local_timer_softirq_pending() checks whether the timer softirq is
pending with: local_softirq_pending() & TIMER_SOFTIRQ.
This is wrong because TIMER_SOFTIRQ is the softirq number and not a
bitmask. So the test checks for the wrong bit.
Use BIT(TIMER_SOFTIRQ) instead.
Fixes: 5d62c183f9 ("nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()")
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Cc: bigeasy@linutronix.de
Cc: peterz@infradead.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180731161358.29472-1-anna-maria@linutronix.de
Revert commits
92af4dcb4e ("tracing: Unify the "boot" and "mono" tracing clocks")
127bfa5f43 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")
7250a4047a ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")
d6c7270e91 ("timekeeping: Remove boot time specific code")
f2d6fdbfd2 ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")
d6ed449afd ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")
72199320d4 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock")
As stated in the pull request for the unification of CLOCK_MONOTONIC and
CLOCK_BOOTTIME, it was clear that we might have to revert the change.
As reported by several folks systemd and other applications rely on the
documented behaviour of CLOCK_MONOTONIC on Linux and break with the above
changes. After resume daemons time out and other timeout related issues are
observed. Rafael compiled this list:
* systemd kills daemons on resume, after >WatchdogSec seconds
of suspending (Genki Sky). [Verified that that's because systemd uses
CLOCK_MONOTONIC and expects it to not include the suspend time.]
* systemd-journald misbehaves after resume:
systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal
corrupted or uncleanly shut down, renaming and replacing.
(Mike Galbraith).
* NetworkManager reports "networking disabled" and networking is broken
after resume 50% of the time (Pavel). [May be because of systemd.]
* MATE desktop dims the display and starts the screensaver right after
system resume (Pavel).
* Full system hang during resume (me). [May be due to systemd or NM or both.]
That happens on debian and open suse systems.
It's sad, that these problems were neither catched in -next nor by those
folks who expressed interest in this change.
Reported-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Reported-by: Genki Sky <sky@genki.is>,
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Kaike reported that in tests rdma hrtimers occasionaly stopped working. He
did great debugging, which provided enough context to decode the problem.
CPU 3 CPU 2
idle
start sched_timer expires = 712171000000
queue->next = sched_timer
start rdmavt timer. expires = 712172915662
lock(baseof(CPU3))
tick_nohz_stop_tick()
tick = 716767000000 timerqueue_add(tmr)
hrtimer_set_expires(sched_timer, tick);
sched_timer->expires = 716767000000 <---- FAIL
if (tmr->expires < queue->next->expires)
hrtimer_start(sched_timer) queue->next = tmr;
lock(baseof(CPU3))
unlock(baseof(CPU3))
timerqueue_remove()
timerqueue_add()
ts->sched_timer is queued and queue->next is pointing to it, but then
ts->sched_timer.expires is modified.
This not only corrupts the ordering of the timerqueue RB tree, it also
makes CPU2 see the new expiry time of timerqueue->next->expires when
checking whether timerqueue->next needs to be updated. So CPU2 sees that
the rdma timer is earlier than timerqueue->next and sets the rdma timer as
new next.
Depending on whether it had also seen the new time at RB tree enqueue, it
might have queued the rdma timer at the wrong place and then after removing
the sched_timer the RB tree is completely hosed.
The problem was introduced with a commit which tried to solve inconsistency
between the hrtimer in the tick_sched data and the underlying hardware
clockevent. It split out hrtimer_set_expires() to store the new tick time
in both the NOHZ and the NOHZ + HIGHRES case, but missed the fact that in
the NOHZ + HIGHRES case the hrtimer might still be queued.
Use hrtimer_start(timer, tick...) for the NOHZ + HIGHRES case which sets
timer->expires after canceling the timer and move the hrtimer_set_expires()
invocation into the NOHZ only code path which is not affected as it merily
uses the hrtimer as next event storage so code pathes can be shared with
the NOHZ + HIGHRES case.
Fixes: d4af6d933c ("nohz: Fix spurious warning when hrtimer and clockevent get out of sync")
Reported-by: "Wan Kaike" <kaike.wan@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Cc: "Marciniszyn Mike" <mike.marciniszyn@intel.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: linux-rdma@vger.kernel.org
Cc: "Dalessandro Dennis" <dennis.dalessandro@intel.com>
Cc: "Fleck John" <john.fleck@intel.com>
Cc: stable@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: "Weiny Ira" <ira.weiny@intel.com>
Cc: "linux-rdma@vger.kernel.org"
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1804241637390.1679@nanos.tec.linutronix.de
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1804242119210.1597@nanos.tec.linutronix.de
* pm-cpuidle:
tick-sched: avoid a maybe-uninitialized warning
cpuidle: Add definition of residency to sysfs documentation
time: hrtimer: Use timerqueue_iterate_next() to get to the next timer
nohz: Avoid duplication of code related to got_idle_tick
nohz: Gather tick_sched booleans under a common flag field
cpuidle: menu: Avoid selecting shallow states with stopped tick
cpuidle: menu: Refine idle state selection for running tick
sched: idle: Select idle state before stopping the tick
time: hrtimer: Introduce hrtimer_next_event_without()
time: tick-sched: Split tick_nohz_stop_sched_tick()
cpuidle: Return nohz hint from cpuidle_select()
jiffies: Introduce USER_TICK_USEC and redefine TICK_USEC
sched: idle: Do not stop the tick before cpuidle_idle_call()
sched: idle: Do not stop the tick upfront in the idle loop
time: tick-sched: Reorganize idle tick management code
* pm-qos:
PM / QoS: mark expected switch fall-throughs
The use of bitfields seems to confuse gcc, leading to a false-positive
warning in all compiler versions:
kernel/time/tick-sched.c: In function 'tick_nohz_idle_exit':
kernel/time/tick-sched.c:538:2: error: 'now' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This introduces a temporary variable to track the flags so gcc
doesn't have to evaluate twice, eliminating the code path that
leads to the warning.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85301
Fixes: 1cae544d42d2 ("nohz: Gather tick_sched booleans under a common flag field")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move the code setting ts->got_idle_tick into tick_sched_do_timer() to
avoid code duplication.
No intentional changes in functionality.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Optimize the space and leave plenty of room for further flags.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
[ rjw: Do not use __this_cpu_read() to access tick_stopped and add
got_idle_tick to avoid overloading inidle ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If the tick isn't stopped, the target residency of the state selected
by the menu governor may be greater than the actual time to the next
tick and that means lost energy.
To avoid that, make tick_nohz_get_sleep_length() return the current
time to the next event (before stopping the tick) in addition to the
estimated one via an extra pointer argument and make menu_select()
use that value to refine the state selection when necessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
In order to address the issue with short idle duration predictions
by the idle governor after the scheduler tick has been stopped,
reorder the code in cpuidle_idle_call() so that the governor idle
state selection runs before tick_nohz_idle_go_idle() and use the
"nohz" hint returned by cpuidle_select() to decide whether or not
to stop the tick.
This isn't straightforward, because menu_select() invokes
tick_nohz_get_sleep_length() to get the time to the next timer
event and the number returned by the latter comes from
__tick_nohz_idle_stop_tick(). Fortunately, however, it is possible
to compute that number without actually stopping the tick and with
the help of the existing code.
Namely, tick_nohz_get_sleep_length() can be made call
tick_nohz_next_event(), introduced earlier, to get the time to the
next non-highres timer event. If that happens, tick_nohz_next_event()
need not be called by __tick_nohz_idle_stop_tick() again.
If it turns out that the scheduler tick cannot be stopped going
forward or the next timer event is too close for the tick to be
stopped, tick_nohz_get_sleep_length() can simply return the time to
the next event currently programmed into the corresponding clock
event device.
In addition to knowing the return value of tick_nohz_next_event(),
however, tick_nohz_get_sleep_length() needs to know the time to the
next highres timer event, but with the scheduler tick timer excluded,
which can be computed with the help of hrtimer_get_next_event().
That minimum of that number and the tick_nohz_next_event() return
value is the total time to the next timer event with the assumption
that the tick will be stopped. It can be returned to the idle
governor which can use it for predicting idle duration (under the
assumption that the tick will be stopped) and deciding whether or
not it makes sense to stop the tick before putting the CPU into the
selected idle state.
With the above, the sleep_length field in struct tick_sched is not
necessary any more, so drop it.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199227
Reported-by: Doug Smythies <dsmythies@telus.net>
Reported-by: Thomas Ilsche <thomas.ilsche@tu-dresden.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
In order to address the issue with short idle duration predictions
by the idle governor after the scheduler tick has been stopped, split
tick_nohz_stop_sched_tick() into two separate routines, one computing
the time to the next timer event and the other simply stopping the
tick when the time to the next timer event is known.
Prepare these two routines to be called separately, as one of them
will be called by the idle governor in the cpuidle_select() code
path after subsequent changes.
Update the former callers of tick_nohz_stop_sched_tick() to use
the new routines, tick_nohz_next_event() and tick_nohz_stop_tick(),
instead of it and move the updates of the sleep_length field in
struct tick_sched into __tick_nohz_idle_stop_tick() as it doesn't
need to be updated anywhere else.
There should be no intentional visible changes in functionality
resulting from this change.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Add a new pointer argument to cpuidle_select() and to the ->select
cpuidle governor callback to allow a boolean value indicating
whether or not the tick should be stopped before entering the
selected state to be returned from there.
Make the ladder governor ignore that pointer (to preserve its
current behavior) and make the menu governor return 'false" through
it if:
(1) the idle exit latency is constrained at 0, or
(2) the selected state is a polling one, or
(3) the expected idle period duration is within the tick period
range.
In addition to that, the correction factor computations in the menu
governor need to take the possibility that the tick may not be
stopped into account to avoid artificially small correction factor
values. To that end, add a mechanism to record tick wakeups, as
suggested by Peter Zijlstra, and use it to modify the menu_update()
behavior when tick wakeup occurs. Namely, if the CPU is woken up by
the tick and the return value of tick_nohz_get_sleep_length() is not
within the tick boundary, the predicted idle duration is likely too
short, so make menu_update() try to compensate for that by updating
the governor statistics as though the CPU was idle for a long time.
Since the value returned through the new argument pointer of
cpuidle_select() is not used by its caller yet, this change by
itself is not expected to alter the functionality of the code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Push the decision whether or not to stop the tick somewhat deeper
into the idle loop.
Stopping the tick upfront leads to unpleasant outcomes in case the
idle governor doesn't agree with the nohz code on the duration of the
upcoming idle period. Specifically, if the tick has been stopped and
the idle governor predicts short idle, the situation is bad regardless
of whether or not the prediction is accurate. If it is accurate, the
tick has been stopped unnecessarily which means excessive overhead.
If it is not accurate, the CPU is likely to spend too much time in
the (shallow, because short idle has been predicted) idle state
selected by the governor [1].
As the first step towards addressing this problem, change the code
to make the tick stopping decision inside of the loop in do_idle().
In particular, do not stop the tick in the cpu_idle_poll() code path.
Also don't do that in tick_nohz_irq_exit() which doesn't really have
enough information on whether or not to stop the tick.
Link: https://marc.info/?l=linux-pm&m=150116085925208&w=2 # [1]
Link: https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/haec/powernightmares.pdf
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Prepare the scheduler tick code for reworking the idle loop to
avoid stopping the tick in some cases.
The idea is to split the nohz idle entry call to decouple the idle
time stats accounting and preparatory work from the actual tick stop
code, in order to later be able to delay the tick stop once we reach
more power-knowledgeable callers.
Move away the tick_nohz_start_idle() invocation from
__tick_nohz_idle_enter(), rename the latter to
__tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick()
as a wrapper around it for calling it from the outside.
Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead
of calling the entire __tick_nohz_idle_enter(), add another wrapper
disabling and enabling interrupts around tick_nohz_idle_stop_tick()
and make the current callers of tick_nohz_idle_enter() call it too
to retain their current functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Pull time(r) updates from Thomas Gleixner:
"A small set of updates for timers and timekeeping:
- The most interesting change is the consolidation of clock MONOTONIC
and clock BOOTTIME.
Clock MONOTONIC behaves now exactly like clock BOOTTIME and does
not longer ignore the time spent in suspend. A new clock
MONOTONIC_ACTIVE is provived which behaves like clock MONOTONIC in
kernels before this change. This allows applications to
programmatically check for the clock MONOTONIC behaviour.
As discussed in the review thread, this has the potential of
breaking user space and we might have to revert this. Knock on wood
that we can avoid that exercise.
- Updates to the NTP mechanism to improve accuracy
- A new kernel internal data structure to aid the ongoing Y2038 work.
- Cleanups and simplifications of the clocksource code.
- Make the alarmtimer code play nicely with debugobjects"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
alarmtimer: Init nanosleep alarm timer on stack
y2038: Introduce struct __kernel_old_timeval
tracing: Unify the "boot" and "mono" tracing clocks
hrtimer: Unify MONOTONIC and BOOTTIME clock behavior
posix-timers: Unify MONOTONIC and BOOTTIME clock behavior
timekeeping: Remove boot time specific code
Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior
timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock
timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock
timekeeping/ntp: Determine the multiplier directly from NTP tick length
timekeeping/ntp: Don't align NTP frequency adjustments to ticks
clocksource: Use ATTRIBUTE_GROUPS
clocksource: Use DEVICE_ATTR_RW/RO/WO to define device attributes
clocksource: Don't walk the clocksource list for empty override
Pull scheduler updates from Ingo Molnar:
"The main scheduler changes in this cycle were:
- NUMA balancing improvements (Mel Gorman)
- Further load tracking improvements (Patrick Bellasi)
- Various NOHZ balancing cleanups and optimizations (Peter Zijlstra)
- Improve blocked load handling, in particular we can now reduce and
eventually stop periodic load updates on 'very idle' CPUs. (Vincent
Guittot)
- On isolated CPUs offload the final 1Hz scheduler tick as well, plus
related cleanups and reorganization. (Frederic Weisbecker)
- Core scheduler code cleanups (Ingo Molnar)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
sched/core: Update preempt_notifier_key to modern API
sched/cpufreq: Rate limits for SCHED_DEADLINE
sched/fair: Update util_est only on util_avg updates
sched/cpufreq/schedutil: Use util_est for OPP selection
sched/fair: Use util_est in LB and WU paths
sched/fair: Add util_est on top of PELT
sched/core: Remove TASK_ALL
sched/completions: Use bool in try_wait_for_completion()
sched/fair: Update blocked load when newly idle
sched/fair: Move idle_balance()
sched/nohz: Merge CONFIG_NO_HZ_COMMON blocks
sched/fair: Move rebalance_domains()
sched/nohz: Optimize nohz_idle_balance()
sched/fair: Reduce the periodic update duration
sched/nohz: Stop NOHZ stats when decayed
sched/cpufreq: Provide migration hint
sched/nohz: Clean up nohz enter/exit
sched/fair: Update blocked load from NEWIDLE
sched/fair: Add NOHZ stats balancing
sched/fair: Restructure nohz_balance_kick()
...
The MONOTONIC clock is not fast forwarded by the time spent in suspend on
resume. This is only done for the BOOTTIME clock. The reason why the
MONOTONIC clock is not forwarded is historical: the original Linux
implementation was using jiffies as a base for the MONOTONIC clock and
jiffies have never been advanced after resume.
At some point when timekeeping was unified in the core code, the
MONONOTIC clock was advanced after resume which also advanced jiffies causing
interesting side effects. As a consequence the the MONOTONIC clock forwarding
was disabled again and the BOOTTIME clock was introduced, which allows to read
time since boot.
Back then it was not possible to completely distangle the MONOTONIC clock and
jiffies because there were still interfaces which exposed the MONOTONIC clock
behaviour based on the timer wheel and therefore jiffies.
As of today none of the MONOTONIC clock facilities depends on jiffies
anymore so the forwarding can be done seperately. This is achieved by
forwarding the variables which are used for the jiffies update after resume
before the tick is restarted,
In timekeeping resume, the change is rather simple. Instead of updating the
offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the
time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time
spent in suspend.
The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between
the REALTIME and the MONOTONIC clocks is the same as before suspend.
There might be side effects in applications, which rely on the
(unfortunately) well documented behaviour of the MONOTONIC clock, but the
downsides of the existing behaviour are probably worse.
There is one obvious issue. Up to now it was possible to retrieve the time
spent in suspend by observing the delta between the MONOTONIC clock and the
BOOTTIME clock. This is not longer available, but the previously introduced
mechanism to read the active non-suspended monotonic time can mitigate that
in a detectable fashion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.
Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.
Removes an atomic op from both enter and exit paths.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the 1Hz tick is offloaded to workqueues, we can safely remove
the residual code that used to handle it locally.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This check is racy but provides a good heuristic to determine whether
a CPU may need a remote tick or not.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-4-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It makes this function more self-explanatory about what it does and how
to use it.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 6f1982fedd ("sched/isolation: Handle the nohz_full= parameter")
broke CONFIG_NO_HZ_FULL_ALL=y kernels. This breakage is due to the code
under CONFIG_NO_HZ_FULL_ALL failing to invoke the shiny new housekeeping
functions. This means that rcutorture scenario TREE04 now emits RCU CPU
stall warnings due to the RCU grace-period kthreads not being awakened
at a time of their choosing, or perhaps even not at all:
[ 27.731422] rcu_bh kthread starved for 21001 jiffies! g18446744073709551369 c18446744073709551368 f0x0 RCU_GP_WAIT_FQS(3) ->state=0x402 ->cpu=3
[ 27.731423] rcu_bh I14936 9 2 0x80080000
[ 27.731435] Call Trace:
[ 27.731440] __schedule+0x31a/0x6d0
[ 27.731442] schedule+0x31/0x80
[ 27.731446] schedule_timeout+0x15a/0x320
[ 27.731453] ? call_timer_fn+0x130/0x130
[ 27.731457] rcu_gp_kthread+0x66c/0xea0
[ 27.731458] ? rcu_gp_kthread+0x66c/0xea0
Because no one has complained about CONFIG_NO_HZ_FULL_ALL=y being broken,
I hypothesize that no one is in fact using it, other than rcutorture.
This commit therefore eliminates CONFIG_NO_HZ_FULL_ALL and updates
rcutorture's config files to instead use the nohz_full= kernel parameter
to put the desired CPUs into nohz_full mode.
Fixes: 6f1982fedd ("sched/isolation: Handle the nohz_full= parameter")
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
The hrtimer_cpu_base::migration_enable and ::nohz_active fields
were originally introduced to avoid accessing global variables
for these decisions.
Still that results in a (cache hot) load and conditional branch,
which can be avoided by using static keys.
Implement it with static keys and optimize for the most critical
case of high performance networking which tends to disable the
timer migration functionality.
No change in functionality.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1801142327490.2371@nanos
Link: https://lkml.kernel.org/r/20171221104205.7269-2-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The conditions in irq_exit() to invoke tick_nohz_irq_exit() which
subsequently invokes tick_nohz_stop_sched_tick() are:
if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu))
If need_resched() is not set, but a timer softirq is pending then this is
an indication that the softirq code punted and delegated the execution to
softirqd. need_resched() is not true because the current interrupted task
takes precedence over softirqd.
Invoking tick_nohz_irq_exit() in this case can cause an endless loop of
timer interrupts because the timer wheel contains an expired timer, but
softirqs are not yet executed. So it returns an immediate expiry request,
which causes the timer to fire immediately again. Lather, rinse and
repeat....
Prevent that by adding a check for a pending timer soft interrupt to the
conditions in tick_nohz_stop_sched_tick() which avoid calling
get_next_timer_interrupt(). That keeps the tick sched timer on the tick and
prevents a repetitive programming of an already expired timer.
Reported-by: Sebastian Siewior <bigeasy@linutronix.d>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272156050.2431@nanos
Since the recent remote cpufreq callback work, its possible that a cpufreq
update is triggered from a remote CPU. For single policies however, the current
code uses the local CPU when trying to determine if the remote sg_cpu entered
idle or is busy. This is incorrect. To remedy this, compare with the nohz tick
idle_calls counter of the remote CPU.
Fixes: 674e75411f (sched: cpufreq: Allow remote cpufreq callbacks)
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Cc: 4.14+ <stable@vger.kernel.org> # 4.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull scheduler updates from Ingo Molnar:
"The main updates in this cycle were:
- Group balancing enhancements and cleanups (Brendan Jackman)
- Move CPU isolation related functionality into its separate
kernel/sched/isolation.c file, with related 'housekeeping_*()'
namespace and nomenclature et al. (Frederic Weisbecker)
- Improve the interactive/cpu-intense fairness calculation (Josef
Bacik)
- Improve the PELT code and related cleanups (Peter Zijlstra)
- Improve the logic of pick_next_task_fair() (Uladzislau Rezki)
- Improve the RT IPI based balancing logic (Steven Rostedt)
- Various micro-optimizations:
- better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi)
- better idle loop (Cheng Jian)
- ... plus misc fixes, cleanups and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
sched/sysctl: Fix attributes of some extern declarations
sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated
sched/isolation: Add basic isolcpus flags
sched/isolation: Move isolcpus= handling to the housekeeping code
sched/isolation: Handle the nohz_full= parameter
sched/isolation: Introduce housekeeping flags
sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
sched/isolation: Use its own static key
sched/isolation: Make the housekeeping cpumask private
sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu()
sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version
sched/isolation: Move housekeeping related code to its own file
sched/idle: Micro-optimize the idle loop
sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter
sched/rt: Simplify the IPI based RT balancing logic
block/ioprio: Use a helper to check for RT prio
sched/rt: Add a helper to test for a RT task
...
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-5-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want to centralize the isolation management, done by the housekeeping
subsystem. Therefore we need to handle the nohz_full= parameter from
there.
Since nohz_full= so far has involved unbound timers, watchdog, RCU
and tilegx NAPI isolation, we keep that default behaviour.
nohz_full= will be deprecated in the future. We want to control
the isolation features from the isolcpus= parameter.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-10-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The housekeeping code is currently tied to the NOHZ code. As we are
planning to make housekeeping independent from it, start with moving
the relevant code to its own file.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1509072159-31808-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
quiet_vmstat() is an expensive function that only makes sense when we
go into NOHZ.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aubrey.li@linux.intel.com
Cc: cl@linux.com
Cc: fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull nohz updates from Ingo Molnar:
"The main changes in this cycle relate to fixing another bad (but
sporadic and hard to detect) interaction between the dynticks
scheduler tick and hrtimers, plus related improvements to better
detection and handling of similar problems - by Frédéric Weisbecker"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
nohz: Fix spurious warning when hrtimer and clockevent get out of sync
nohz: Fix buggy tick delay on IRQ storms
nohz: Reset next_tick cache even when the timer has no regs
nohz: Fix collision between tick and other hrtimers, again
nohz: Add hrtimer sanity check
The idle load balancing registration path assumes that we only stop the
tick when the CPU is idle, ignoring the nohz full case. As a result, a
nohz full CPU that is running a task may be chosen to perform idle load
balancing.
Lets make sure that only CPUs in dynticks idle mode can be picked as
idle load balancers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The loadavg naming code still assumes that nohz == idle whereas its code
is actually handling well both nohz idle and nohz full.
So lets fix the naming according to what the code actually does, to
unconfuse the reader.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1497838322-10913-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sanity check ensuring that the tick expiry cache (ts->next_tick)
is actually in sync with the hardware clock (dev->next_event) makes the
wrong assumption that the clock can't be programmed later than the
hrtimer deadline.
In fact the clock hardware can be programmed later on some conditions
such as:
* The hrtimer deadline is already in the past.
* The hrtimer deadline is earlier than the minimum delay supported
by the hardware.
Such conditions can be met when we program the tick, for example if the
last jiffies update hasn't been seen by the current CPU yet, we may
program the hrtimer to a deadline that is earlier than ktime_get()
because last_jiffies_update is our timestamp base to compute the next
tick.
As a result, we can randomly observe such warning:
WARNING: CPU: 5 PID: 0 at kernel/time/tick-sched.c:794 tick_nohz_stop_sched_tick kernel/time/tick-sched.c:791 [inline]
Call Trace:
tick_nohz_irq_exit
tick_irq_exit
irq_exit
exiting_irq
smp_call_function_interrupt
smp_call_function_single_interrupt
call_function_single_interrupt
Therefore, let's rather make sure that the tick expiry cache is sync'ed
with the tick hrtimer deadline, against which it is not supposed to
drift away. The clock hardware instead has its own will and can't be
used as a reliable comparison point.
Reported-and-tested-by: Sasha Levin <alexander.levin@verizon.com>
Reported-and-tested-by: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: James Hartsock <hartsjc@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Wright <tim@binbash.co.uk>
Link: http://lkml.kernel.org/r/1497326654-14122-1-git-send-email-fweisbec@gmail.com
[ Minor readability edit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the tick is stopped and we reach the dynticks evaluation code on
IRQ exit, we perform a soft tick restart if we observe an expired timer
from there. It means we program the nearest possible tick but we stay in
dynticks mode (ts->tick_stopped = 1) because we may need to stop the tick
again after that expired timer is handled.
Now this solution works most of the time but if we suffer an IRQ storm
and those interrupts trigger faster than the hardware clockevents min
delay, our tick won't fire until that IRQ storm is finished.
Here is the problem: on IRQ exit we reprog the timer to at least
NOW() + min_clockevents_delay. Another IRQ fires before the tick so we
reschedule again to NOW() + min_clockevents_delay, etc... The tick
is eternally rescheduled min_clockevents_delay ahead.
A solution is to simply remove this soft tick restart. After all
the normal dynticks evaluation path can handle 0 delay just fine. And
by doing that we benefit from the optimization branch which avoids
clock reprogramming if the clockevents deadline hasn't changed since
the last reprog. This fixes our issue because we don't do repetitive
clock reprog that always add hardware min delay.
As a side effect it should even optimize the 0 delay path in general.
Reported-and-tested-by: Octavian Purdila <octavian.purdila@nxp.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496328429-13317-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Handle tick interrupts whose regs are NULL, out of general paranoia. It happens
when hrtimer_interrupt() is called from non-interrupt contexts, such as hotplug
CPU down events.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This restores commit:
24b91e360e: ("nohz: Fix collision between tick and other hrtimers")
... which got reverted by commit:
558e8e27e7: ('Revert "nohz: Fix collision between tick and other hrtimers"')
... due to a regression where CPUs spuriously stopped ticking.
The bug happened when a tick fired too early past its expected expiration:
on IRQ exit the tick was scheduled again to the same deadline but skipped
reprogramming because ts->next_tick still kept in cache the deadline.
This has been fixed now with resetting ts->next_tick from the tick
itself. Extra care has also been taken to prevent from obsolete values
throughout CPU hotplug operations.
When the tick is stopped and an interrupt occurs afterward, we check on
that interrupt exit if the next tick needs to be rescheduled. If it
doesn't need any update, we don't want to do anything.
In order to check if the tick needs an update, we compare it against the
clockevent device deadline. Now that's a problem because the clockevent
device is at a lower level than the tick itself if it is implemented
on top of hrtimer.
Every hrtimer share this clockevent device. So comparing the next tick
deadline against the clockevent device deadline is wrong because the
device may be programmed for another hrtimer whose deadline collides
with the tick. As a result we may end up not reprogramming the tick
accidentally.
In a worst case scenario under full dynticks mode, the tick stops firing
as it is supposed to every 1hz, leaving /proc/stat stalled:
Task in a full dynticks CPU
----------------------------
* hrtimer A is queued 2 seconds ahead
* the tick is stopped, scheduled 1 second ahead
* tick fires 1 second later
* on tick exit, nohz schedules the tick 1 second ahead but sees
the clockevent device is already programmed to that deadline,
fooled by hrtimer A, the tick isn't rescheduled.
* hrtimer A is cancelled before its deadline
* tick never fires again until an interrupt happens...
In order to fix this, store the next tick deadline to the tick_sched
local structure and reuse that value later to check whether we need to
reprogram the clock after an interrupt.
On the other hand, ts->sleep_length still wants to know about the next
clock event and not just the tick, so we want to improve the related
comment to avoid confusion.
Reported-and-tested-by: Tim Wright <tim@binbash.co.uk>
Reported-and-tested-by: Pavel Machek <pavel@ucw.cz>
Reported-by: James Hartsock <hartsjc@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1492783255-5051-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The argument to sched_clock_idle_wakeup_event() has not been used in a
long time. Remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The way the schedutil governor uses the PELT metric causes it to
underestimate the CPU utilization in some cases.
That can be easily demonstrated by running kernel compilation on
a Sandy Bridge Intel processor, running turbostat in parallel with
it and looking at the values written to the MSR_IA32_PERF_CTL
register. Namely, the expected result would be that when all CPUs
were 100% busy, all of them would be requested to run in the maximum
P-state, but observation shows that this clearly isn't the case.
The CPUs run in the maximum P-state for a while and then are
requested to run slower and go back to the maximum P-state after
a while again. That causes the actual frequency of the processor to
visibly oscillate below the sustainable maximum in a jittery fashion
which clearly is not desirable.
That has been attributed to CPU utilization metric updates on task
migration that cause the total utilization value for the CPU to be
reduced by the utilization of the migrated task. If that happens,
the schedutil governor may see a CPU utilization reduction and will
attempt to reduce the CPU frequency accordingly right away. That
may be premature, though, for example if the system is generally
busy and there are other runnable tasks waiting to be run on that
CPU already.
This is unlikely to be an issue on systems where cpufreq policies are
shared between multiple CPUs, because in those cases the policy
utilization is computed as the maximum of the CPU utilization values
over the whole policy and if that turns out to be low, reducing the
frequency for the policy most likely is a good idea anyway. On
systems with one CPU per policy, however, it may affect performance
adversely and even lead to increased energy consumption in some cases.
On those systems it may be addressed by taking another utilization
metric into consideration, like whether or not the CPU whose
frequency is about to be reduced has been idle recently, because if
that's not the case, the CPU is likely to be busy in the near future
and its frequency should not be reduced.
To that end, use the counter of idle calls in the timekeeping code.
Namely, make the schedutil governor look at that counter for the
current CPU every time before its frequency is about to be reduced.
If the counter has not changed since the previous iteration of the
governor computations for that CPU, the CPU has been busy for all
that time and its frequency should not be decreased, so if the new
frequency would be lower than the one set previously, the governor
will skip the frequency update.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Joel Fernandes <joelaf@google.com>
We are going to split <linux/sched/nohz.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/nohz.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to move softlockup APIs out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
<linux/nmi.h> already includes <linux/sched.h>.
Include the <linux/nmi.h> header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 24b91e360e and commit
7bdb59f1ad ("tick/nohz: Fix possible missing clock reprog after tick
soft restart") that depends on it,
Pavel reports that it causes occasional boot hangs for him that seem to
depend on just how the machine was booted. In particular, his machine
hangs at around the PCI fixups of the EHCI USB host controller, but only
hangs from cold boot, not from a warm boot.
Thomas Gleixner suspecs it's a CPU hotplug interaction, particularly
since Pavel also saw suspend/resume issues that seem to be related.
We're reverting for now while trying to figure out the root cause.
Reported-bisected-and-tested-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org # reverted commits were marked for stable
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ts->next_tick keeps track of the next tick deadline in order to optimize
clock programmation on irq exit and avoid redundant clock device writes.
Now if ts->next_tick missed an update, we may spuriously miss a clock
reprog later as the nohz code is fooled by an obsolete next_tick value.
This is what happens here on a specific path: when we observe an
expired timer from the nohz update code on irq exit, we perform a soft
tick restart which simply fires the closest possible tick without
actually exiting the nohz mode and restoring a periodic state. But we
forget to update ts->next_tick accordingly.
As a result, after the next tick resulting from such soft tick restart,
the nohz code sees a stale value on ts->next_tick which doesn't match
the clock deadline that just expired. If that obsolete ts->next_tick
value happens to collide with the actual next tick deadline to be
scheduled, we may spuriously bypass the clock reprogramming. In the
worst case, the tick may never fire again.
Fix this with a ts->next_tick reset on soft tick restart.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1486485894-29173-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When the tick is stopped and an interrupt occurs afterward, we check on
that interrupt exit if the next tick needs to be rescheduled. If it
doesn't need any update, we don't want to do anything.
In order to check if the tick needs an update, we compare it against the
clockevent device deadline. Now that's a problem because the clockevent
device is at a lower level than the tick itself if it is implemented
on top of hrtimer.
Every hrtimer share this clockevent device. So comparing the next tick
deadline against the clockevent device deadline is wrong because the
device may be programmed for another hrtimer whose deadline collides
with the tick. As a result we may end up not reprogramming the tick
accidentally.
In a worst case scenario under full dynticks mode, the tick stops firing
as it is supposed to every 1hz, leaving /proc/stat stalled:
Task in a full dynticks CPU
----------------------------
* hrtimer A is queued 2 seconds ahead
* the tick is stopped, scheduled 1 second ahead
* tick fires 1 second later
* on tick exit, nohz schedules the tick 1 second ahead but sees
the clockevent device is already programmed to that deadline,
fooled by hrtimer A, the tick isn't rescheduled.
* hrtimer A is cancelled before its deadline
* tick never fires again until an interrupt happens...
In order to fix this, store the next tick deadline to the tick_sched
local structure and reuse that value later to check whether we need to
reprogram the clock after an interrupt.
On the other hand, ts->sleep_length still wants to know about the next
clock event and not just the tick, so we want to improve the related
comment to avoid confusion.
Reported-by: James Hartsock <hartsjc@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1483539124-5693-1-git-send-email-fweisbec@gmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ktime is a union because the initial implementation stored the time in
scalar nanoseconds on 64 bit machine and in a endianess optimized timespec
variant for 32bit machines. The Y2038 cleanup removed the timespec variant
and switched everything to scalar nanoseconds. The union remained, but
become completely pointless.
Get rid of the union and just keep ktime_t as simple typedef of type s64.
The conversion was done with coccinelle and some manual mopping up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>