACCESS instead of !CONFIG_64BIT ||
CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS to decide alignment, and align
buffer_data_page::data accordingly.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org> (previous version subtly different)
Add a stat about the number of events read from the ring buffer:
# cat /debug/tracing/per_cpu/cpu0/stats
entries: 39869
overrun: 870512
commit overrun: 0
bytes: 1449912
oldest event ts: 6561.368690
now ts: 6565.246426
dropped events: 0
read events: 112 <-- Added
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
ring_buffer.c use to require declarations from trace.h, but
these have moved to the generic header files. There's nothing
in trace.h that ring_buffer.c requires.
There's some headers that trace.h included that ring_buffer.c
needs, but it's best that it includes them directly, and not
include trace.h.
Also, some things may use ring_buffer.c without having tracing
configured. This removes the dependency that may come in the
future.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Using context bit recursion checking, we can help increase the
performance of the ring buffer.
Before this patch:
# echo function > /debug/tracing/current_tracer
# for i in `seq 10`; do ./hackbench 50; done
Time: 10.285
Time: 10.407
Time: 10.243
Time: 10.372
Time: 10.380
Time: 10.198
Time: 10.272
Time: 10.354
Time: 10.248
Time: 10.253
(average: 10.3012)
Now we have:
# echo function > /debug/tracing/current_tracer
# for i in `seq 10`; do ./hackbench 50; done
Time: 9.712
Time: 9.824
Time: 9.861
Time: 9.827
Time: 9.962
Time: 9.905
Time: 9.886
Time: 10.088
Time: 9.861
Time: 9.834
(average: 9.876)
a 4% savings!
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The original ring-buffer code had special checks at the start
of rb_advance_iter() and instead of repeating them again at the
end of the function if a certain condition existed, I just did
a recursive call to rb_advance_iter() because the special condition
would cause rb_advance_iter() to return early (after the checks).
But as things have changed, the special checks no longer exist
and the only thing done for the special_condition is to call
rb_inc_iter() and return. Instead of doing a confusing recursive call,
just call rb_inc_iter instead.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull perf fixes from Ingo Molnar:
"These are late-v3.7 pending fixes for tracing."
Fix up trivial conflict in kernel/trace/ring_buffer.c: the NULL pointer
fix clashed with the change of type of the 'ret' variable.
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ring-buffer: Fix race between integrity check and readers
ring-buffer: Fix NULL pointer if rb_set_head_page() fails
ftrace: Clear bits properly in reset_iter_read()
The function rb_check_pages() was added to make sure the ring buffer's
pages were sane. This check is done when the ring buffer size is modified
as well as when the iterator is released (closing the "trace" file),
as that was considered a non fast path and a good place to do a sanity
check.
The problem is that the check does not have any locks around it.
If one process were to read the trace file, and another were to read
the raw binary file, the check could happen while the reader is reading
the file.
The issues with this is that the check requires to clear the HEAD page
before doing the full check and it restores it afterward. But readers
require the HEAD page to exist before it can read the buffer, otherwise
it gives a nasty warning and disables the buffer.
By adding the reader lock around the check, this keeps the race from
happening.
Cc: stable@vger.kernel.org # 3.6
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function rb_set_head_page() searches the list of ring buffer
pages for a the page that has the HEAD page flag set. If it does
not find it, it will do a WARN_ON(), disable the ring buffer and
return NULL, as this should never happen.
But if this bug happens to happen, not all callers of this function
can handle a NULL pointer being returned from it. That needs to be
fixed.
Cc: stable@vger.kernel.org # 3.0+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
ring_buffer_oldest_event_ts() should return a value of u64 type, because
ring_buffer_per_cpu->buffer_page->buffer_data_page->time_stamp is u64 type.
Link: http://lkml.kernel.org/r/1349998076-15495-5-git-send-email-dhsharp@google.com
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
Signed-off-by: David Sharp <dhsharp@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Remove ftrace_format_syscall() declaration; it is neither defined nor
used. Also update a comment and formatting.
Link: http://lkml.kernel.org/r/1339112785-21806-1-git-send-email-vnagarnaik@google.com
Signed-off-by: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The existing 'overrun' counter is incremented when the ring
buffer wraps around, with overflow on (the default). We wanted
a way to count requests lost from the buffer filling up with
overflow off, too. I decided to add a new counter instead
of retro-fitting the existing one because it seems like a
different statistic to count conceptually, and also because
of how the code was structured.
Link: http://lkml.kernel.org/r/1310765038-26399-1-git-send-email-slavapestov@google.com
Signed-off-by: Slava Pestov <slavapestov@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
With a system where, num_present_cpus < num_possible_cpus, even if all
CPUs are online, non-present CPUs don't have per_cpu buffers allocated.
If per_cpu/<cpu>/buffer_size_kb is modified for such a CPU, it can cause
a panic due to NULL dereference in ring_buffer_resize().
To fix this, resize operation is allowed only if the per-cpu buffer has
been initialized.
Link: http://lkml.kernel.org/r/1349912427-6486-1-git-send-email-vnagarnaik@google.com
Cc: stable@vger.kernel.org # 3.5+
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When removing pages from the ring buffer, its state is not reset. This
means that the counters need to be correctly updated to account for the
pages removed.
Update the overrun counter to reflect the removed events from the pages.
Link: http://lkml.kernel.org/r/1340998301-1715-1-git-send-email-vnagarnaik@google.com
Cc: Justin Teravest <teravest@google.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The new_pages list head in the cpu_buffer is not initialized. When
adding pages to the ring buffer, if the memory allocation fails in
ring_buffer_resize, the clean up handler tries to free up the allocated
pages from all the cpu buffers. The panic is caused by referencing the
uninitialized new_pages list head.
Initializing the new_pages list head in rb_allocate_cpu_buffer fixes
this.
Link: http://lkml.kernel.org/r/1340391005-10880-1-git-send-email-vnagarnaik@google.com
Cc: Justin Teravest <teravest@google.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ring buffer reader page is used to swap a page from the writable
ring buffer. If the writer happens to be on that page, it ends up on the
reader page, but will simply move off of it, back into the writable ring
buffer as writes are added.
The time stamp passed back to the readers is stored in the cpu_buffer per
CPU descriptor. This stamp is updated when a swap of the reader page takes
place, and it reads the current stamp from the page taken from the writable
ring buffer. Everytime a writer goes to a new page, it updates the time stamp
of that page.
The problem happens if a reader reads a page from an empty per CPU ring buffer.
If the buffer is empty, the swap still takes place, placing the writer at the
start of the reader page. If at a later time, a write happens, it updates the
page's time stamp and continues. But the problem is that the read_stamp does
not get updated, because the page was already swapped.
The solution to this was to not swap the page if the ring buffer happens to
be empty. This also removes the side effect that the writes on the reader
page will not get updated because the writer never gets back on the reader
page without a swap. That is, if a read happens on an empty buffer, but then
no reads happen for a while. If a swap took place, and the writer were to start
writing a lot of data (function tracer), it will start overflowing the ring buffer
and overwrite the older data. But because the writer never goes back onto the
reader page, the data left on the reader page never gets overwritten. This
causes the reader to see really old data, followed by a jump to newer data.
Link: http://lkml.kernel.org/r/1340060577-9112-1-git-send-email-dhsharp@google.com
Google-Bug-Id: 6410455
Reported-by: David Sharp <dhsharp@google.com>
tested-by: David Sharp <dhsharp@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>