Commit cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).
In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).
In addition to the above, commit 56871d444b ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.
Fixes: cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the TDP MMU, use shadow_phys_bits to dermine the maximum possible GFN
mapped in the guest for zapping operations. boot_cpu_data.x86_phys_bits
may be reduced in the case of HW features that steal HPA bits for other
purposes. However, this doesn't necessarily reduce GPA space that can be
accessed via TDP. So zap based on a maximum gfn calculated with MAXPHYADDR
retrieved from CPUID. This is already stored in shadow_phys_bits, so use
it instead of x86_phys_bits.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-Id: <20201203231120.27307-1-rick.p.edgecombe@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The cpu arg for svm_cpu_uninit() was previously ignored resulting in the
per cpu structure svm_cpu_data not being de-allocated for all cpus.
Signed-off-by: Jacob Xu <jacobhxu@google.com>
Message-Id: <20201203205939.1783969-1-jacobhxu@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU") caused
the following WARNING on an Intel Ice Lake CPU:
get_mmio_spte: detect reserved bits on spte, addr 0xb80a0, dump hierarchy:
------ spte 0xb80a0 level 5.
------ spte 0xfcd210107 level 4.
------ spte 0x1004c40107 level 3.
------ spte 0x1004c41107 level 2.
------ spte 0x1db00000000b83b6 level 1.
WARNING: CPU: 109 PID: 10254 at arch/x86/kvm/mmu/mmu.c:3569 kvm_mmu_page_fault.cold.150+0x54/0x22f [kvm]
...
Call Trace:
? kvm_io_bus_get_first_dev+0x55/0x110 [kvm]
vcpu_enter_guest+0xaa1/0x16a0 [kvm]
? vmx_get_cs_db_l_bits+0x17/0x30 [kvm_intel]
? skip_emulated_instruction+0xaa/0x150 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xca/0x520 [kvm]
The guest triggering this crashes. Note, this happens with the traditional
MMU and EPT enabled, not with the newly introduced TDP MMU. Turns out,
there was a subtle change in the above mentioned commit. Previously,
walk_shadow_page_get_mmio_spte() was setting 'root' to 'iterator.level'
which is returned by shadow_walk_init() and this equals to
'vcpu->arch.mmu->shadow_root_level'. Now, get_mmio_spte() sets it to
'int root = vcpu->arch.mmu->root_level'.
The difference between 'root_level' and 'shadow_root_level' on CPUs
supporting 5-level page tables is that in some case we don't want to
use 5-level, in particular when 'cpuid_maxphyaddr(vcpu) <= 48'
kvm_mmu_get_tdp_level() returns '4'. In case upper layer is not used,
the corresponding SPTE will fail '__is_rsvd_bits_set()' check.
Revert to using 'shadow_root_level'.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201126110206.2118959-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are
a hodge-podge of conditions, hacked together to get something that
more or less works. But what is actually needed is much simpler;
in both cases the fundamental question is, do we have a place to stash
an interrupt if userspace does KVM_INTERRUPT?
In userspace irqchip mode, that is !vcpu->arch.interrupt.injected.
Currently kvm_event_needs_reinjection(vcpu) covers it, but it is
unnecessarily restrictive.
In split irqchip mode it's a bit more complicated, we need to check
kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK
cycle and thus requires ExtINTs not to be masked) as well as
!pending_userspace_extint(vcpu). However, there is no need to
check kvm_event_needs_reinjection(vcpu), since split irqchip keeps
pending ExtINT state separate from event injection state, and checking
kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher
priority than APIC interrupts. In fact the latter fixes a bug:
when userspace requests an IRQ window vmexit, an interrupt in the
local APIC can cause kvm_cpu_has_interrupt() to be true and thus
kvm_vcpu_ready_for_interrupt_injection() to return false. When this
happens, vcpu_run does not exit to userspace but the interrupt window
vmexits keep occurring. The VM loops without any hope of making progress.
Once we try to fix these with something like
return kvm_arch_interrupt_allowed(vcpu) &&
- !kvm_cpu_has_interrupt(vcpu) &&
- !kvm_event_needs_reinjection(vcpu) &&
- kvm_cpu_accept_dm_intr(vcpu);
+ (!lapic_in_kernel(vcpu)
+ ? !vcpu->arch.interrupt.injected
+ : (kvm_apic_accept_pic_intr(vcpu)
+ && !pending_userspace_extint(v)));
we realize two things. First, thanks to the previous patch the complex
conditional can reuse !kvm_cpu_has_extint(vcpu). Second, the interrupt
window request in vcpu_enter_guest()
bool req_int_win =
dm_request_for_irq_injection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
should be kept in sync with kvm_vcpu_ready_for_interrupt_injection():
it is unnecessary to ask the processor for an interrupt window
if we would not be able to return to userspace. Therefore,
kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu)
ANDed with the existing check for masked ExtINT. It all makes sense:
- we can accept an interrupt from userspace if there is a place
to stash it (and, for irqchip split, ExtINTs are not masked).
Interrupts from userspace _can_ be accepted even if right now
EFLAGS.IF=0.
- in order to tell userspace we will inject its interrupt ("IRQ
window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both
KVM and the vCPU need to be ready to accept the interrupt.
... and this is what the patch implements.
Reported-by: David Woodhouse <dwmw@amazon.co.uk>
Analyzed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikos Tsironis <ntsironis@arrikto.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Centralize handling of interrupts from the userspace APIC
in kvm_cpu_has_extint and kvm_cpu_get_extint, since
userspace APIC interrupts are handled more or less the
same as ExtINTs are with split irqchip. This removes
duplicated code from kvm_cpu_has_injectable_intr and
kvm_cpu_has_interrupt, and makes the code more similar
between kvm_cpu_has_{extint,interrupt} on one side
and kvm_cpu_get_{extint,interrupt} on the other.
Cc: stable@vger.kernel.org
Reviewed-by: Filippo Sironi <sironi@amazon.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix to return a negative error code from the error handling case
instead of 0 in function svm_create_vcpu(), as done elsewhere in this
function.
Fixes: f4c847a956 ("KVM: SVM: refactor msr permission bitmap allocation")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Message-Id: <20201117025426.167824-1-chenzhou10@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix offset computation in __sev_dbg_decrypt() to include the
source paddr before it is rounded down to be aligned to 16 bytes
as required by SEV API. This fixes incorrect guest memory dumps
observed when using qemu monitor.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <20201110224205.29444-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases where shadow paging is in use, the root page will
be either mmu->pae_root or vcpu->arch.mmu->lm_root. Then it will
not have an associated struct kvm_mmu_page, because it is allocated
with alloc_page instead of kvm_mmu_alloc_page.
Just return false quickly from is_tdp_mmu_root if the TDP MMU is
not in use, which also includes the case where shadow paging is
enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For AMD SEV guests, update the cr3_lm_rsvd_bits to mask
the memory encryption bit in reserved bits.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521948301.32054.5783800787423231162.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV guests fail to boot on a system that supports the PCID feature.
While emulating the RSM instruction, KVM reads the guest CR3
and calls kvm_set_cr3(). If the vCPU is in the long mode,
kvm_set_cr3() does a sanity check for the CR3 value. In this case,
it validates whether the value has any reserved bits set. The
reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory
encryption is enabled, the memory encryption bit is set in the CR3
value. The memory encryption bit may fall within the KVM reserved
bit range, causing the KVM emulation failure.
Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will
cache the reserved bits in the CR3 value. This will be initialized
to rsvd_bits(cpuid_maxphyaddr(vcpu), 63).
If the architecture has any special bits(like AMD SEV encryption bit)
that needs to be masked from the reserved bits, should be cleared
in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The instruction emulator ignores clflush instructions, yet fails to
support clflushopt. Treat both similarly.
Fixes: 13e457e0ee ("KVM: x86: Emulator does not decode clflush well")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20201103120400.240882-1-david.edmondson@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows2016 guest tries to enable LBR by setting the corresponding bits
in MSR_IA32_DEBUGCTLMSR. KVM does not emulate MSR_IA32_DEBUGCTLMSR and
spams the host kernel logs with error messages like:
kvm [...]: vcpu1, guest rIP: 0xfffff800a8b687d3 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x1, nop"
This patch fixes this by enabling error logging only with
'report_ignored_msrs=1'.
Signed-off-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Message-Id: <20201105153932.24316-1-pankaj.gupta.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME)
emulation in helper fn", 2020-10-21) subtly changed the behavior of guest
writes to MSR_KVM_SYSTEM_TIME(_NEW). Restore the previous behavior; update
the masterclock any time the guest uses a different msr than before.
Fixes: 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME) emulation in helper fn", 2020-10-21)
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the paravirtual cpuid enforcement mechanism idempotent to ioctl()
ordering by updating pv_cpuid.features whenever userspace requests the
capability. Extract this update out of kvm_update_cpuid_runtime() into a
new helper function and move its other call site into
kvm_vcpu_after_set_cpuid() where it more likely belongs.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 66570e966d ("kvm: x86: only provide PV features if enabled in
guest's CPUID") only protects against disallowed guest writes to KVM
paravirtual msrs, leaving msr reads unchecked. Fix this by enforcing
KVM_CPUID_FEATURES for msr reads as well.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-4-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recent introduction of the userspace msr filtering added code that uses
negative error codes for cases that result in either #GP delivery to
the guest, or handled by the userspace msr filtering.
This breaks an assumption that a negative error code returned from the
msr emulation code is a semi-fatal error which should be returned
to userspace via KVM_RUN ioctl and usually kill the guest.
Fix this by reusing the already existing KVM_MSR_RET_INVALID error code,
and by adding a new KVM_MSR_RET_FILTERED error code for the
userspace filtered msrs.
Fixes: 291f35fb2c1d1 ("KVM: x86: report negative values from wrmsr emulation to userspace")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201101115523.115780-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix an off-by-one style bug in pte_list_add() where it failed to
account the last full set of SPTEs, i.e. when desc->sptes is full
and desc->more is NULL.
Merge the two "PTE_LIST_EXT-1" checks as part of the fix to avoid
an extra comparison.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1601196297-24104-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was noticed that evmcs_sanitize_exec_ctrls() is not being executed
nowadays despite the code checking 'enable_evmcs' static key looking
correct. Turns out, static key magic doesn't work in '__init' section
(and it is unclear when things changed) but setup_vmcs_config() is called
only once per CPU so we don't really need it to. Switch to checking
'enlightened_vmcs' instead, it is supposed to be in sync with
'enable_evmcs'.
Opportunistically make evmcs_sanitize_exec_ctrls '__init' and drop unneeded
extra newline from it.
Reported-by: Yang Weijiang <weijiang.yang@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201014143346.2430936-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The newly introduced kvm_msr_ignored_check() tries to print error or
debug messages via vcpu_*() macros, but those may cause Oops when NULL
vcpu is passed for KVM_GET_MSRS ioctl.
Fix it by replacing the print calls with kvm_*() macros.
(Note that this will leave vcpu argument completely unused in the
function, but I didn't touch it to make the fix as small as
possible. A clean up may be applied later.)
Fixes: 12bc2132b1 ("KVM: X86: Do the same ignore_msrs check for feature msrs")
BugLink: https://bugzilla.suse.com/show_bug.cgi?id=1178280
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Message-Id: <20201030151414.20165-1-tiwai@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though the compiler is able to replace static const variables with
their value, it will warn about them being unused when Linux is built with W=1.
Use good old macros instead, this is not C++.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
a host hang.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+T6RoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMx2gf+PjoeMjLKtstdKDdiLFV46X7YdYKz
sUoDhpSbiLpEus5BF6OauUWwKgB7GcsoDUnLgjN5jqkAQzoFm0YOcI2GlXS999SL
5QIg6Vw5WF8X/7EVt6gxzC6KcWjbQvv38R/Ktd/0sMqRBPiZG7kVcWeXlopb9DaQ
Rdgg0hNVpgDiTNrBNl5RnM7Wz/SrOZmwaotW1LcII+BkCnj9Av77v77TxN9YuvG4
o+GMMQseFAzDjQ+jHZkHuBmPRy5dQB9ywzEIrUCubqhT04sWbQ6DhGfx45a0IgsY
33iT28omYdMVlRd/i3KcHQ86JJSo5g7pOqLwGd1L9HjNTS5VmQ8HXNJWBA==
=ECL9
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Two fixes for this merge window, and an unrelated bugfix for a host
hang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: ioapic: break infinite recursion on lazy EOI
KVM: vmx: rename pi_init to avoid conflict with paride
KVM: x86/mmu: Avoid modulo operator on 64-bit value to fix i386 build
During shutdown the IOAPIC trigger mode is reset to edge triggered
while the vfio-pci INTx is still registered with a resampler.
This allows us to get into an infinite loop:
ioapic_set_irq
-> ioapic_lazy_update_eoi
-> kvm_ioapic_update_eoi_one
-> kvm_notify_acked_irq
-> kvm_notify_acked_gsi
-> (via irq_acked fn ptr) irqfd_resampler_ack
-> kvm_set_irq
-> (via set fn ptr) kvm_set_ioapic_irq
-> kvm_ioapic_set_irq
-> ioapic_set_irq
Commit 8be8f932e3 ("kvm: ioapic: Restrict lazy EOI update to
edge-triggered interrupts", 2020-05-04) acknowledges that this recursion
loop exists and tries to avoid it at the call to ioapic_lazy_update_eoi,
but at this point the scenario is already set, we have an edge interrupt
with resampler on the same gsi.
Fortunately, the only user of irq ack notifiers (in addition to resamplefd)
is i8254 timer interrupt reinjection. These are edge-triggered, so in
principle they would need the call to kvm_ioapic_update_eoi_one from
ioapic_lazy_update_eoi, but they already disable AVIC(*), so they don't
need the lazy EOI behavior. Therefore, remove the call to
kvm_ioapic_update_eoi_one from ioapic_lazy_update_eoi.
This fixes CVE-2020-27152. Note that this issue cannot happen with
SR-IOV assigned devices because virtual functions do not have INTx,
only MSI.
Fixes: f458d039db ("kvm: ioapic: Lazy update IOAPIC EOI")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
allyesconfig results in:
ld: drivers/block/paride/paride.o: in function `pi_init':
(.text+0x1340): multiple definition of `pi_init'; arch/x86/kvm/vmx/posted_intr.o:posted_intr.c:(.init.text+0x0): first defined here
make: *** [Makefile:1164: vmlinux] Error 1
because commit:
commit 8888cdd099
Author: Xiaoyao Li <xiaoyao.li@intel.com>
Date: Wed Sep 23 11:31:11 2020 -0700
KVM: VMX: Extract posted interrupt support to separate files
added another pi_init(), though one already existed in the paride code.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace a modulo operator with the more common pattern for computing the
gfn "offset" of a huge page to fix an i386 build error.
arch/x86/kvm/mmu/tdp_mmu.c:212: undefined reference to `__umoddi3'
In fact, almost all of tdp_mmu.c can be elided on 32-bit builds, but
that is a much larger patch.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Reported-by: Daniel Díaz <daniel.diaz@linaro.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201024031150.9318-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes
For x86, also included in this pull request is a new alternative and
(in the future) more scalable implementation of extended page tables
that does not need a reverse map from guest physical addresses to
host physical addresses. For now it is disabled by default because
it is still lacking a few of the existing MMU's bells and whistles.
However it is a very solid piece of work and it is already available
for people to hammer on it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
=AD6a
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
When KVM maps a largepage backed region at a lower level in order to
make it executable (i.e. NX large page shattering), it reduces the TLB
performance of that region. In order to avoid making this degradation
permanent, KVM must periodically reclaim shattered NX largepages by
zapping them and allowing them to be rebuilt in the page fault handler.
With this patch, the TDP MMU does not respect KVM's rate limiting on
reclaim. It traverses the entire TDP structure every time. This will be
addressed in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-21-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Direct roots don't have a write flooding count because the guest can't
affect that paging structure. Thus there's no need to clear the write
flooding count on a fast CR3 switch for direct roots.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to support MMIO, KVM must be able to walk the TDP paging
structures to find mappings for a given GFN. Support this walk for
the TDP MMU.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
v2: Thanks to Dan Carpenter and kernel test robot for finding that root
was used uninitialized in get_mmio_spte.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20201014182700.2888246-19-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support nested virtualization, KVM will sometimes need to write
protect pages which are part of a shadowed paging structure or are not
writable in the shadowed paging structure. Add a function to write
protect GFN mappings for this purpose.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging ultimately breaks down MMU mappings to 4k granularity.
When dirty logging is no longer needed, these granaular mappings
represent a useless performance penalty. When dirty logging is disabled,
search the paging structure for mappings that could be re-constituted
into a large page mapping. Zap those mappings so that they can be
faulted in again at a higher mapping level.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging is a key feature of the KVM MMU and must be supported by
the TDP MMU. Add support for both the write protection and PML dirty
logging modes.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
a hook and handle the change_pte MMU notifier.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. The
main Linux MM uses the access tracking MMU notifiers for swap and other
features. Add hooks to handle the test/flush HVA (range) family of
MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
hooks to handle the invalidate range family of MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Attach struct kvm_mmu_pages to every page in the TDP MMU to track
metadata, facilitate NX reclaim, and enable inproved parallelism of MMU
operations in future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to handle page faults in the TDP MMU. These page faults
are currently handled in much the same way as the x86 shadow paging
based MMU, however the ordering of some operations is slightly
different. Future patches will add eager NX splitting, a fast page fault
handler, and parallel page faults.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to avoid creating executable hugepages in the TDP MMU PF
handler, remove the dependency between disallowed_hugepage_adjust and
the shadow_walk_iterator. This will open the function up to being used
by the TDP MMU PF handler in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to zap SPTEs to the TDP MMU. These are needed to tear down
TDP MMU roots properly and implement other MMU functions which require
tearing down mappings. Future patches will add functions to populate the
page tables, but as for this patch there will not be any work for these
functions to do.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The existing bookkeeping done by KVM when a PTE is changed is spread
around several functions. This makes it difficult to remember all the
stats, bitmaps, and other subsystems that need to be updated whenever a
PTE is modified. When a non-leaf PTE is marked non-present or becomes a
leaf PTE, page table memory must also be freed. To simplify the MMU and
facilitate the use of atomic operations on SPTEs in future patches, create
functions to handle some of the bookkeeping required as a result of
a change.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU must be able to allocate paging structure root pages and track
the usage of those pages. Implement a similar, but separate system for root
page allocation to that of the x86 shadow paging implementation. When
future patches add synchronization model changes to allow for parallel
page faults, these pages will need to be handled differently from the
x86 shadow paging based MMU's root pages.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU offers an alternative mode of operation to the x86 shadow
paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU
will require new fields that need to be initialized and torn down. Add
hooks into the existing KVM MMU initialization process to do that
initialization / cleanup. Currently the initialization and cleanup
fucntions do not do very much, however more operations will be added in
future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP iterator implements a pre-order traversal of a TDP paging
structure. This iterator will be used in future patches to create
an efficient implementation of the KVM MMU for the TDP case.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SPTE format will be common to both the shadow and the TDP MMU.
Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU's own function for the changed-PTE notifier will need to be
update a PTE in the exact same way as the shadow MMU. Rather than
re-implementing this logic, factor the SPTE creation out of kvm_set_pte_rmapp.
Extracted out of a patch by Ben Gardon. <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the functions for generating leaf page table entries from the
function that inserts them into the paging structure. This refactoring
will facilitate changes to the MMU sychronization model to use atomic
compare / exchanges (which are not guaranteed to succeed) instead of a
monolithic MMU lock.
No functional change expected.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This commit introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU page fault handler will need to be able to create non-leaf
SPTEs to build up the paging structures. Rather than re-implementing the
function, factor the SPTE creation out of link_shadow_page.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20200925212302.3979661-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add FSGSBASE to the set of possible guest-owned CR4 bits, i.e. let the
guest own it on VMX. KVM never queries the guest's CR4.FSGSBASE value,
thus there is no reason to force VM-Exit on FSGSBASE being toggled.
Note, because FSGSBASE is conditionally available, this is dependent on
recent changes to intercept reserved CR4 bits and to update the CR4
guest/host mask in response to guest CPUID changes.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
[sean: added justification in changelog]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200930041659.28181-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>