Checking for a "fully active" device state requires testing two flag
bits, which is open coded in several places, so add a function to do
it.
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When pseries SR-IOV is enabled and after a PF driver has resumed from
EEH, platform has to be notified of the event so the child VFs can be
allowed to resume their normal recovery path.
This patch makes the EEH operation allow unfreeze platform dependent
code and adds the call to pseries EEH code.
Signed-off-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com>
Signed-off-by: Juan J. Alvarez <jjalvare@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add EEH platform operations for pseries to update VF config space.
With this change after EEH, the VF will have updated config space for
pseries platform.
Signed-off-by: Bryant G. Ly <bryantly@linux.vnet.ibm.com>
Signed-off-by: Juan J. Alvarez <jjalvare@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This interface is inefficient and deprecated because of the y2038
overflow.
ktime_get_seconds() is an appropriate replacement here, since it
has sufficient granularity but is more efficient and uses monotonic
time.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Remove the post_init callback which is only used
by powernv, we can just call it explicitly from
the powernv code.
This partially kills the ability to "disable" eeh at
runtime via debugfs as this was calling that same
callback again, but this is both unused and broken
in several ways. If we want to revive it, we need
to create a dedicated enable/disable callback on the
backend that does the right thing.
Let the bulk of eeh initialize normally at
core_initcall() like it does on pseries by removing
the hack in eeh_init() that delays it.
Instead we make sure our eeh->probe cleanly bails
out of the PEs haven't been created yet and we force
a re-probe where we used to call eeh_init() again.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The eeh_dev struct hold a config space address of an associated node
and the very same address is also stored in the pci_dn struct which
is always present during the eeh_dev lifetime.
This uses bus:devfn directly from pci_dn instead of cached and packed
config_addr.
Since config_addr is made from device's bus:dev.fn, there is no point
in keeping it in the debugfs either so remove that too.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The eeh_dev struct already holds a pointer to pci_dn which it does not
exist without and pci_dn itself holds the very same pointer so just
use it.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
arch/powerpc/kernel/eeh_dev.c:57 is the only legit place where edev
is allocated; other 2 places allocate it on stack and in the heap for
a very short period of time to use eeh_pe_get() as takes edev.
This changes eeh_pe_get() to receive required parameters explicitly.
This removes unnecessary temporary allocation of edev.
This uses the "pe_no" name instead of the "pe_config_addr" name as
it actually is a PE number and not a config space address as it seemed.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The pdn (struct pci_dn) instances are allocated from memblock or
bootmem when creating PCI controller (hoses) in setup_arch(). PCI
hotplug, which will be supported by proceeding patches, releases
PCI device nodes and their corresponding pdn on unplugging event.
The memory chunks for pdn instances allocated from memblock or
bootmem are hard to reused after being released.
This delays creating pdn by pci_devs_phb_init() from setup_arch()
to core_initcall() so that they are allocated from slab. The memory
consumed by pdn can be released to system without problem during
PCI unplugging time. It indicates that pci_dn is unavailable in
setup_arch() and the the fixup on pdn (like AGP's) can't be carried
out that time. We have to do that in pcibios_root_bridge_prepare()
on maple/pasemi/powermac platforms where/when the pdn is available.
pcibios_root_bridge_prepare is called from subsys_initcall() which
is executed after core_initcall() so the code flow does not change.
At the mean while, the EEH device is created when pdn is populated,
meaning pdn and EEH device have same life cycle. In turn, we needn't
call eeh_dev_init() to create EEH device explicitly.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PFs are enumerated on PCI bus, while VFs are created by PF's driver.
In EEH recovery, it has two cases:
1. Device and driver is EEH aware, error handlers are called.
2. Device and driver is not EEH aware, un-plug the device and plug it again
by enumerating it.
The special thing happens on the second case. For a PF, we could use the
original pci core to enumerate the bus, while for VF we need to record the
VFs which aer un-plugged then plug it again.
Also The patch caches the VF index in pci_dn, which can be used to
calculate VF's bus, device and function number. Those information helps to
locate the VF's PCI device instance when doing hotplug during EEH recovery
if necessary.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PEs for VFs don't have primary bus. So they have to have their own reset
backend, which is used during EEH recovery. The patch implements the reset
backend for VF's PE by issuing FLR or AF FLR to the VFs, which are contained
in the PE.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This creates PEs for VFs in the weak function pcibios_bus_add_device().
Those PEs for VFs are identified with newly introduced flag EEH_PE_VF
so that we treat them differently during EEH recovery.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
VFs and their corresponding pdn are created and released dynamically
when their PF's SRIOV capability is enabled and disabled. This creates
and releases EEH devices for VFs when creating and releasing their pdn
instances, which means EEH devices and pdn instances have same life
cycle. Also, VF's EEH device is identified by (struct eeh_dev::physfn).
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When PE is created, its primary bus is cached to pe->bus. At later
point, the cached primary bus is returned from eeh_pe_bus_get().
However, we could get stale cached primary bus and run into kernel
crash in one case: full hotplug as part of fenced PHB error recovery
releases all PCI busses under the PHB at unplugging time and recreate
them at plugging time. pe->bus is still dereferencing the PCI bus
that was released.
This adds another PE flag (EEH_PE_PRI_BUS) to represent the validity
of pe->bus. pe->bus is updated when its first child EEH device is
online and the flag is set. Before unplugging in full hotplug for
error recovery, the flag is cleared.
Fixes: 8cdb2833 ("powerpc/eeh: Trace PCI bus from PE")
Cc: stable@vger.kernel.org #v3.11+
Reported-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reported-by: Pradipta Ghosh <pradghos@in.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch defines PCI error types and functions in uapi/asm/eeh.h
and exports function eeh_pe_inject_err(), which will be called by
VFIO driver to inject the specified PCI error to the indicated
PE for testing purpose.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There are two equivalent sets of PE state constants, defined in
arch/powerpc/include/asm/eeh.h and include/uapi/linux/vfio.h.
Though the names are different, their corresponding values are
exactly same. The former is used by EEH core and the latter is
used by userspace.
The patch moves those constants from arch/powerpc/include/asm/eeh.h
to arch/powerpc/include/uapi/asm/eeh.h, which are expected to be
used by userspace from now on. We can't delete those constants in
vfio.h as it's uncertain that those constants have been or will be
used by userspace.
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch removes struct eeh_dev::dn and the corresponding helper
functions: eeh_dev_to_of_node() and of_node_to_eeh_dev(). Instead,
eeh_dev_to_pdn() and pdn_to_eeh_dev() should be used to get the
pdn, which might contain device_node on PowerNV platform.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There are 3 EEH operations whose arguments contain device_node:
read_config(), write_config() and restore_config(). The patch
replaces device_node with pci_dn.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Originally, EEH core probes on device_node or pci_dev to populate
EEH devices and PEs, which conflicts with the fact: SRIOV VFs are
usually enabled and created by PF's driver and they don't have the
corresponding device_nodes. Instead, SRIOV VFs have dynamically
created pci_dn, which can be used for EEH probe.
The patch reworks EEH probe for PowerNV and pSeries platforms to
do probing based on pci_dn, instead of pci_dev or device_node any
more.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch adds function traverse_pci_dn(), which is similar to
traverse_pci_devices() except it takes pci_dn, not device_node
as parameter. The pci_dev.c has been reworked to create eeh_dev
from pci_dn, instead of device_node.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When PE's frozen count hits maximal allowed frozen times, which is
5 currently, it will be forced to be offline permanently. Once the
PE is removed permanently, rebooting machine is required to bring
the PE back. It's not convienent when testing EEH functionality.
The patch exports the maximal allowed frozen times through debugfs
entry (/sys/kernel/debug/powerpc/eeh_max_freezes).
Requested-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The conditions that one specific PE's frozen count exceeds the maximal
allowed times (EEH_MAX_ALLOWED_FREEZES) and it's in isolated or recovery
state indicate the PE was removed permanently implicitly. The patch
introduces flag EEH_PE_REMOVED to indicate that explicitly so that we
don't depend on the fixed maximal allowed times, which can be varied as
we do in subsequent patch.
Flag EEH_PE_REMOVED is expected to be marked for the PE whose frozen
count exceeds the maximal allowed times, or just failed from recovery.
Requested-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PE#0 should be regarded as valid for P7IOC, while it's invalid for
PHB3. The patch adds flag EEH_VALID_PE_ZERO to differentiate those
two cases. Without the patch, we possibly see frozen PE#0 state is
cleared without EEH recovery taken on P7IOC as following kernel logs
indicate:
[root@ltcfbl8eb ~]# dmesg
:
pci 0000:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0000:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0001:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0001:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0002:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0002:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0003:00 : [PE# 000] Secondary bus 0 associated with PE#0
pci 0003:01 : [PE# 001] Secondary bus 1 associated with PE#1
pci 0003:20 : [PE# 002] Secondary bus 32..63 associated with PE#2
:
EEH: Clear non-existing PHB#3-PE#0
EEH: PHB location: U78AE.001.WZS00M9-P1-002
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On PowerNV platform, PHB diag-data is dumped after stopping device
drivers. In case of recursive EEH errors, the kernel is usually
crashed before dumping PHB diag-data for the second EEH error. It's
hard to locate the root cause of the second EEH error without PHB
diag-data.
The patch adds one more EEH option "eeh=early_log", which helps
dumping PHB diag-data immediately once frozen PE is detected, in
order to get the PHB diag-data for the second EEH error.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch introduces additional flag EEH_PE_RESET to indicate the
corresponding PE is under reset. In turn, the PE retrieval bakcend
on PowerNV platform can return unfrozen state for the EEH core to
moving forward. Flag EEH_PE_CFG_BLOCKED isn't the correct one for
the purpose.
In PCI passthrou case, the problem is more worse: Guest doesn't
recover 6th EEH error. The PE is left in isolated (frozen) and
config blocked state on Broadcom adapters. We can't retrieve the
PE's state correctly any more, even from the host side via sysfs
/sys/bus/pci/devices/xxx/eeh_pe_state.
Reported-by: Rajeshkumar Subramanian <rajeshkumars@in.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The problem was found when I tried to inject PCI config error by
PHB3 PAPR error injection registers into Broadcom Austin 4-ports
NIC adapter. The frozen PE was reported successfully and EEH core
started to recover it. However, I run into fenced PHB when dumping
PCI config space as EEH logs. I was told that PCI config requests
should not be progagated to the adapter until PE reset is done
successfully. Otherise, we would run out of PHB internal credits
and trigger PCT (PCIE Completion Timeout), which leads to the
fenced PHB.
The patch introduces another PE flag EEH_PE_CFG_RESTRICTED, which
is set during PE initialization time if the PE includes the specific
PCI devices that need block PCI config access until PE reset is done.
When the PE becomes frozen for the first time, EEH_PE_CFG_BLOCKED is
set if the PE has flag EEH_PE_CFG_RESTRICTED. Then the PCI config
access to the PE will be dropped by platform PCI accessors until
PE reset is done successfully. The mechanism is shared by PowerNV
platform owned PE or userland owned ones. It's not used on pSeries
platform yet.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The flag EEH_PE_RESET indicates blocking config space of the PE
during reset time. We potentially need block PE's config space
other than reset time. So it's reasonable to replace it with
EEH_PE_CFG_BLOCKED to indicate its usage.
There are no substantial code or logic changes in this patch.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When enabling EEH functionality on passed through devices (PE)
with VFIO, the devices in the PE would be removed permanently
from guest side. In that case, the PE remains frozen state.
When returning PE to host, or restarting the guest again, we
had mechanism unfreezing the PE by clearing PESTA/B frozen
bits. However, that's not enough for some adapters, which are
indicated as following "lspci" shows. Those adapters require
hot reset on the parent bus to bring their firmware back to
workable state. Otherwise, those adaptrs won't be operative
and the host (for returning case) or the guest will fail to
load the drivers for those adapters without exception.
0000:01:00.0 Ethernet controller: Emulex Corporation OneConnect \
10Gb NIC (be3) (rev 02)
0000:01:00.0 0200: 19a2:0710 (rev 02)
0001:03:00.0 Ethernet controller: Emulex Corporation OneConnect \
NIC (Lancer) (rev 10)
0001:03:00.0 0200: 10df:e220 (rev 10)
The patch adds mechanism to emulate EEH recovery (for hot reset
on parent PCI bus) on 3 gates to fix the issue: open/release one
adapter of the PE, enable EEH functionality on one adapter of the
PE.
Reported-by: Murilo Fossa Vicentini <muvic@br.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When passing through PE to guest, that's possibly in frozen
state. The driver for the pass-through devices on guest side
can't be loaded successfully as reported. We already had one
gate in eeh_dev_open() to clear PE frozen state accordingly,
but that's not enough because the function is only called at
QEMU startup for once.
The patch adds another gate in eeh_pe_set_option() so that the
PE frozen state can be cleared at QEMU restart time.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch introduces eeh_ops::err_inject(), which allows to inject
specified errors to indicated PE for testing purpose. The functionality
isn't support on pSeries platform. On PowerNV, the functionality
relies on OPAL API opal_pci_err_inject().
Signed-off-by: Mike Qiu <qiudayu@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch adds one more option (EEH_OPT_FREEZE_PE) to set_option()
method to proactively freeze PE, which will be issued before resetting
pass-throughed PE to drop MMIO access during reset because it's
always contributing to recursive EEH error.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
eeh_check_failure() is used to check frozen state of the PE which
owns the indicated I/O address. The argument "val" of the function
isn't used. The patch drops it and return the frozen state of the
PE as expected.
Cc: Vishal Mansur <vmansur@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch allows PE (struct eeh_pe) instance to have auxillary data,
whose size is configurable on basis of platform. For PowerNV, the
auxillary data will be used to cache PHB diag-data for that PE
(frozen PE or fenced PHB). In turn, we can retrieve the diag-data
at any later points.
It's useful for the case of VFIO PCI devices where the error log
should be cached, and then be retrieved by the guest at later point.
Also, it can avoid PHB diag-data overwritting if another frozen PE
reported and the previous diag-data isn't fetched by guest.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
According to the experiment I did, PCI config access is blocked
on P7IOC frozen PE by hardware, but PHB3 doesn't do that. That
means we always get 0xFF's while dumping PCI config space of the
frozen PE on P7IOC. We don't have the problem on PHB3. So we have
to enable I/O prioir to collecting error log. Otherwise, meaningless
0xFF's are always returned.
The patch fixes it by EEH flag (EEH_ENABLE_IO_FOR_LOG), which is
selectively set to indicate the case for: P7IOC on PowerNV platform,
pSeries platform.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There are multiple global EEH flags. Almost each flag has its own
accessor, which doesn't make sense. The patch refactors EEH flag
accessors so that they look unified:
eeh_add_flag(): Add EEH flag
eeh_clear_flag(): Clear EEH flag
eeh_has_flag(): Check if one specific flag has been set
eeh_enabled(): Check if EEH functionality has been enabled
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch exports functions to be used by new VFIO ioctl command,
which will be introduced in subsequent patch, to support EEH
functinality for VFIO PCI devices.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We must not handle EEH error on devices which are passed to somebody
else. Instead, we expect that the frozen device owner detects an EEH
error and recovers from it.
This avoids EEH error handling on passed through devices so the device
owner gets a chance to handle them.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
As Ben suggested, it's meaningful to dump PE's location code
for site engineers when hitting EEH errors. The patch introduces
function eeh_pe_loc_get() to retireve the location code from
dev-tree so that we can output it when hitting EEH errors.
If primary PE bus is root bus, the PHB's dev-node would be tried
prior to root port's dev-node. Otherwise, the upstream bridge's
dev-node of the primary PE bus will be check for the location code
directly.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This reverts commit b2b5efcf20.
This code was way too board specific, there are quirks as to how
the PERST line is wired on different boards, we'll have to revisit
this using/creating appropriate firmware interfaces.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch intends to support fundamental reset on PLX downstream
ports. If the PCI device matches any one of the internal table,
which includes PLX vendor ID, bridge device ID, register offset
for fundamental reset and bit, fundamental reset will be done
accordingly. Otherwise, it will fail back to hot reset.
Additional flag (EEH_DEV_FRESET) is introduced to record the last
reset type on the PCI bridge.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Basically, we have 3 types of resets to fulfil PE reset: fundamental,
hot and PHB reset. For the later 2 cases, we need PCI bus reset hold
and settlement delay as specified by PCI spec. PowerNV and pSeries
platforms are running on top of different firmware and some of the
delays have been covered by underly firmware (PowerNV).
The patch makes the delays unified to be done in backend, instead of
EEH core.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The issue was detected in a bit complicated test case where
we have multiple hierarchical PEs shown as following figure:
+-----------------+
| PE#3 p2p#0 |
| p2p#1 |
+-----------------+
|
+-----------------+
| PE#4 pdev#0 |
| pdev#1 |
+-----------------+
PE#4 (have 2 PCI devices) is the child of PE#3, which has 2 p2p
bridges. We accidentally had less-known scenario: PE#4 was removed
permanently from the system because of permanent failure (e.g.
exceeding the max allowd failure times in last hour), then we detects
EEH errors on PE#3 and tried to recover it. However, eeh_dev instances
for pdev#0/1 were not detached from PE#4, which was still connected to
PE#3. All of that was because of the fact that we rely on count-based
pcibios_release_device(), which isn't reliable enough. When doing
recovery for PE#3, we still apply hotplug on PE#4 and pdev#0/1, which
are not valid any more. Eventually, we run into kernel crash.
The patch fixes above issue from two aspects. For unplug, we simply
skip those permanently removed PE, whose state is (EEH_PE_STATE_ISOLATED
&& !EEH_PE_STATE_RECOVERING) and its frozen count should be greater
than EEH_MAX_ALLOWED_FREEZES. For plug, we marked all permanently
removed EEH devices with EEH_DEV_REMOVED and return 0xFF's on read
its PCI config so that PCI core will omit them.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There're 2 EEH subsystem variables: eeh_subsystem_enabled and
eeh_probe_mode. We needn't maintain 2 variables and we can just
have one variable and introduce different flags. The patch also
introduces additional flag EEH_FORCE_DISABLE, which will be used
to disable EEH subsystem via boot parameter ("eeh=off") in future.
Besides, the patch also introduces flag EEH_ENABLED, which is
changed to disable or enable EEH functionality on the fly through
debugfs entry in future.
With the patch applied, the creteria to check the enabled EEH
functionality is changed to:
!EEH_FORCE_DISABLED && EEH_ENABLED : Enabled
Other cases : Disabled
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When calling into eeh_gather_pci_data() on pSeries platform, we
possiblly don't have pci_dev instance yet, but eeh_dev is always
ready. So we use cached capability from eeh_dev instead of pci_dev
for log dump there. In order to keep things unified, we also cache
PCI capability positions to eeh_dev for PowerNV as well.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We've observed multiple PE reset failures because of PCI-CFG
access during that period. Potentially, some device drivers
can't support EEH very well and they can't put the device to
motionless state before PE reset. So those device drivers might
produce PCI-CFG accesses during PE reset. Also, we could have
PCI-CFG access from user space (e.g. "lspci"). Since access to
frozen PE should return 0xFF's, we can block PCI-CFG access
during the period of PE reset so that we won't get recrusive EEH
errors.
The patch adds flag EEH_PE_RESET, which is kept during PE reset.
The PowerNV/pSeries PCI-CFG accessors reuse the flag to block
PCI-CFG accordingly.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The PE state (for eeh_pe instance) EEH_PE_PHB_DEAD is duplicate to
EEH_PE_ISOLATED. Originally, those PHBs (PHB PE) with EEH_PE_PHB_DEAD
would be removed from the system. However, it's safe to replace
that with EEH_PE_ISOLATED.
The patch also clear EEH_PE_RECOVERING after fenced PHB has been handled,
either failure or success. It makes the PHB PE state consistent with:
PHB functions normally NONE
PHB has been removed EEH_PE_ISOLATED
PHB fenced, recovery in progress EEH_PE_ISOLATED | RECOVERING
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch cleans up variable eeh_subsystem_enabled so that we needn't
refer the variable directly from external. Instead, we will use
function eeh_enabled() and eeh_set_enable() to operate the variable.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For one PCI error relevant OPAL event, we possibly have multiple
EEH errors for that. For example, multiple frozen PEs detected on
different PHBs. Unfortunately, we didn't cover the case. The patch
enumarates the return value from eeh_ops::next_error() and change
eeh_handle_special_event() and eeh_ops::next_error() to handle all
existing EEH errors.
As Ben pointed out, we needn't list_for_each_entry_safe() since we
are not deleting any PHB from the hose_list and the EEH serialized
lock should be held while purging EEH events. The patch covers those
suggestions as well.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>