Commit Graph

39 Commits

Author SHA1 Message Date
Hugh Dickins
3a4f8a0b3f mm: remove shmem_mapping() shmem_zero_setup() duplicates
Remove the prototypes for shmem_mapping() and shmem_zero_setup() from
linux/mm.h, since they are already provided in linux/shmem_fs.h.  But
shmem_fs.h must then provide the inline stub for shmem_mapping() when
CONFIG_SHMEM is not set, and a few more cfiles now need to #include it.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702081658250.1549@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Mike Rapoport
4c27fe4c4c userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support
shmem_mcopy_atomic_pte is the low level routine that implements the
userfaultfd UFFDIO_COPY command.  It is based on the existing
mcopy_atomic_pte routine with modifications for shared memory pages.

Link: http://lkml.kernel.org/r/20161216144821.5183-29-aarcange@redhat.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michael Rapoport <RAPOPORT@il.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:28 -08:00
Kirill A. Shutemov
779750d20b shmem: split huge pages beyond i_size under memory pressure
Even if user asked to allocate huge pages always (huge=always), we
should be able to free up some memory by splitting pages which are
partly byound i_size if memory presure comes or once we hit limit on
filesystem size (-o size=).

In order to do this we maintain per-superblock list of inodes, which
potentially have huge pages on the border of file size.

Per-fs shrinker can reclaim memory by splitting such pages.

If we hit -ENOSPC during shmem_getpage_gfp(), we try to split a page to
free up space on the filesystem and retry allocation if it succeed.

Link: http://lkml.kernel.org/r/1466021202-61880-37-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
e496cf3d78 thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE
For file mappings, we don't deposit page tables on THP allocation
because it's not strictly required to implement split_huge_pmd(): we can
just clear pmd and let following page faults to reconstruct the page
table.

But Power makes use of deposited page table to address MMU quirk.

Let's hide THP page cache, including huge tmpfs, under separate config
option, so it can be forbidden on Power.

We can revert the patch later once solution for Power found.

Link: http://lkml.kernel.org/r/1466021202-61880-36-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
f3f0e1d215 khugepaged: add support of collapse for tmpfs/shmem pages
This patch extends khugepaged to support collapse of tmpfs/shmem pages.
We share fair amount of infrastructure with anon-THP collapse.

Few design points:

  - First we are looking for VMA which can be suitable for mapping huge
    page;

  - If the VMA maps shmem file, the rest scan/collapse operations
    operates on page cache, not on page tables as in anon VMA case.

  - khugepaged_scan_shmem() finds a range which is suitable for huge
    page. The scan is lockless and shouldn't disturb system too much.

  - once the candidate for collapse is found, collapse_shmem() attempts
    to create a huge page:

      + scan over radix tree, making the range point to new huge page;

      + new huge page is not-uptodate, locked and freezed (refcount
        is 0), so nobody can touch them until we say so.

      + we swap in pages during the scan. khugepaged_scan_shmem()
        filters out ranges with more than khugepaged_max_ptes_swap
	swapped out pages. It's HPAGE_PMD_NR/8 by default.

      + old pages are isolated, unmapped and put to local list in case
        to be restored back if collapse failed.

  - if collapse succeed, we retract pte page tables from VMAs where huge
    pages mapping is possible. The huge page will be mapped as PMD on
    next minor fault into the range.

Link: http://lkml.kernel.org/r/1466021202-61880-35-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
800d8c63b2 shmem: add huge pages support
Here's basic implementation of huge pages support for shmem/tmpfs.

It's all pretty streight-forward:

  - shmem_getpage() allcoates huge page if it can and try to inserd into
    radix tree with shmem_add_to_page_cache();

  - shmem_add_to_page_cache() puts the page onto radix-tree if there's
    space for it;

  - shmem_undo_range() removes huge pages, if it fully within range.
    Partial truncate of huge pages zero out this part of THP.

    This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
    behaviour. As we don't really create hole in this case,
    lseek(SEEK_HOLE) may have inconsistent results depending what
    pages happened to be allocated.

  - no need to change shmem_fault: core-mm will map an compound page as
    huge if VMA is suitable;

Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Hugh Dickins
c01d5b3007 shmem: get_unmapped_area align huge page
Provide a shmem_get_unmapped_area method in file_operations, called at
mmap time to decide the mapping address.  It could be conditional on
CONFIG_TRANSPARENT_HUGEPAGE, but save #ifdefs in other places by making
it unconditional.

shmem_get_unmapped_area() first calls the usual mm->get_unmapped_area
(which we treat as a black box, highly dependent on architecture and
config and executable layout).  Lots of conditions, and in most cases it
just goes with the address that chose; but when our huge stars are
rightly aligned, yet that did not provide a suitable address, go back to
ask for a larger arena, within which to align the mapping suitably.

There have to be some direct calls to shmem_get_unmapped_area(), not via
the file_operations: because of the way shmem_zero_setup() is called to
create a shmem object late in the mmap sequence, when MAP_SHARED is
requested with MAP_ANONYMOUS or /dev/zero.  Though this only matters
when /proc/sys/vm/shmem_huge has been set.

Link: http://lkml.kernel.org/r/1466021202-61880-29-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
5a6e75f811 shmem: prepare huge= mount option and sysfs knob
This patch adds new mount option "huge=".  It can have following values:

  - "always":
	Attempt to allocate huge pages every time we need a new page;

  - "never":
	Do not allocate huge pages;

  - "within_size":
	Only allocate huge page if it will be fully within i_size.
	Also respect fadvise()/madvise() hints;

  - "advise:
	Only allocate huge pages if requested with fadvise()/madvise();

Default is "never" for now.

"mount -o remount,huge= /mountpoint" works fine after mount: remounting
huge=never will not attempt to break up huge pages at all, just stop
more from being allocated.

No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which
is the appropriate option to protect those who don't want the new bloat,
and with which we shall share some pmd code.

Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is
invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it
explicit).

Allow enabling THP only if the machine has_transparent_hugepage().

But what about Shmem with no user-visible mount? SysV SHM, memfds,
shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM
objects, Ashmem.  Though unlikely to suit all usages, provide sysfs knob
/sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with
huge on those.

And allow shmem_enabled two further values:

  - "deny":
	For use in emergencies, to force the huge option off from
	all mounts;
  - "force":
	Force the huge option on for all - very useful for testing;

Based on patch by Hugh Dickins.

Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Al Viro
3ed47db34f make sure that freeing shmem fast symlinks is RCU-delayed
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-22 18:08:52 -05:00
Vlastimil Babka
48131e03ca mm, proc: reduce cost of /proc/pid/smaps for unpopulated shmem mappings
Following the previous patch, further reduction of /proc/pid/smaps cost
is possible for private writable shmem mappings with unpopulated areas
where the page walk invokes the .pte_hole function.  We can use radix
tree iterator for each such area instead of calling find_get_entry() in
a loop.  This is possible at the extra maintenance cost of introducing
another shmem function shmem_partial_swap_usage().

To demonstrate the diference, I have measured this on a process that
creates a private writable 2GB mapping of a partially swapped out
/dev/shm/file (which cannot employ the optimizations from the prvious
patch) and doesn't populate it at all.  I time how long does it take to
cat /proc/pid/smaps of this process 100 times.

Before this patch:

real    0m3.831s
user    0m0.180s
sys     0m3.212s

After this patch:

real    0m1.176s
user    0m0.180s
sys     0m0.684s

The time is similar to the case where a radix tree iterator is employed
on the whole mapping.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vlastimil Babka
6a15a37097 mm, proc: reduce cost of /proc/pid/smaps for shmem mappings
The previous patch has improved swap accounting for shmem mapping, which
however made /proc/pid/smaps more expensive for shmem mappings, as we
consult the radix tree for each pte_none entry, so the overal complexity
is O(n*log(n)).

We can reduce this significantly for mappings that cannot contain COWed
pages, because then we can either use the statistics tha shmem object
itself tracks (if the mapping contains the whole object, or the swap
usage of the whole object is zero), or use the radix tree iterator,
which is much more effective than repeated find_get_entry() calls.

This patch therefore introduces a function shmem_swap_usage(vma) and
makes /proc/pid/smaps use it when possible.  Only for writable private
mappings of shmem objects (i.e.  tmpfs files) with the shmem object
itself (partially) swapped outwe have to resort to the find_get_entry()
approach.

Hopefully such mappings are relatively uncommon.

To demonstrate the diference, I have measured this on a process that
creates a 2GB mapping and dirties single pages with a stride of 2MB, and
time how long does it take to cat /proc/pid/smaps of this process 100
times.

Private writable mapping of a /dev/shm/file (the most complex case):

real    0m3.831s
user    0m0.180s
sys     0m3.212s

Shared mapping of an almost full mapping of a partially swapped /dev/shm/file
(which needs to employ the radix tree iterator).

real    0m1.351s
user    0m0.096s
sys     0m0.768s

Same, but with /dev/shm/file not swapped (so no radix tree walk needed)

real    0m0.935s
user    0m0.128s
sys     0m0.344s

Private anonymous mapping:

real    0m0.949s
user    0m0.116s
sys     0m0.348s

The cost is now much closer to the private anonymous mapping case, unless
the shmem mapping is private and writable.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
David Herrmann
40e041a2c8 shm: add sealing API
If two processes share a common memory region, they usually want some
guarantees to allow safe access. This often includes:
  - one side cannot overwrite data while the other reads it
  - one side cannot shrink the buffer while the other accesses it
  - one side cannot grow the buffer beyond previously set boundaries

If there is a trust-relationship between both parties, there is no need
for policy enforcement.  However, if there's no trust relationship (eg.,
for general-purpose IPC) sharing memory-regions is highly fragile and
often not possible without local copies.  Look at the following two
use-cases:

  1) A graphics client wants to share its rendering-buffer with a
     graphics-server. The memory-region is allocated by the client for
     read/write access and a second FD is passed to the server. While
     scanning out from the memory region, the server has no guarantee that
     the client doesn't shrink the buffer at any time, requiring rather
     cumbersome SIGBUS handling.
  2) A process wants to perform an RPC on another process. To avoid huge
     bandwidth consumption, zero-copy is preferred. After a message is
     assembled in-memory and a FD is passed to the remote side, both sides
     want to be sure that neither modifies this shared copy, anymore. The
     source may have put sensible data into the message without a separate
     copy and the target may want to parse the message inline, to avoid a
     local copy.

While SIGBUS handling, POSIX mandatory locking and MAP_DENYWRITE provide
ways to achieve most of this, the first one is unproportionally ugly to
use in libraries and the latter two are broken/racy or even disabled due
to denial of service attacks.

This patch introduces the concept of SEALING.  If you seal a file, a
specific set of operations is blocked on that file forever.  Unlike locks,
seals can only be set, never removed.  Hence, once you verified a specific
set of seals is set, you're guaranteed that no-one can perform the blocked
operations on this file, anymore.

An initial set of SEALS is introduced by this patch:
  - SHRINK: If SEAL_SHRINK is set, the file in question cannot be reduced
            in size. This affects ftruncate() and open(O_TRUNC).
  - GROW: If SEAL_GROW is set, the file in question cannot be increased
          in size. This affects ftruncate(), fallocate() and write().
  - WRITE: If SEAL_WRITE is set, no write operations (besides resizing)
           are possible. This affects fallocate(PUNCH_HOLE), mmap() and
           write().
  - SEAL: If SEAL_SEAL is set, no further seals can be added to a file.
          This basically prevents the F_ADD_SEAL operation on a file and
          can be set to prevent others from adding further seals that you
          don't want.

The described use-cases can easily use these seals to provide safe use
without any trust-relationship:

  1) The graphics server can verify that a passed file-descriptor has
     SEAL_SHRINK set. This allows safe scanout, while the client is
     allowed to increase buffer size for window-resizing on-the-fly.
     Concurrent writes are explicitly allowed.
  2) For general-purpose IPC, both processes can verify that SEAL_SHRINK,
     SEAL_GROW and SEAL_WRITE are set. This guarantees that neither
     process can modify the data while the other side parses it.
     Furthermore, it guarantees that even with writable FDs passed to the
     peer, it cannot increase the size to hit memory-limits of the source
     process (in case the file-storage is accounted to the source).

The new API is an extension to fcntl(), adding two new commands:
  F_GET_SEALS: Return a bitset describing the seals on the file. This
               can be called on any FD if the underlying file supports
               sealing.
  F_ADD_SEALS: Change the seals of a given file. This requires WRITE
               access to the file and F_SEAL_SEAL may not already be set.
               Furthermore, the underlying file must support sealing and
               there may not be any existing shared mapping of that file.
               Otherwise, EBADF/EPERM is returned.
               The given seals are _added_ to the existing set of seals
               on the file. You cannot remove seals again.

The fcntl() handler is currently specific to shmem and disabled on all
files. A file needs to explicitly support sealing for this interface to
work. A separate syscall is added in a follow-up, which creates files that
support sealing. There is no intention to support this on other
file-systems. Semantics are unclear for non-volatile files and we lack any
use-case right now. Therefore, the implementation is specific to shmem.

Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ryan Lortie <desrt@desrt.ca>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <zonque@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:31 -07:00
Johannes Weiner
0cd6144aad mm + fs: prepare for non-page entries in page cache radix trees
shmem mappings already contain exceptional entries where swap slot
information is remembered.

To be able to store eviction information for regular page cache, prepare
every site dealing with the radix trees directly to handle entries other
than pages.

The common lookup functions will filter out non-page entries and return
NULL for page cache holes, just as before.  But provide a raw version of
the API which returns non-page entries as well, and switch shmem over to
use it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:21:00 -07:00
Eric Paris
c727709092 security: shmem: implement kernel private shmem inodes
We have a problem where the big_key key storage implementation uses a
shmem backed inode to hold the key contents.  Because of this detail of
implementation LSM checks are being done between processes trying to
read the keys and the tmpfs backed inode.  The LSM checks are already
being handled on the key interface level and should not be enforced at
the inode level (since the inode is an implementation detail, not a
part of the security model)

This patch implements a new function shmem_kernel_file_setup() which
returns the equivalent to shmem_file_setup() only the underlying inode
has S_PRIVATE set.  This means that all LSM checks for the inode in
question are skipped.  It should only be used for kernel internal
operations where the inode is not exposed to userspace without proper
LSM checking.  It is possible that some other users of
shmem_file_setup() should use the new interface, but this has not been
explored.

Reproducing this bug is a little bit difficult.  The steps I used on
Fedora are:

 (1) Turn off selinux enforcing:

	setenforce 0

 (2) Create a huge key

	k=`dd if=/dev/zero bs=8192 count=1 | keyctl padd big_key test-key @s`

 (3) Access the key in another context:

	runcon system_u:system_r:httpd_t:s0-s0:c0.c1023 keyctl print $k >/dev/null

 (4) Examine the audit logs:

	ausearch -m AVC -i --subject httpd_t | audit2allow

If the last command's output includes a line that looks like:

	allow httpd_t user_tmpfs_t:file { open read };

There was an inode check between httpd and the tmpfs filesystem.  With
this patch no such denial will be seen.  (NOTE! you should clear your
audit log if you have tested for this previously)

(Please return you box to enforcing)

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hugh Dickins <hughd@google.com>
cc: linux-mm@kvack.org
2013-12-02 11:24:19 +00:00
Aristeu Rozanski
38f3865744 xattr: extract simple_xattr code from tmpfs
Extract in-memory xattr APIs from tmpfs. Will be used by cgroup.

$ size vmlinux.o
   text    data     bss     dec     hex filename
4658782  880729 5195032 10734543         a3cbcf vmlinux.o
$ size vmlinux.o
   text    data     bss     dec     hex filename
4658957  880729 5195032 10734718         a3cc7e vmlinux.o

v7:
- checkpatch warnings fixed
- Implement the changes requested by Hugh Dickins:
	- make simple_xattrs_init and simple_xattrs_free inline
	- get rid of locking and list reinitialization in simple_xattrs_free,
	  they're not needed
v6:
- no changes
v5:
- no changes
v4:
- move simple_xattrs_free() to fs/xattr.c
v3:
- in kmem_xattrs_free(), reinitialize the list
- use simple_xattr_* prefix
- introduce simple_xattr_add() to prevent direct list usage

Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-08-24 15:55:33 -07:00
Eric W. Biederman
8751e03958 userns: Convert tmpfs to use kuid and kgid where appropriate
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-05-15 14:59:29 -07:00
Hugh Dickins
245132643e SHM_UNLOCK: fix Unevictable pages stranded after swap
Commit cc39c6a9bb ("mm: account skipped entries to avoid looping in
find_get_pages") correctly fixed an infinite loop; but left a problem
that find_get_pages() on shmem would return 0 (appearing to callers to
mean end of tree) when it meets a run of nr_pages swap entries.

The only uses of find_get_pages() on shmem are via pagevec_lookup(),
called from invalidate_mapping_pages(), and from shmctl SHM_UNLOCK's
scan_mapping_unevictable_pages().  The first is already commented, and
not worth worrying about; but the second can leave pages on the
Unevictable list after an unusual sequence of swapping and locking.

Fix that by using shmem_find_get_pages_and_swap() (then ignoring the
swap) instead of pagevec_lookup().

But I don't want to contaminate vmscan.c with shmem internals, nor
shmem.c with LRU locking.  So move scan_mapping_unevictable_pages() into
shmem.c, renaming it shmem_unlock_mapping(); and rename
check_move_unevictable_page() to check_move_unevictable_pages(), looping
down an array of pages, oftentimes under the same lock.

Leave out the "rotate unevictable list" block: that's a leftover from
when this was used for /proc/sys/vm/scan_unevictable_pages, whose flawed
handling involved looking at pages at tail of LRU.

Was there significance to the sequence first ClearPageUnevictable, then
test page_evictable, then SetPageUnevictable here? I think not, we're
under LRU lock, and have no barriers between those.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: <stable@vger.kernel.org> [back to 3.1 but will need respins]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-23 08:38:48 -08:00
Al Viro
09208d150b shmem, ramfs: propagate umode_t, open-coded S_ISREG
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-01-03 22:55:07 -05:00
Hugh Dickins
69f07ec938 tmpfs: use kmemdup for short symlinks
But we've not yet removed the old swp_entry_t i_direct[16] from
shmem_inode_info.  That's because it was still being shared with the
inline symlink.  Remove it now (saving 64 or 128 bytes from shmem inode
size), and use kmemdup() for short symlinks, say, those up to 128 bytes.

I wonder why mpol_free_shared_policy() is done in shmem_destroy_inode()
rather than shmem_evict_inode(), where we usually do such freeing? I
guess it doesn't matter, and I'm not into NUMA mpol testing right now.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 14:25:24 -10:00
Hugh Dickins
aa3b189551 tmpfs: convert mem_cgroup shmem to radix-swap
Remove mem_cgroup_shmem_charge_fallback(): it was only required when we
had to move swappage to filecache with GFP_NOWAIT.

Remove the GFP_NOWAIT special case from mem_cgroup_cache_charge(), by
moving its call out from shmem_add_to_page_cache() to two of thats three
callers.  But leave it doing mem_cgroup_uncharge_cache_page() on error:
although asymmetrical, it's easier for all 3 callers to handle.

These two changes would also be appropriate if anyone were to start
using shmem_read_mapping_page_gfp() with GFP_NOWAIT.

Remove mem_cgroup_get_shmem_target(): mc_handle_file_pte() can test
radix_tree_exceptional_entry() to get what it needs for itself.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 14:25:24 -10:00
Hugh Dickins
41ffe5d5ce tmpfs: miscellaneous trivial cleanups
While it's at its least, make a number of boring nitpicky cleanups to
shmem.c, mostly for consistency of variable naming.  Things like "swap"
instead of "entry", "pgoff_t index" instead of "unsigned long idx".

And since everything else here is prefixed "shmem_", better change
init_tmpfs() to shmem_init().

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 14:25:23 -10:00
Hugh Dickins
285b2c4fdd tmpfs: demolish old swap vector support
The maximum size of a shmem/tmpfs file has been limited by the maximum
size of its triple-indirect swap vector.  With 4kB page size, maximum
filesize was just over 2TB on a 32-bit kernel, but sadly one eighth of
that on a 64-bit kernel.  (With 8kB page size, maximum filesize was just
over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
MAX_LFS_FILESIZE being then more restrictive than swap vector layout.)

It's a shame that tmpfs should be more restrictive than ramfs, and this
limitation has now been noticed.  Add another level to the swap vector?
No, it became obscure and hard to maintain, once I complicated it to
make use of highmem pages nine years ago: better choose another way.

Surely, if 2.4 had had the radix tree pagecache introduced in 2.5, then
tmpfs would never have invented its own peculiar radix tree: we would
have fitted swap entries into the common radix tree instead, in much the
same way as we fit swap entries into page tables.

And why should each file have a separate radix tree for its pages and
for its swap entries? The swap entries are required precisely where and
when the pages are not.  We want to put them together in a single radix
tree: which can then avoid much of the locking which was needed to
prevent them from being exchanged underneath us.

This also avoids the waste of memory devoted to swap vectors, first in
the shmem_inode itself, then at least two more pages once a file grew
beyond 16 data pages (pages accounted by df and du, but not by memcg).
Allocated upfront, to avoid allocation when under swapping pressure, but
pure waste when CONFIG_SWAP is not set - I have never spattered around
the ifdefs to prevent that, preferring this move to sharing the common
radix tree instead.

There are three downsides to sharing the radix tree.  One, that it binds
tmpfs more tightly to the rest of mm, either requiring knowledge of swap
entries in radix tree there, or duplication of its code here in shmem.c.
I believe that the simplications and memory savings (and probable higher
performance, not yet measured) justify that.

Two, that on HIGHMEM systems with SWAP enabled, it's the lowmem radix
nodes that cannot be freed under memory pressure - whereas before it was
the less precious highmem swap vector pages that could not be freed.
I'm hoping that 64-bit has now been accessible for long enough, that the
highmem argument has grown much less persuasive.

Three, that swapoff is slower than it used to be on tmpfs files, since
it's using a simple generic mechanism not tailored to it: I find this
noticeable, and shall want to improve, but maybe nobody else will
notice.

So...  now remove most of the old swap vector code from shmem.c.  But,
for the moment, keep the simple i_direct vector of 16 pages, with simple
accessors shmem_put_swap() and shmem_get_swap(), as a toy implementation
to help mark where swap needs to be handled in subsequent patches.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-08-03 14:25:23 -10:00
Hugh Dickins
d9d90e5eb7 tmpfs: add shmem_read_mapping_page_gfp
Although it is used (by i915) on nothing but tmpfs, read_cache_page_gfp()
is unsuited to tmpfs, because it inserts a page into pagecache before
calling the filesystem's ->readpage: tmpfs may have pages in swapcache
which only it knows how to locate and switch to filecache.

At present tmpfs provides a ->readpage method, and copes with this by
copying pages; but soon we can simplify it by removing its ->readpage.
Provide shmem_read_mapping_page_gfp() now, ready for that transition,

Export shmem_read_mapping_page_gfp() and add it to list in shmem_fs.h,
with shmem_read_mapping_page() inline for the common mapping_gfp case.

(shmem_read_mapping_page_gfp or shmem_read_cache_page_gfp? Generally the
read_mapping_page functions use the mapping's ->readpage, and the
read_cache_page functions use the supplied filler, so I think
read_cache_page_gfp was slightly misnamed.)

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27 18:00:12 -07:00
Hugh Dickins
94c1e62df4 tmpfs: take control of its truncate_range
2.6.35's new truncate convention gave tmpfs the opportunity to control
its file truncation, no longer enforced from outside by vmtruncate().
We shall want to build upon that, to handle pagecache and swap together.

Slightly redefine the ->truncate_range interface: let it now be called
between the unmap_mapping_range()s, with the filesystem responsible for
doing the truncate_inode_pages_range() from it - just as the filesystem
is nowadays responsible for doing that from its ->setattr.

Let's rename shmem_notify_change() to shmem_setattr().  Instead of
calling the generic truncate_setsize(), bring that code in so we can
call shmem_truncate_range() - which will later be updated to perform its
own variant of truncate_inode_pages_range().

Remove the punch_hole unmap_mapping_range() from shmem_truncate_range():
now that the COW's unmap_mapping_range() comes after ->truncate_range,
there is no need to call it a third time.

Export shmem_truncate_range() and add it to the list in shmem_fs.h, so
that i915_gem_object_truncate() can call it explicitly in future; get
this patch in first, then update drm/i915 once this is available (until
then, i915 will just be doing the truncate_inode_pages() twice).

Though introduced five years ago, no other filesystem is implementing
->truncate_range, and its only other user is madvise(,,MADV_REMOVE): we
expect to convert it to fallocate(,FALLOC_FL_PUNCH_HOLE,,) shortly,
whereupon ->truncate_range can be removed from inode_operations -
shmem_truncate_range() will help i915 across that transition too.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27 18:00:12 -07:00
Hugh Dickins
072441e21d mm: move shmem prototypes to shmem_fs.h
Before adding any more global entry points into shmem.c, gather such
prototypes into shmem_fs.h.  Remove mm's own declarations from swap.h,
but for now leave the ones in mm.h: because shmem_file_setup() and
shmem_zero_setup() are called from various places, and we should not
force other subsystems to update immediately.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-27 18:00:12 -07:00
Eric Paris
b09e0fa4b4 tmpfs: implement generic xattr support
Implement generic xattrs for tmpfs filesystems.  The Feodra project, while
trying to replace suid apps with file capabilities, realized that tmpfs,
which is used on the build systems, does not support file capabilities and
thus cannot be used to build packages which use file capabilities.  Xattrs
are also needed for overlayfs.

The xattr interface is a bit odd.  If a filesystem does not implement any
{get,set,list}xattr functions the VFS will call into some random LSM hooks
and the running LSM can then implement some method for handling xattrs.
SELinux for example provides a method to support security.selinux but no
other security.* xattrs.

As it stands today when one enables CONFIG_TMPFS_POSIX_ACL tmpfs will have
xattr handler routines specifically to handle acls.  Because of this tmpfs
would loose the VFS/LSM helpers to support the running LSM.  To make up
for that tmpfs had stub functions that did nothing but call into the LSM
hooks which implement the helpers.

This new patch does not use the LSM fallback functions and instead just
implements a native get/set/list xattr feature for the full security.* and
trusted.* namespace like a normal filesystem.  This means that tmpfs can
now support both security.selinux and security.capability, which was not
previously possible.

The basic implementation is that I attach a:

struct shmem_xattr {
	struct list_head list; /* anchored by shmem_inode_info->xattr_list */
	char *name;
	size_t size;
	char value[0];
};

Into the struct shmem_inode_info for each xattr that is set.  This
implementation could easily support the user.* namespace as well, except
some care needs to be taken to prevent large amounts of unswappable memory
being allocated for unprivileged users.

[mszeredi@suse.cz: new config option, suport trusted.*, support symlinks]
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Serge Hallyn <serge.hallyn@ubuntu.com>
Tested-by: Serge Hallyn <serge.hallyn@ubuntu.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Hugh Dickins <hughd@google.com>
Tested-by: Jordi Pujol <jordipujolp@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:31 -07:00
Tim Chen
7e496299d4 tmpfs: make tmpfs scalable with percpu_counter for used blocks
The current implementation of tmpfs is not scalable.  We found that
stat_lock is contended by multiple threads when we need to get a new page,
leading to useless spinning inside this spin lock.

This patch makes use of the percpu_counter library to maintain local count
of used blocks to speed up getting and returning of pages.  So the
acquisition of stat_lock is unnecessary for getting and returning blocks,
improving the performance of tmpfs on system with large number of cpus.
On a 4 socket 32 core NHM-EX system, we saw improvement of 270%.

The implementation below has a slight chance of race between threads
causing a slight overshoot of the maximum configured blocks.  However, any
overshoot is small, and is bounded by the number of cpus.  This happens
when the number of used blocks is slightly below the maximum configured
blocks when a thread checks the used block count, and another thread
allocates the last block before the current thread does.  This should not
be a problem for tmpfs, as the overshoot is most likely to be a few blocks
and bounded.  If a strict limit is really desired, then configured the max
blocks to be the limit less the number of cpus in system.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:44:58 -07:00
Christoph Hellwig
1c7c474c31 make generic_acl slightly more generic
Now that we cache the ACL pointers in the generic inode all the generic_acl
cruft can go away and generic_acl.c can directly implement xattr handlers
dealing with the full Posix ACL semantics for in-memory filesystems.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-12-16 12:16:49 -05:00
Kay Sievers
2b2af54a5b Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
Devtmpfs lets the kernel create a tmpfs instance called devtmpfs
very early at kernel initialization, before any driver-core device
is registered. Every device with a major/minor will provide a
device node in devtmpfs.

Devtmpfs can be changed and altered by userspace at any time,
and in any way needed - just like today's udev-mounted tmpfs.
Unmodified udev versions will run just fine on top of it, and will
recognize an already existing kernel-created device node and use it.
The default node permissions are root:root 0600. Proper permissions
and user/group ownership, meaningful symlinks, all other policy still
needs to be applied by userspace.

If a node is created by devtmps, devtmpfs will remove the device node
when the device goes away. If the device node was created by
userspace, or the devtmpfs created node was replaced by userspace, it
will no longer be removed by devtmpfs.

If it is requested to auto-mount it, it makes init=/bin/sh work
without any further userspace support. /dev will be fully populated
and dynamic, and always reflect the current device state of the kernel.
With the commonly used dynamic device numbers, it solves the problem
where static devices nodes may point to the wrong devices.

It is intended to make the initial bootup logic simpler and more robust,
by de-coupling the creation of the inital environment, to reliably run
userspace processes, from a complex userspace bootstrap logic to provide
a working /dev.

Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Tested-By: Harald Hoyer <harald@redhat.com>
Tested-By: Scott James Remnant <scott@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-15 09:50:49 -07:00
Linus Torvalds
6d848a488a shmfs: use 'check_acl' instead of 'permission'
shmfs wants purely standard POSIX ACL semantics, so we can use the new
generic VFS layer POSIX ACL checking rather than cooking our own
'permission()' function.

Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-08 11:08:46 -07:00
Al Viro
06b16e9f68 switch shmem to inode->i_acl
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-06-24 08:17:06 -04:00
Al Viro
e6305c43ed [PATCH] sanitize ->permission() prototype
* kill nameidata * argument; map the 3 bits in ->flags anybody cares
  about to new MAY_... ones and pass with the mask.
* kill redundant gfs2_iop_permission()
* sanitize ecryptfs_permission()
* fix remaining places where ->permission() instances might barf on new
  MAY_... found in mask.

The obvious next target in that direction is permission(9)

folded fix for nfs_permission() breakage from Miklos Szeredi <mszeredi@suse.cz>

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-07-26 20:53:14 -04:00
Lee Schermerhorn
71fe804b6d mempolicy: use struct mempolicy pointer in shmem_sb_info
This patch replaces the mempolicy mode, mode_flags, and nodemask in the
shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL.
This removes dependency on the details of mempolicy from shmem.c and hugetlbfs
inode.c and simplifies the interfaces.

mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a
pointer arg, a struct mempolicy pointer on success.  For MPOL_DEFAULT, the
returned pointer is NULL.  Further, mpol_parse_str() now takes a 'no_context'
argument that causes the input nodemask to be stored in the w.user_nodemask of
the created mempolicy for use when the mempolicy is installed in a tmpfs inode
shared policy tree.  At that time, any cpuset contextualization is applied to
the original input nodemask.  This preserves the previous behavior where the
input nodemask was stored in the superblock.  We can think of the returned
mempolicy as "context free".

Because mpol_parse_str() is now calling mpol_new(), we can remove from
mpol_to_str() the semantic checks that mpol_new() already performs.

Add 'no_context' parameter to mpol_to_str() to specify that it should format
the nodemask in w.user_nodemask for 'bind' and 'interleave' policies.

Change mpol_shared_policy_init() to take a pointer to a "context free" struct
mempolicy and to create a new, "contextualized" mempolicy using the mode,
mode_flags and user_nodemask from the input mempolicy.

  Note: we know that the mempolicy passed to mpol_to_str() or
  mpol_shared_policy_init() from a tmpfs superblock is "context free".  This
  is currently the only instance thereof.  However, if we found more uses for
  this concept, and introduced any ambiguity as to whether a mempolicy was
  context free or not, we could add another internal mode flag to identify
  context free mempolicies.  Then, we could remove the 'no_context' argument
  from mpol_to_str().

Added shmem_get_sbmpol() to return a reference counted superblock mempolicy,
if one exists, to pass to mpol_shared_policy_init().  We must add the
reference under the sb stat_lock to prevent races with replacement of the mpol
by remount.  This reference is removed in mpol_shared_policy_init().

[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: another build fix]
[akpm@linux-foundation.org: yet another build fix]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:25 -07:00
David Rientjes
028fec414d mempolicy: support optional mode flags
With the evolution of mempolicies, it is necessary to support mempolicy mode
flags that specify how the policy shall behave in certain circumstances.  The
most immediate need for mode flag support is to suppress remapping the
nodemask of a policy at the time of rebind.

Both the mempolicy mode and flags are passed by the user in the 'int policy'
formal of either the set_mempolicy() or mbind() syscall.  A new constant,
MPOL_MODE_FLAGS, represents the union of legal optional flags that may be
passed as part of this int.  Mempolicies that include illegal flags as part of
their policy are rejected as invalid.

An additional member to struct mempolicy is added to support the mode flags:

	struct mempolicy {
		...
		unsigned short policy;
		unsigned short flags;
	}

The splitting of the 'int' actual passed by the user is done in
sys_set_mempolicy() and sys_mbind() for their respective syscalls.  This is
done by intersecting the actual with MPOL_MODE_FLAGS, rejecting the syscall of
there are additional flags, and storing it in the new 'flags' member of struct
mempolicy.  The intersection of the actual with ~MPOL_MODE_FLAGS is stored in
the 'policy' member of the struct and all current users of pol->policy remain
unchanged.

The union of the policy mode and optional mode flags is passed back to the
user in get_mempolicy().

This combination of mode and flags within the same actual does not break
userspace code that relies on get_mempolicy(&policy, ...) and either

	switch (policy) {
	case MPOL_BIND:
		...
	case MPOL_INTERLEAVE:
		...
	};

statements or

	if (policy == MPOL_INTERLEAVE) {
		...
	}

statements.  Such applications would need to use optional mode flags when
calling set_mempolicy() or mbind() for these previously implemented statements
to stop working.  If an application does start using optional mode flags, it
will need to mask the optional flags off the policy in switch and conditional
statements that only test mode.

An additional member is also added to struct shmem_sb_info to store the
optional mode flags.

[hugh@veritas.com: shmem mpol: fix build warning]
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:19 -07:00
David Rientjes
a3b51e0142 mempolicy: convert MPOL constants to enum
The mempolicy mode constants, MPOL_DEFAULT, MPOL_PREFERRED, MPOL_BIND, and
MPOL_INTERLEAVE, are better declared as part of an enum since they are
sequentially numbered and cannot be combined.

The policy member of struct mempolicy is also converted from type short to
type unsigned short.  A negative policy does not have any legitimate meaning,
so it is possible to change its type in preparation for adding optional mode
flags later.

The equivalent member of struct shmem_sb_info is also changed from int to
unsigned short.

For compatibility, the policy formal to get_mempolicy() remains as a pointer
to an int:

	int get_mempolicy(int *policy, unsigned long *nmask,
			  unsigned long maxnode, unsigned long addr,
			  unsigned long flags);

although the only possible values is the range of type unsigned short.

Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 08:58:19 -07:00
akpm@linux-foundation.org
680d794bab mount options: fix tmpfs
Add .show_options super operation to tmpfs.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:41 -08:00
Andreas Gruenbacher
39f0247d38 [PATCH] Access Control Lists for tmpfs
Add access control lists for tmpfs.

Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:18:24 -07:00
Robin Holt
7339ff8302 [PATCH] Add tmpfs options for memory placement policies
Anything that writes into a tmpfs filesystem is liable to disproportionately
decrease the available memory on a particular node.  Since there's no telling
what sort of application (e.g.  dd/cp/cat) might be dropping large files
there, this lets the admin choose the appropriate default behavior for their
site's situation.

Introduce a tmpfs mount option which allows specifying a memory policy and
a second option to specify the nodelist for that policy.  With the default
policy, tmpfs will behave as it does today.  This patch adds support for
preferred, bind, and interleave policies.

The default policy will cause pages to be added to tmpfs files on the node
which is doing the writing.  Some jobs expect a single process to create
and manage the tmpfs files.  This results in a node which has a
significantly reduced number of free pages.

With this patch, the administrator can specify the policy and nodes for
that policy where they would prefer allocations.

This patch was originally written by Brent Casavant and Hugh Dickins.  I
added support for the bind and preferred policies and the mpol_nodelist
mount option.

Signed-off-by: Brent Casavant <bcasavan@sgi.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-14 18:27:07 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00