Changes to the existing page table macros will allow the SME support to
be enabled in a simple fashion with minimal changes to files that use these
macros. Since the memory encryption mask will now be part of the regular
pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and
_KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization
without the encryption mask before SME becomes active. Two new pgprot()
macros are defined to allow setting or clearing the page encryption mask.
The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does
not support encryption for MMIO areas so this define removes the encryption
mask from the page attribute.
Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow
creating a physical address with the encryption mask. These are used when
working with the cr3 register so that the PGD can be encrypted. The current
__va() macro is updated so that the virtual address is generated based off
of the physical address without the encryption mask thus allowing the same
virtual address to be generated regardless of whether encryption is enabled
for that physical location or not.
Also, an early initialization function is added for SME. If SME is active,
this function:
- Updates the early_pmd_flags so that early page faults create mappings
with the encryption mask.
- Updates the __supported_pte_mask to include the encryption mask.
- Updates the protection_map entries to include the encryption mask so
that user-space allocations will automatically have the encryption mask
applied.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add support to the early boot code to use Secure Memory Encryption (SME).
Since the kernel has been loaded into memory in a decrypted state, encrypt
the kernel in place and update the early pagetables with the memory
encryption mask so that new pagetable entries will use memory encryption.
The routines to set the encryption mask and perform the encryption are
stub routines for now with functionality to be added in a later patch.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/e52ad781f085224bf835b3caff9aa3aee6febccb.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds support for 5-level paging during early boot.
It generalizes boot for 4- and 5-level paging on 64-bit systems with
compile-time switch between them.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-10-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_X86_5LEVEL=y, level 4 is no longer top level of page tables.
Let's give these variable more generic names: init_top_pgt and
early_top_pgt.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-9-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The patch write most of startup_64 logic in C.
This is preparation for 5-level paging enabling.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-8-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It doesn't really start a CPU but does a far jump to C code. So call it
that. Eliminate the unconditional JMP to it from secondary_startup_64()
but make the jump to C code piece part of secondary_startup_64()
instead.
Also, it doesn't need to be a global symbol either so make it a local
label. One less needlessly global symbol in the symbol table.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170304095611.11355-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
start_cpu() pushes a text address on the stack so that stack traces from
idle tasks will show start_cpu() at the end. But it currently shows the
wrong function offset. It's more correct to show the address
immediately after the 'lretq' instruction.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2cadd9f16c77da7ee7957bfc5e1c67928c23ca48.1481685203.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
start_cpu() pushes a text address on the stack so that stack traces from
idle tasks will show start_cpu() at the end. But it uses a call
instruction to do that, which is rather obtuse. Use a straightforward
push instead.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/4d8a1952759721d42d1e62ba9e4a7e3ac5df8574.1481685203.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 boot updates from Ingo Molnar:
"Misc cleanups/simplifications by Borislav Petkov, Paul Bolle and Wei
Yang"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/64: Optimize fixmap page fixup
x86/boot: Simplify the GDTR calculation assembly code a bit
x86/boot/build: Remove always empty $(USERINCLUDE)
Single-stepping through head_64.S made me look at the fixmap page PTEs
fixup loop:
So we're going through the whole level2_fixmap_pgt 4K page, looking at
whether PAGE_PRESENT is set in those PTEs and add the delta between
where we're compiled to run and where we actually end up running.
However, if that delta is 0 (most cases) we go through all those 512
PTEs for no reason at all. Oh well, we add 0 but that's no reason to me.
Skipping that useless fixup gives us a boot speedup of 0.004 seconds in
my guest. Not a lot but considering how cheap it is, I'll take it. Here
is the printk time difference:
before:
...
[ 0.000000] tsc: Marking TSC unstable due to TSCs unsynchronized
[ 0.013590] Calibrating delay loop (skipped), value calculated using timer frequency..
8027.17 BogoMIPS (lpj=16054348)
[ 0.017094] pid_max: default: 32768 minimum: 301
...
after:
...
[ 0.000000] tsc: Marking TSC unstable due to TSCs unsynchronized
[ 0.009587] Calibrating delay loop (skipped), value calculated using timer frequency..
8026.86 BogoMIPS (lpj=16053724)
[ 0.013090] pid_max: default: 32768 minimum: 301
...
For the other two changes converting naked numbers to defines:
# arch/x86/kernel/head_64.o:
text data bss dec hex filename
1124 290864 4096 296084 48494 head_64.o.before
1124 290864 4096 296084 48494 head_64.o.after
md5:
87086e202588939296f66e892414ffe2 head_64.o.before.asm
87086e202588939296f66e892414ffe2 head_64.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161125111448.23623-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... instead of naked numbers like the rest of the asm does in this file.
No code changed:
# arch/x86/kernel/head_64.o:
text data bss dec hex filename
1124 290864 4096 296084 48494 head_64.o.before
1124 290864 4096 296084 48494 head_64.o.after
md5:
87086e202588939296f66e892414ffe2 head_64.o.before.asm
87086e202588939296f66e892414ffe2 head_64.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161124210550.15025-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thanks to all the recent x86 entry code refactoring, most tasks' kernel
stacks start at the same offset right below their saved pt_regs,
regardless of which syscall was used to enter the kernel. That creates
a nice convention which makes it straightforward to identify the end of
the stack, which can be useful for the unwinder to verify the stack is
sane.
However, the boot CPU's idle "swapper" task doesn't follow that
convention. Fix that by starting its stack at a sizeof(pt_regs) offset
from the end of the stack page.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/81aee3beb6ed88e44f1bea6986bb7b65c368f77a.1474480779.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The frame at the end of each idle task stack has a zeroed return
address. This is inconsistent with real task stacks, which have a real
return address at that spot. This inconsistency can be confusing for
stack unwinders. It also hides useful information about what asm code
was involved in calling into C.
Make it a real address by using the side effect of a call instruction to
push the instruction pointer on the stack.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f59593ae7b15d5126f872b0a23143173d28aa32d.1474480779.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two different pieces of code for starting a CPU: start_cpu0()
and the end of secondary_startup_64(). They're identical except for the
stack setup. Combine the common parts into a shared start_cpu()
function.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1d692ffa62fcb3cc835a5b254e953f2d9bab3549.1474480779.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull kbuild updates from Michal Marek:
- EXPORT_SYMBOL for asm source by Al Viro.
This does bring a regression, because genksyms no longer generates
checksums for these symbols (CONFIG_MODVERSIONS). Nick Piggin is
working on a patch to fix this.
Plus, we are talking about functions like strcpy(), which rarely
change prototypes.
- Fixes for PPC fallout of the above by Stephen Rothwell and Nick
Piggin
- fixdep speedup by Alexey Dobriyan.
- preparatory work by Nick Piggin to allow architectures to build with
-ffunction-sections, -fdata-sections and --gc-sections
- CONFIG_THIN_ARCHIVES support by Stephen Rothwell
- fix for filenames with colons in the initramfs source by me.
* 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild: (22 commits)
initramfs: Escape colons in depfile
ppc: there is no clear_pages to export
powerpc/64: whitelist unresolved modversions CRCs
kbuild: -ffunction-sections fix for archs with conflicting sections
kbuild: add arch specific post-link Makefile
kbuild: allow archs to select link dead code/data elimination
kbuild: allow architectures to use thin archives instead of ld -r
kbuild: Regenerate genksyms lexer
kbuild: genksyms fix for typeof handling
fixdep: faster CONFIG_ search
ia64: move exports to definitions
sparc32: debride memcpy.S a bit
[sparc] unify 32bit and 64bit string.h
sparc: move exports to definitions
ppc: move exports to definitions
arm: move exports to definitions
s390: move exports to definitions
m68k: move exports to definitions
alpha: move exports to actual definitions
x86: move exports to actual definitions
...
This zeroed word has no apparent purpose, so remove it.
Brian Gerst says:
"FYI the word used to be the SS segment selector for the LSS
instruction, which isn't needed in 64-bit mode."
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/b056855c295bbb3825b97c1e9f7958539a4d6cf2.1471535549.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'stack_start' variable is similar in usage to 'initial_code' and
'initial_gs': they're all stored in head_64.S and they're all updated by
SMP and ACPI suspend before starting a CPU.
Rename it to 'initial_stack' to be consistent with the others.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/87063d773a3212051b77e17b0ee427f6582a5050.1471535549.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the physical mapping in the list of randomized memory regions.
The physical memory mapping holds most allocations from boot and heap
allocators. Knowing the base address and physical memory size, an attacker
can deduce the PDE virtual address for the vDSO memory page. This attack
was demonstrated at CanSecWest 2016, in the following presentation:
"Getting Physical: Extreme Abuse of Intel Based Paged Systems":
https://github.com/n3k/CansecWest2016_Getting_Physical_Extreme_Abuse_of_Intel_Based_Paging_Systems/blob/master/Presentation/CanSec2016_Presentation.pdf
(See second part of the presentation).
The exploits used against Linux worked successfully against 4.6+ but
fail with KASLR memory enabled:
https://github.com/n3k/CansecWest2016_Getting_Physical_Extreme_Abuse_of_Intel_Based_Paging_Systems/tree/master/Demos/Linux/exploits
Similar research was done at Google leading to this patch proposal.
Variants exists to overwrite /proc or /sys objects ACLs leading to
elevation of privileges. These variants were tested against 4.6+.
The page offset used by the compressed kernel retains the static value
since it is not yet randomized during this boot stage.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-7-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
04633df0c4 ("x86/cpu: Call verify_cpu() after having entered long mode too")
added the call to verify_cpu() for sanitizing CPU configuration.
The latter uses the stack minimally and it can happen that we land in
startup_64() directly from a 64-bit bootloader. Then we want to use our
own, known good stack.
Do that.
APs don't need this as the trampoline sets up a stack for them.
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459434062-31055-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This removes a bunch of assembly and adds some C code instead. It
changes the actual printouts on both 32-bit and 64-bit kernels, but
they still seem okay.
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: KVM list <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/4085070316fc3ab29538d3fcfe282648d1d4ee2e.1459605520.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
C is nicer than asm.
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: KVM list <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/dd068269f8d59fe44e9e43a50d0efd67da65c2b5.1459605520.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
early_fixup_exception() is limited by the fact that it doesn't have a
real struct pt_regs. Change both the 32-bit and 64-bit asm and the
C code to pass and accept a real pt_regs.
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: KVM list <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/e3fb680fcfd5e23e38237e8328b64a25cc121d37.1459605520.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 boot updates from Ingo Molnar:
"Early command line options parsing enhancements from Dave Hansen, plus
minor cleanups and enhancements"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Remove unused 'is_big_kernel' variable
x86/boot: Use proper array element type in memset() size calculation
x86/boot: Pass in size to early cmdline parsing
x86/boot: Simplify early command line parsing
x86/boot: Fix early command-line parsing when partial word matches
x86/boot: Fix early command-line parsing when matching at end
x86/boot: Simplify kernel load address alignment check
x86/boot: Micro-optimize reset_early_page_tables()
We are using %rax as temporary register to check the kernel
address alignment. We don't really have to since the TEST
instruction does not clobber the destination operand.
Suggested-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453531828-19291-1-git-send-email-kuleshovmail@gmail.com
Link: http://lkml.kernel.org/r/1453842730-28463-11-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
L3_PAGE_OFFSET was introduced in commit a6523748bd (paravirt/x86, 64-bit: move
__PAGE_OFFSET to leave a space for hypervisor), but has no users.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Link: http://lkml.kernel.org/r/1453810881-30622-1-git-send-email-kuleshovmail@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When we get loaded by a 64-bit bootloader, kernel entry point is
startup_64 in head_64.S. We don't trust any and all bootloaders because
some will fiddle with CPU configuration so we go ahead and massage each
CPU into sanity again.
For example, some dell BIOSes have this XD disable feature which set
IA32_MISC_ENABLE[34] and disable NX. This might be some dumb workaround
for other OSes but Linux sure doesn't need it.
A similar thing is present in the Surface 3 firmware - see
https://bugzilla.kernel.org/show_bug.cgi?id=106051 - which sets this bit
only on the BSP:
# rdmsr -a 0x1a0
400850089
850089
850089
850089
I know, right?!
There's not even an off switch in there.
So fix all those cases by sanitizing the 64-bit entry point too. For
that, make verify_cpu() callable in 64-bit mode also.
Requested-and-debugged-by: "H. Peter Anvin" <hpa@zytor.com>
Reported-and-tested-by: Bastien Nocera <bugzilla@hadess.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1446739076-21303-1-git-send-email-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently KASAN shadow region page tables created without
respect of physical offset (phys_base). This causes kernel halt
when phys_base is not zero.
So let's initialize KASAN shadow region page tables in
kasan_early_init() using __pa_nodebug() which considers
phys_base.
This patch also separates x86_64_start_kernel() from KASAN low
level details by moving kasan_map_early_shadow(init_level4_pgt)
into kasan_early_init().
Remove the comment before clear_bss() which stopped bringing
much profit to the code readability. Otherwise describing all
the new order dependencies would be too verbose.
Signed-off-by: Alexander Popov <alpopov@ptsecurity.com>
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: <stable@vger.kernel.org> # 4.0+
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435828178-10975-3-git-send-email-a.ryabinin@samsung.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The early_idt_handlers asm code generates an array of entry
points spaced nine bytes apart. It's not really clear from that
code or from the places that reference it what's going on, and
the code only works in the first place because GAS never
generates two-byte JMP instructions when jumping to global
labels.
Clean up the code to generate the correct array stride (member size)
explicitly. This should be considerably more robust against
screw-ups, as GAS will warn if a .fill directive has a negative
count. Using '. =' to advance would have been even more robust
(it would generate an actual error if it tried to move
backwards), but it would pad with nulls, confusing anyone who
tries to disassemble the code. The new scheme should be much
clearer to future readers.
While we're at it, improve the comments and rename the array and
common code.
Binutils may start relaxing jumps to non-weak labels. If so,
this change will fix our build, and we may need to backport this
change.
Before, on x86_64:
0000000000000000 <early_idt_handlers>:
0: 6a 00 pushq $0x0
2: 6a 00 pushq $0x0
4: e9 00 00 00 00 jmpq 9 <early_idt_handlers+0x9>
5: R_X86_64_PC32 early_idt_handler-0x4
...
48: 66 90 xchg %ax,%ax
4a: 6a 08 pushq $0x8
4c: e9 00 00 00 00 jmpq 51 <early_idt_handlers+0x51>
4d: R_X86_64_PC32 early_idt_handler-0x4
...
117: 6a 00 pushq $0x0
119: 6a 1f pushq $0x1f
11b: e9 00 00 00 00 jmpq 120 <early_idt_handler>
11c: R_X86_64_PC32 early_idt_handler-0x4
After:
0000000000000000 <early_idt_handler_array>:
0: 6a 00 pushq $0x0
2: 6a 00 pushq $0x0
4: e9 14 01 00 00 jmpq 11d <early_idt_handler_common>
...
48: 6a 08 pushq $0x8
4a: e9 d1 00 00 00 jmpq 120 <early_idt_handler_common>
4f: cc int3
50: cc int3
...
117: 6a 00 pushq $0x0
119: 6a 1f pushq $0x1f
11b: eb 03 jmp 120 <early_idt_handler_common>
11d: cc int3
11e: cc int3
11f: cc int3
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Binutils <binutils@sourceware.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ac027962af343b0c599cbfcf50b945ad2ef3d7a8.1432336324.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By the nature of the TEST operation, it is often possible to test
a narrower part of the operand:
"testl $3, mem" -> "testb $3, mem",
"testq $3, %rcx" -> "testb $3, %cl"
This results in shorter instructions, because the TEST instruction
has no sign-entending byte-immediate forms unlike other ALU ops.
Note that this change does not create any LCP (Length-Changing Prefix)
stalls, which happen when adding a 0x66 prefix, which happens when
16-bit immediates are used, which changes such TEST instructions:
[test_opcode] [modrm] [imm32]
to:
[0x66] [test_opcode] [modrm] [imm16]
where [imm16] has a *different length* now: 2 bytes instead of 4.
This confuses the decoder and slows down execution.
REX prefixes were carefully designed to almost never hit this case:
adding REX prefix does not change instruction length except MOVABS
and MOV [addr],RAX instruction.
This patch does not add instructions which would use a 0x66 prefix,
code changes in assembly are:
-48 f7 07 01 00 00 00 testq $0x1,(%rdi)
+f6 07 01 testb $0x1,(%rdi)
-48 f7 c1 01 00 00 00 test $0x1,%rcx
+f6 c1 01 test $0x1,%cl
-48 f7 c1 02 00 00 00 test $0x2,%rcx
+f6 c1 02 test $0x2,%cl
-41 f7 c2 01 00 00 00 test $0x1,%r10d
+41 f6 c2 01 test $0x1,%r10b
-48 f7 c1 04 00 00 00 test $0x4,%rcx
+f6 c1 04 test $0x4,%cl
-48 f7 c1 08 00 00 00 test $0x8,%rcx
+f6 c1 08 test $0x8,%cl
Linus further notes:
"There are no stalls from using 8-bit instruction forms.
Now, changing from 64-bit or 32-bit 'test' instructions to 8-bit ones
*could* cause problems if it ends up having forwarding issues, so that
instead of just forwarding the result, you end up having to wait for
it to be stable in the L1 cache (or possibly the register file). The
forwarding from the store buffer is simplest and most reliable if the
read is done at the exact same address and the exact same size as the
write that gets forwarded.
But that's true only if:
(a) the write was very recent and is still in the write queue. I'm
not sure that's the case here anyway.
(b) on at least most Intel microarchitectures, you have to test a
different byte than the lowest one (so forwarding a 64-bit write
to a 8-bit read ends up working fine, as long as the 8-bit read
is of the low 8 bits of the written data).
A very similar issue *might* show up for registers too, not just
memory writes, if you use 'testb' with a high-byte register (where
instead of forwarding the value from the original producer it needs to
go through the register file and then shifted). But it's mainly a
problem for store buffers.
But afaik, the way Denys changed the test instructions, neither of the
above issues should be true.
The real problem for store buffer forwarding tends to be "write 8
bits, read 32 bits". That can be really surprisingly expensive,
because the read ends up having to wait until the write has hit the
cacheline, and we might talk tens of cycles of latency here. But
"write 32 bits, read the low 8 bits" *should* be fast on pretty much
all x86 chips, afaik."
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Drewry <wad@chromium.org>
Link: http://lkml.kernel.org/r/1425675332-31576-1-git-send-email-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds arch specific code for kernel address sanitizer.
16TB of virtual addressed used for shadow memory. It's located in range
[ffffec0000000000 - fffffc0000000000] between vmemmap and %esp fixup
stacks.
At early stage we map whole shadow region with zero page. Latter, after
pages mapped to direct mapping address range we unmap zero pages from
corresponding shadow (see kasan_map_shadow()) and allocate and map a real
shadow memory reusing vmemmap_populate() function.
Also replace __pa with __pa_nodebug before shadow initialized. __pa with
CONFIG_DEBUG_VIRTUAL=y make external function call (__phys_addr)
__phys_addr is instrumented, so __asan_load could be called before shadow
area initialized.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jim Davis <jim.epost@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's an enum, not a #define, you can't use it in asm files.
Introduced in commit 5fa10196bd ("x86: Ignore NMIs that come in during
early boot"), and sadly I didn't compile-test things like I should have
before pushing out.
My weak excuse is that the x86 tree generally doesn't introduce stupid
things like this (and the ARM pull afterwards doesn't cause me to do a
compile-test either, since I don't cross-compile).
Cc: Don Zickus <dzickus@redhat.com>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don Zickus reports:
A customer generated an external NMI using their iLO to test kdump
worked. Unfortunately, the machine hung. Disabling the nmi_watchdog
made things work.
I speculated the external NMI fired, caused the machine to panic (as
expected) and the perf NMI from the watchdog came in and was latched.
My guess was this somehow caused the hang.
----
It appears that the latched NMI stays latched until the early page
table generation on 64 bits, which causes exceptions to happen which
end in IRET, which re-enable NMI. Therefore, ignore NMIs that come in
during early execution, until we have proper exception handling.
Reported-and-tested-by: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/r/1394221143-29713-1-git-send-email-dzickus@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> # v3.5+, older with some backport effort
Since the IDT is referenced from a fixmap, make sure it is page aligned.
Merge with 32-bit one, since it was already aligned to deal with F00F
bug. Since bss is cleared before IDT setup, it can live there. This also
moves the other *_idt_table variables into common locations.
This avoids the risk of the IDT ever being moved in the bss and having
the mapping be offset, resulting in calling incorrect handlers. In the
current upstream kernel this is not a manifested bug, but heavily patched
kernels (such as those using the PaX patch series) did encounter this bug.
The tables other than idt_table technically do not need to be page
aligned, at least not at the current time, but using a common
declaration avoids mistakes. On 64 bits the table is exactly one page
long, anyway.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20130716183441.GA14232@www.outflux.net
Reported-by: PaX Team <pageexec@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
[Purpose of this patch]
As Vaibhav explained in the thread below, tracepoints for irq vectors
are useful.
http://www.spinics.net/lists/mm-commits/msg85707.html
<snip>
The current interrupt traces from irq_handler_entry and irq_handler_exit
provide when an interrupt is handled. They provide good data about when
the system has switched to kernel space and how it affects the currently
running processes.
There are some IRQ vectors which trigger the system into kernel space,
which are not handled in generic IRQ handlers. Tracing such events gives
us the information about IRQ interaction with other system events.
The trace also tells where the system is spending its time. We want to
know which cores are handling interrupts and how they are affecting other
processes in the system. Also, the trace provides information about when
the cores are idle and which interrupts are changing that state.
<snip>
On the other hand, my usecase is tracing just local timer event and
getting a value of instruction pointer.
I suggested to add an argument local timer event to get instruction pointer before.
But there is another way to get it with external module like systemtap.
So, I don't need to add any argument to irq vector tracepoints now.
[Patch Description]
Vaibhav's patch shared a trace point ,irq_vector_entry/irq_vector_exit, in all events.
But there is an above use case to trace specific irq_vector rather than tracing all events.
In this case, we are concerned about overhead due to unwanted events.
So, add following tracepoints instead of introducing irq_vector_entry/exit.
so that we can enable them independently.
- local_timer_vector
- reschedule_vector
- call_function_vector
- call_function_single_vector
- irq_work_entry_vector
- error_apic_vector
- thermal_apic_vector
- threshold_apic_vector
- spurious_apic_vector
- x86_platform_ipi_vector
Also, introduce a logic switching IDT at enabling/disabling time so that a time penalty
makes a zero when tracepoints are disabled. Detailed explanations are as follows.
- Create trace irq handlers with entering_irq()/exiting_irq().
- Create a new IDT, trace_idt_table, at boot time by adding a logic to
_set_gate(). It is just a copy of original idt table.
- Register the new handlers for tracpoints to the new IDT by introducing
macros to alloc_intr_gate() called at registering time of irq_vector handlers.
- Add checking, whether irq vector tracing is on/off, into load_current_idt().
This has to be done below debug checking for these reasons.
- Switching to debug IDT may be kicked while tracing is enabled.
- On the other hands, switching to trace IDT is kicked only when debugging
is disabled.
In addition, the new IDT is created only when CONFIG_TRACING is enabled to avoid being
used for other purposes.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/51C323ED.5050708@hds.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Rename variables for debugging to describe meaning of them precisely.
Also, introduce a generic way to switch IDT by checking a current state,
debug on/off.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Link: http://lkml.kernel.org/r/51C323A8.7050905@hds.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
In head_64.S, a switchover has been used to handle kernel crossing
1G, 512G boundaries.
And commit 8170e6bed4
x86, 64bit: Use a #PF handler to materialize early mappings on demand
said:
During the switchover in head_64.S, before #PF handler is available,
we use three pages to handle kernel crossing 1G, 512G boundaries with
sharing page by playing games with page aliasing: the same page is
mapped twice in the higher-level tables with appropriate wraparound.
But from the switchover code, when we set up the PUD table:
114 addq $4096, %rdx
115 movq %rdi, %rax
116 shrq $PUD_SHIFT, %rax
117 andl $(PTRS_PER_PUD-1), %eax
118 movq %rdx, (4096+0)(%rbx,%rax,8)
119 movq %rdx, (4096+8)(%rbx,%rax,8)
It seems line 119 has a potential bug there. For example,
if the kernel is loaded at physical address 511G+1008M, that is
000000000 111111111 111111000 000000000000000000000
and the kernel _end is 512G+2M, that is
000000001 000000000 000000001 000000000000000000000
So in this example, when using the 2nd page to setup PUD (line 114~119),
rax is 511.
In line 118, we put rdx which is the address of the PMD page (the 3rd page)
into entry 511 of the PUD table. But in line 119, the entry we calculate from
(4096+8)(%rbx,%rax,8) has exceeded the PUD page. IMO, the entry in line
119 should be wraparound into entry 0 of the PUD table.
The patch fixes the bug.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/5191DE5A.3020302@cn.fujitsu.com
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: <stable@vger.kernel.org> v3.9
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
During early init, we would incorrectly set the NX bit even if the NX
feature was not supported. Instead, only set this bit if NX is
actually available and enabled. We already do very early detection of
the NX bit to enable it in EFER, this simply extends this detection to
the early page table mask.
Reported-by: Fernando Luis Vázquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1367476850.5660.2.camel@nexus
Cc: <stable@vger.kernel.org> v3.9
Pull more x86 fixes from Peter Anvin:
"Additional x86 fixes. Three of these patches are pure documentation,
two are pretty trivial; the remaining one fixes boot problems on some
non-BIOS machines."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Make sure we can boot in the case the BDA contains pure garbage
x86, efi: Mark disable_runtime as __initdata
x86, doc: Fix incorrect comment about 64-bit code segment descriptors
doc, kernel-parameters: Document 'console=hvc<n>'
doc, xen: Mention 'earlyprintk=xen' in the documentation.
ACPI: Overriding ACPI tables via initrd only works with an initrd and on X86
The AMD64 Architecture Programmer's Manual Volume 2, on page
89 mentions: "If the processor is running in 64-bit mode (L=1),
the only valid setting of the D bit is 0." This matches
with what the code does.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1361825650-14031-4-git-send-email-konrad.wilk@oracle.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The code requires the use of the proper per-exception-vector stub
functions (set up as the early_idt_handlers[] array - note the 's') that
make sure to set up the error vector number. This is true regardless of
whether CONFIG_EARLY_PRINTK is set or not.
Why? The stack offset for the comparison of __KERNEL_CS won't be right
otherwise, nor will the new check (from commit 8170e6bed4: "x86,
64bit: Use a #PF handler to materialize early mappings on demand") for
the page fault exception vector.
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all
64-bit code has to use page tables. This makes it awkward before we
have first set up properly all-covering page tables to access objects
that are outside the static kernel range.
So far we have dealt with that simply by mapping a fixed amount of
low memory, but that fails in at least two upcoming use cases:
1. We will support load and run kernel, struct boot_params, ramdisk,
command line, etc. above the 4 GiB mark.
2. need to access ramdisk early to get microcode to update that as
early possible.
We could use early_iomap to access them too, but it will make code to
messy and hard to be unified with 32 bit.
Hence, set up a #PF table and use a fixed number of buffers to set up
page tables on demand. If the buffers fill up then we simply flush
them and start over. These buffers are all in __initdata, so it does
not increase RAM usage at runtime.
Thus, with the help of the #PF handler, we can set the final kernel
mapping from blank, and switch to init_level4_pgt later.
During the switchover in head_64.S, before #PF handler is available,
we use three pages to handle kernel crossing 1G, 512G boundaries with
sharing page by playing games with page aliasing: the same page is
mapped twice in the higher-level tables with appropriate wraparound.
The kernel region itself will be properly mapped; other mappings may
be spurious.
early_make_pgtable is using kernel high mapping address to access pages
to set page table.
-v4: Add phys_base offset to make kexec happy, and add
init_mapping_kernel() - Yinghai
-v5: fix compiling with xen, and add back ident level3 and level2 for xen
also move back init_level4_pgt from BSS to DATA again.
because we have to clear it anyway. - Yinghai
-v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai
-v7: remove not needed clear_page for init_level4_page
it is with fill 512,8,0 already in head_64.S - Yinghai
-v8: we need to keep that handler alive until init_mem_mapping and don't
let early_trap_init to trash that early #PF handler.
So split early_trap_pf_init out and move it down. - Yinghai
-v9: switchover only cover kernel space instead of 1G so could avoid
touch possible mem holes. - Yinghai
-v11: change far jmp back to far return to initial_code, that is needed
to fix failure that is reported by Konrad on AMD systems. - Yinghai
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull x86 trampoline rework from H. Peter Anvin:
"This code reworks all the "trampoline"/"realmode" code (various bits
that need to live in the first megabyte of memory, most but not all of
which runs in real mode at some point) in the kernel into a single
object. The main reason for doing this is that it eliminates the last
place in the kernel where we needed pages to be mapped RWX. This code
separates all that code into proper R/RW/RX pages."
Fix up conflicts in arch/x86/kernel/Makefile (mca removed next to reboot
code), and arch/x86/kernel/reboot.c (reboot code moved around in one
branch, modified in this one), and arch/x86/tools/relocs.c (mostly same
code came in earlier due to working around the ld bugs just before the
3.4 release).
Also remove stale x86-relocs entry from scripts/.gitignore as per Peter
Anvin.
* commit '61f5446169046c217a5479517edac3a890c3bee7': (36 commits)
x86, realmode: Move end signature into header.S
x86, relocs: When printing an error, say relative or absolute
x86, relocs: More relocations which may end up as absolute
x86, relocs: Workaround for binutils 2.22.52.0.1 section bug
xen-acpi-processor: Add missing #include <xen/xen.h>
acpi, bgrd: Add missing <linux/io.h> to drivers/acpi/bgrt.c
x86, realmode: Change EFER to a single u64 field
x86, realmode: Move kernel/realmode.c to realmode/init.c
x86, realmode: Move not-common bits out of trampoline_common.S
x86, realmode: Mask out EFER.LMA when saving trampoline EFER
x86, realmode: Fix no cache bits test in reboot_32.S
x86, realmode: Make sure all generated files are listed in targets
x86, realmode: build fix: remove duplicate build
x86, realmode: read cr4 and EFER from kernel for 64-bit trampoline
x86, realmode: fixes compilation issue in tboot.c
x86, realmode: move relocs from scripts/ to arch/x86/tools
x86, realmode: header for trampoline code
x86, realmode: flattened rm hierachy
x86, realmode: don't copy real_mode_header
x86, realmode: fix 64-bit wakeup sequence
...
Migrated SMP trampoline code to the real mode blob.
SMP trampoline code is not yet removed from
.x86_trampoline because it is needed by the wakeup
code.
[ hpa: always enable compiling startup_32_smp in head_32.S... it is
only a few instructions which go into .init on UP builds, and it makes
the rest of the code less #ifdef ugly. ]
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@intel.com>
Link: http://lkml.kernel.org/r/1336501366-28617-6-git-send-email-jarkko.sakkinen@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If we get an exception during early boot, walk the exception table to
see if we should intercept it. The main use case for this is to allow
rdmsr_safe()/wrmsr_safe() during CPU initialization.
Since the exception table is currently sorted at runtime, and fairly
late in startup, this code walks the exception table linearly. We
obviously don't need to worry about modules, however: none have been
loaded at this point.
[ v2: Use early_fixup_exception() instead of linear search ]
Link: http://lkml.kernel.org/r/1334794610-5546-5-git-send-email-hpa@zytor.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>