mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 08:05:26 +07:00
2f41c8a25f
405 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Hendrik Brueckner
|
c895f6f703 |
bpf: correct broken uapi for BPF_PROG_TYPE_PERF_EVENT program type
Commit |
||
Linus Torvalds
|
2dcd9c71c1 |
Tracing updates for 4.15:
- Now allow module init functions to be traced - Clean up some unused or not used by config events (saves space) - Clean up of trace histogram code - Add support for preempt and interrupt enabled/disable events - Other various clean ups -----BEGIN PGP SIGNATURE----- iQHIBAABCgAyFiEEPm6V/WuN2kyArTUe1a05Y9njSUkFAloPGgkUHHJvc3RlZHRA Z29vZG1pcy5vcmcACgkQ1a05Y9njSUmfaAwAjge5FWBCBQeby8tVuw4RGAorRgl5 IFuijFSygcKRMhQFP6B+haHsezeCbNaBBtIncXhoJGDC5XuhUhr9foYf1SChEmYp tCOK2o71FgZ8yG539IYCVjG9cJZxPLM0OI7RQ8hcMETAr+eiXPXxHrmrm9kdBtYM ZAQERvqI5yu2HWIb87KBc38H0rgYrOJKZt9Rx20as/aqAME7hFvYErFlcnxdmHo+ LmovJOQBCTicNJ4TXJc418JaUWi9cm/A3uhW3o5aLMoRAxCc/8FD+dq2rg4qlHDH tOtK6pwIPHfqRZ3nMLXXWhaa+w+swsxBOnegkvgP2xCyibKjFgh9kzcpaj41w3x1 0FCfvS7flx9ob//fAB8kxLvJyY5p3Qp3xdvj0+gp2qa3Ga5lSqcMzS419TLY1Yfa Jpi2oAagDqP94m0EjAGTkhZMOrsFIDr49g3h7nqz3T3Z54luyXniDoYoO11d+dUF vCUiIJz/PsQIE3NVViZiaRtcLVXneLHISmnz =h3F2 -----END PGP SIGNATURE----- Merge tag 'trace-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from - allow module init functions to be traced - clean up some unused or not used by config events (saves space) - clean up of trace histogram code - add support for preempt and interrupt enabled/disable events - other various clean ups * tag 'trace-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (30 commits) tracing, thermal: Hide cpu cooling trace events when not in use tracing, thermal: Hide devfreq trace events when not in use ftrace: Kill FTRACE_OPS_FL_PER_CPU perf/ftrace: Small cleanup perf/ftrace: Fix function trace events perf/ftrace: Revert ("perf/ftrace: Fix double traces of perf on ftrace:function") tracing, dma-buf: Remove unused trace event dma_fence_annotate_wait_on tracing, memcg, vmscan: Hide trace events when not in use tracing/xen: Hide events that are not used when X86_PAE is not defined tracing: mark trace_test_buffer as __maybe_unused printk: Remove superfluous memory barriers from printk_safe ftrace: Clear hashes of stale ips of init memory tracing: Add support for preempt and irq enable/disable events tracing: Prepare to add preempt and irq trace events ftrace/kallsyms: Have /proc/kallsyms show saved mod init functions ftrace: Add freeing algorithm to free ftrace_mod_maps ftrace: Save module init functions kallsyms symbols for tracing ftrace: Allow module init functions to be traced ftrace: Add a ftrace_free_mem() function for modules to use tracing: Reimplement log2 ... |
||
Peter Zijlstra
|
0d3d73aac2 |
perf/core: Rewrite event timekeeping
The current even timekeeping, which computes enabled and running times, uses 3 distinct timestamps to reflect the various event states: OFF (stopped), INACTIVE (enabled) and ACTIVE (running). Furthermore, the update rules are such that even INACTIVE events need their timestamps updated. This is undesirable because we'd like to not touch INACTIVE events if at all possible, this makes event scheduling (much) more expensive than needed. Rewrite the timekeeping to directly use event->state, this greatly simplifies the code and results in only having to update things when we change state, or an up-to-date value is requested (read). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
8ca2bd41c7 |
perf/core: Rename 'enum perf_event_active_state'
Its a weird name, active is one of the states, it should not be part of the name, also, its too long. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Yonghong Song
|
7d9285e82d |
perf/bpf: Extend the perf_event_read_local() interface, a.k.a. "bpf: perf event change needed for subsequent bpf helpers"
eBPF programs would like access to the (perf) event enabled and running times along with the event value, such that they can deal with event multiplexing (among other things). This patch extends the interface; a future eBPF patch will utilize the new functionality. [ Note, there's a same-content commit with a poor changelog and a meaningless title in the networking tree as well - but we need this change for subsequent perf work, so apply it here as well, with a proper changelog. Hopefully Git will be able to sort out this somewhat messy workflow, if there are no other, conflicting changes to these files. ] Signed-off-by: Yonghong Song <yhs@fb.com> [ Rewrote the changelog. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <ast@fb.com> Cc: <daniel@iogearbox.net> Cc: <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: David S. Miller <davem@davemloft.net> Link: http://lkml.kernel.org/r/20171005161923.332790-2-yhs@fb.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
8fd0fbbe88 |
perf/ftrace: Revert ("perf/ftrace: Fix double traces of perf on ftrace:function")
Revert commit:
|
||
Linus Torvalds
|
f57091767a |
Merge branch 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache quality monitoring update from Thomas Gleixner: "This update provides a complete rewrite of the Cache Quality Monitoring (CQM) facility. The existing CQM support was duct taped into perf with a lot of issues and the attempts to fix those turned out to be incomplete and horrible. After lengthy discussions it was decided to integrate the CQM support into the Resource Director Technology (RDT) facility, which is the obvious choise as in hardware CQM is part of RDT. This allowed to add Memory Bandwidth Monitoring support on top. As a result the mechanisms for allocating cache/memory bandwidth and the corresponding monitoring mechanisms are integrated into a single management facility with a consistent user interface" * 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits) x86/intel_rdt: Turn off most RDT features on Skylake x86/intel_rdt: Add command line options for resource director technology x86/intel_rdt: Move special case code for Haswell to a quirk function x86/intel_rdt: Remove redundant ternary operator on return x86/intel_rdt/cqm: Improve limbo list processing x86/intel_rdt/mbm: Fix MBM overflow handler during CPU hotplug x86/intel_rdt: Modify the intel_pqr_state for better performance x86/intel_rdt/cqm: Clear the default RMID during hotcpu x86/intel_rdt: Show bitmask of shareable resource with other executing units x86/intel_rdt/mbm: Handle counter overflow x86/intel_rdt/mbm: Add mbm counter initialization x86/intel_rdt/mbm: Basic counting of MBM events (total and local) x86/intel_rdt/cqm: Add CPU hotplug support x86/intel_rdt/cqm: Add sched_in support x86/intel_rdt: Introduce rdt_enable_key for scheduling x86/intel_rdt/cqm: Add mount,umount support x86/intel_rdt/cqm: Add rmdir support x86/intel_rdt: Separate the ctrl bits from rmdir x86/intel_rdt/cqm: Add mon_data x86/intel_rdt: Prepare for RDT monitor data support ... |
||
Kan Liang
|
fc7ce9c74c |
perf/core, x86: Add PERF_SAMPLE_PHYS_ADDR
For understanding how the workload maps to memory channels and hardware behavior, it's very important to collect address maps with physical addresses. For example, 3D XPoint access can only be found by filtering the physical address. Add a new sample type for physical address. perf already has a facility to collect data virtual address. This patch introduces a function to convert the virtual address to physical address. The function is quite generic and can be extended to any architecture as long as a virtual address is provided. - For kernel direct mapping addresses, virt_to_phys is used to convert the virtual addresses to physical address. - For user virtual addresses, __get_user_pages_fast is used to walk the pages tables for user physical address. - This does not work for vmalloc addresses right now. These are not resolved, but code to do that could be added. The new sample type requires collecting the virtual address. The virtual address will not be output unless SAMPLE_ADDR is applied. For security, the physical address can only be exposed to root or privileged user. Tested-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: mpe@ellerman.id.au Link: http://lkml.kernel.org/r/1503967969-48278-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Shishkin
|
8d4e6c4caa |
perf/core, pt, bts: Get rid of itrace_started
I just noticed that hw.itrace_started and hw.config are aliased to the same location. Now, the PT driver happens to use both, which works out fine by sheer luck: - STORE(hw.itrace_start) is ordered before STORE(hw.config), in the program order, although there are no compiler barriers to ensure that, - to the perf_log_itrace_start() hw.itrace_start looks set at the same time as when it is intended to be set because both stores happen in the same path, - hw.config is never reset to zero in the PT driver. Now, the use of hw.config by the PT driver makes more sense (it being a HW PMU) than messing around with itrace_started, which is an awkward API to begin with. This patch replaces hw.itrace_started with an attach_state bit and an API call for the PMU drivers to use to communicate the condition. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: vince@deater.net Link: http://lkml.kernel.org/r/20170330153956.25994-1-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Zhou Chengming
|
75e8387685 |
perf/ftrace: Fix double traces of perf on ftrace:function
When running perf on the ftrace:function tracepoint, there is a bug which can be reproduced by: perf record -e ftrace:function -a sleep 20 & perf record -e ftrace:function ls perf script ls 10304 [005] 171.853235: ftrace:function: perf_output_begin ls 10304 [005] 171.853237: ftrace:function: perf_output_begin ls 10304 [005] 171.853239: ftrace:function: task_tgid_nr_ns ls 10304 [005] 171.853240: ftrace:function: task_tgid_nr_ns ls 10304 [005] 171.853242: ftrace:function: __task_pid_nr_ns ls 10304 [005] 171.853244: ftrace:function: __task_pid_nr_ns We can see that all the function traces are doubled. The problem is caused by the inconsistency of the register function perf_ftrace_event_register() with the probe function perf_ftrace_function_call(). The former registers one probe for every perf_event. And the latter handles all perf_events on the current cpu. So when two perf_events on the current cpu, the traces of them will be doubled. So this patch adds an extra parameter "event" for perf_tp_event, only send sample data to this event when it's not NULL. Signed-off-by: Zhou Chengming <zhouchengming1@huawei.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: alexander.shishkin@linux.intel.com Cc: huawei.libin@huawei.com Link: http://lkml.kernel.org/r/1503668977-12526-1-git-send-email-zhouchengming1@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
bfe334924c |
perf/x86: Fix RDPMC vs. mm_struct tracking
Vince reported the following rdpmc() testcase failure:
> Failing test case:
>
> fd=perf_event_open();
> addr=mmap(fd);
> exec() // without closing or unmapping the event
> fd=perf_event_open();
> addr=mmap(fd);
> rdpmc() // GPFs due to rdpmc being disabled
The problem is of course that exec() plays tricks with what is
current->mm, only destroying the old mappings after having
installed the new mm.
Fix this confusion by passing along vma->vm_mm instead of relying on
current->mm.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes:
|
||
Vikas Shivappa
|
c39a0e2c88 |
x86/perf/cqm: Wipe out perf based cqm
'perf cqm' never worked due to the incompatibility between perf infrastructure and cqm hardware support. The hardware uses RMIDs to track the llc occupancy of tasks and these RMIDs are per package. This makes monitoring a hierarchy like cgroup along with monitoring of tasks separately difficult and several patches sent to lkml to fix them were NACKed. Further more, the following issues in the current perf cqm make it almost unusable: 1. No support to monitor the same group of tasks for which we do allocation using resctrl. 2. It gives random and inaccurate data (mostly 0s) once we run out of RMIDs due to issues in Recycling. 3. Recycling results in inaccuracy of data because we cannot guarantee that the RMID was stolen from a task when it was not pulling data into cache or even when it pulled the least data. Also for monitoring llc_occupancy, if we stop using an RMID_x and then start using an RMID_y after we reclaim an RMID from an other event, we miss accounting all the occupancy that was tagged to RMID_x at a later perf_count. 2. Recycling code makes the monitoring code complex including scheduling because the event can lose RMID any time. Since MBM counters count bandwidth for a period of time by taking snap shot of total bytes at two different times, recycling complicates the way we count MBM in a hierarchy. Also we need a spin lock while we do the processing to account for MBM counter overflow. We also currently use a spin lock in scheduling to prevent the RMID from being taken away. 4. Lack of support when we run different kind of event like task, system-wide and cgroup events together. Data mostly prints 0s. This is also because we can have only one RMID tied to a cpu as defined by the cqm hardware but a perf can at the same time tie multiple events during one sched_in. 5. No support of monitoring a group of tasks. There is partial support for cgroup but it does not work once there is a hierarchy of cgroups or if we want to monitor a task in a cgroup and the cgroup itself. 6. No support for monitoring tasks for the lifetime without perf overhead. 7. It reported the aggregate cache occupancy or memory bandwidth over all sockets. But most cloud and VMM based use cases want to know the individual per-socket usage. Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: ravi.v.shankar@intel.com Cc: tony.luck@intel.com Cc: fenghua.yu@intel.com Cc: peterz@infradead.org Cc: eranian@google.com Cc: vikas.shivappa@intel.com Cc: ak@linux.intel.com Cc: davidcc@google.com Cc: reinette.chatre@intel.com Link: http://lkml.kernel.org/r/1501017287-28083-2-git-send-email-vikas.shivappa@linux.intel.com |
||
Linus Torvalds
|
5518b69b76 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller: "Reasonably busy this cycle, but perhaps not as busy as in the 4.12 merge window: 1) Several optimizations for UDP processing under high load from Paolo Abeni. 2) Support pacing internally in TCP when using the sch_fq packet scheduler for this is not practical. From Eric Dumazet. 3) Support mutliple filter chains per qdisc, from Jiri Pirko. 4) Move to 1ms TCP timestamp clock, from Eric Dumazet. 5) Add batch dequeueing to vhost_net, from Jason Wang. 6) Flesh out more completely SCTP checksum offload support, from Davide Caratti. 7) More plumbing of extended netlink ACKs, from David Ahern, Pablo Neira Ayuso, and Matthias Schiffer. 8) Add devlink support to nfp driver, from Simon Horman. 9) Add RTM_F_FIB_MATCH flag to RTM_GETROUTE queries, from Roopa Prabhu. 10) Add stack depth tracking to BPF verifier and use this information in the various eBPF JITs. From Alexei Starovoitov. 11) Support XDP on qed device VFs, from Yuval Mintz. 12) Introduce BPF PROG ID for better introspection of installed BPF programs. From Martin KaFai Lau. 13) Add bpf_set_hash helper for TC bpf programs, from Daniel Borkmann. 14) For loads, allow narrower accesses in bpf verifier checking, from Yonghong Song. 15) Support MIPS in the BPF selftests and samples infrastructure, the MIPS eBPF JIT will be merged in via the MIPS GIT tree. From David Daney. 16) Support kernel based TLS, from Dave Watson and others. 17) Remove completely DST garbage collection, from Wei Wang. 18) Allow installing TCP MD5 rules using prefixes, from Ivan Delalande. 19) Add XDP support to Intel i40e driver, from Björn Töpel 20) Add support for TC flower offload in nfp driver, from Simon Horman, Pieter Jansen van Vuuren, Benjamin LaHaise, Jakub Kicinski, and Bert van Leeuwen. 21) IPSEC offloading support in mlx5, from Ilan Tayari. 22) Add HW PTP support to macb driver, from Rafal Ozieblo. 23) Networking refcount_t conversions, From Elena Reshetova. 24) Add sock_ops support to BPF, from Lawrence Brako. This is useful for tuning the TCP sockopt settings of a group of applications, currently via CGROUPs" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1899 commits) net: phy: dp83867: add workaround for incorrect RX_CTRL pin strap dt-bindings: phy: dp83867: provide a workaround for incorrect RX_CTRL pin strap cxgb4: Support for get_ts_info ethtool method cxgb4: Add PTP Hardware Clock (PHC) support cxgb4: time stamping interface for PTP nfp: default to chained metadata prepend format nfp: remove legacy MAC address lookup nfp: improve order of interfaces in breakout mode net: macb: remove extraneous return when MACB_EXT_DESC is defined bpf: add missing break in for the TCP_BPF_SNDCWND_CLAMP case bpf: fix return in load_bpf_file mpls: fix rtm policy in mpls_getroute net, ax25: convert ax25_cb.refcount from atomic_t to refcount_t net, ax25: convert ax25_route.refcount from atomic_t to refcount_t net, ax25: convert ax25_uid_assoc.refcount from atomic_t to refcount_t net, sctp: convert sctp_ep_common.refcnt from atomic_t to refcount_t net, sctp: convert sctp_transport.refcnt from atomic_t to refcount_t net, sctp: convert sctp_chunk.refcnt from atomic_t to refcount_t net, sctp: convert sctp_datamsg.refcnt from atomic_t to refcount_t net, sctp: convert sctp_auth_bytes.refcnt from atomic_t to refcount_t ... |
||
Alexei Starovoitov
|
f91840a32d |
perf, bpf: Add BPF support to all perf_event types
Allow BPF_PROG_TYPE_PERF_EVENT program types to attach to all perf_event types, including HW_CACHE, RAW, and dynamic pmu events. Only tracepoint/kprobe events are treated differently which require BPF_PROG_TYPE_TRACEPOINT/BPF_PROG_TYPE_KPROBE program types accordingly. Also add support for reading all event counters using bpf_perf_event_read() helper. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Thomas Gleixner
|
a63fbed776 |
perf/tracing/cpuhotplug: Fix locking order
perf, tracing, kprobes and jump_labels have a gazillion of ways to create dependency lock chains. Some of those involve nested invocations of get_online_cpus(). The conversion of the hotplug locking to a percpu rwsem requires to avoid such nested calls. sys_perf_event_open() protects most of the syscall logic against cpu hotplug. This causes nested calls and lock inversions versus ftrace and kprobes in various interesting ways. It's impossible to move the hotplug locking to the outer end of all call chains in the involved facilities, so the hotplug protection in sys_perf_event_open() needs to be solved differently. Introduce 'pmus_mutex' which protects a perf private online cpumask. This mutex is taken when the mask is updated in the cpu hotplug callbacks and can be taken in sys_perf_event_open() to protect the swhash setup/teardown code and when the final judgement about a valid event has to be made. [ tglx: Produced changelog and fixed the swhash interaction ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Link: http://lkml.kernel.org/r/20170524081548.930941109@linutronix.de |
||
Suravee Suthikulpanit
|
cf25f904ef |
x86/events/amd/iommu: Add IOMMU-specific hw_perf_event struct
Current AMD IOMMU perf PMU inappropriately uses the hardware struct inside the union in struct hw_perf_event, extra_reg in particular. Instead, introduce an AMD IOMMU-specific struct with required parameters to be programmed into the IOMMU performance counter control register. Update the pasid field from 16 to 20 bits while at it. Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> [ Fixup macros, shorten get_next_avail_iommu_bnk_cntr() local vars, massage commit message. ] Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Jörg Rödel <joro@8bytes.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: iommu@lists.linux-foundation.org Link: http://lkml.kernel.org/r/1487926102-13073-10-git-send-email-Suravee.Suthikulpanit@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Will Deacon
|
f4c0b0aa58 |
perf/core: Keep AUX flags in the output handle
In preparation for adding more flags to perf AUX records, introduce a separate API for setting the flags for a session, rather than appending more bool arguments to perf_aux_output_end. This allows to set each flag at the time a corresponding condition is detected, instead of tracking it in each driver's private state. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: vince@deater.net Link: http://lkml.kernel.org/r/20170220133352.17995-3-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Hari Bathini
|
e422267322 |
perf: Add PERF_RECORD_NAMESPACES to include namespaces related info
With the advert of container technologies like docker, that depend on namespaces for isolation, there is a need for tracing support for namespaces. This patch introduces new PERF_RECORD_NAMESPACES event for recording namespaces related info. By recording info for every namespace, it is left to userspace to take a call on the definition of a container and trace containers by updating perf tool accordingly. Each namespace has a combination of device and inode numbers. Though every namespace has the same device number currently, that may change in future to avoid the need for a namespace of namespaces. Considering such possibility, record both device and inode numbers separately for each namespace. Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@fb.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Aravinda Prasad <aravinda@linux.vnet.ibm.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Sargun Dhillon <sargun@sargun.me> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/148891929686.25309.2827618988917007768.stgit@hbathini.in.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Alexander Shishkin
|
6ce77bfd6c |
perf/core: Allow kernel filters on CPU events
While supporting file-based address filters for CPU events requires some extra context switch handling, kernel address filters are easy, since the kernel mapping is preserved across address spaces. It is also useful as it permits tracing scheduling paths of the kernel. This patch allows setting up kernel filters for CPU events. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Will Deacon <will.deacon@arm.com> Cc: vince@deater.net Link: http://lkml.kernel.org/r/20170126094057.13805-4-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
David Carrillo-Cisneros
|
1fd7e41699 |
perf/core: Remove perf_cpu_context::unique_pmu
cpuctx->unique_pmu was originally introduced as a way to identify cpuctxs with shared pmus in order to avoid visiting the same cpuctx more than once in a for_each_pmu loop. cpuctx->unique_pmu == cpuctx->pmu in non-software task contexts since they have only one pmu per cpuctx. Since perf_pmu_sched_task() is only called in hw contexts, this patch replaces cpuctx->unique_pmu by cpuctx->pmu in it. The change above, together with the previous patch in this series, removed the remaining uses of cpuctx->unique_pmu, so we remove it altogether. Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Cc: Vince Weaver <vince@deater.net> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/20170118192454.58008-3-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
David Carrillo-Cisneros
|
058fe1c044 |
perf/core: Make cgroup switch visit only cpuctxs with cgroup events
This patch follows from a conversation in CQM/CMT's last series about speeding up the context switch for cgroup events: https://patchwork.kernel.org/patch/9478617/ This is a low-hanging fruit optimization. It replaces the iteration over the "pmus" list in cgroup switch by an iteration over a new list that contains only cpuctxs with at least one cgroup event. This is necessary because the number of PMUs have increased over the years e.g modern x86 server systems have well above 50 PMUs. The iteration over the full PMU list is unneccessary and can be costly in heavy cache contention scenarios. Below are some instrumentation measurements with 10, 50 and 90 percentiles of the total cost of context switch before and after this optimization for a simple array read/write microbenchark. Contention Level Nr events Before (us) After (us) Median L2 L3 types (10%, 50%, 90%) (10%, 50%, 90% Speedup -------------------------------------------------------------------------- Low Low 1 (1.72, 2.42, 5.85) (1.35, 1.64, 5.46) 29% High Low 1 (2.08, 4.56, 19.8) (1720, 2.20, 13.7) 51% High High 1 (2.86, 10.4, 12.7) (2.54, 4.32, 12.1) 58% Low Low 2 (1.98, 3.20, 6.89) (1.68, 2.41, 8.89) 24% High Low 2 (2.48, 5.28, 22.4) (2150, 3.69, 14.6) 30% High High 2 (3.32, 8.09, 13.9) (2.80, 5.15, 13.7) 36% where: 1 event type = cycles 2 event types = cycles,intel_cqm/llc_occupancy/ Contention L2 Low: workset < L2 cache size. High: " >> L2 " " . Contention L3 Low: workset of task on all sockets < L3 cache size. High: " " " " " " >> L3 " " . Median Speedup is (50%ile Before - 50%ile After) / 50%ile Before Unsurprisingly, the benefits of this optimization decrease with the number of cpuctxs with a cgroup events, yet, is never detrimental. Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Cc: Vince Weaver <vince@deater.net> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/20170118192454.58008-2-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jiri Olsa
|
475113d937 |
perf/x86/intel: Account interrupts for PEBS errors
It's possible to set up PEBS events to get only errors and not any data, like on SNB-X (model 45) and IVB-EP (model 62) via 2 perf commands running simultaneously: taskset -c 1 ./perf record -c 4 -e branches:pp -j any -C 10 This leads to a soft lock up, because the error path of the intel_pmu_drain_pebs_nhm() does not account event->hw.interrupt for error PEBS interrupts, so in case you're getting ONLY errors you don't have a way to stop the event when it's over the max_samples_per_tick limit: NMI watchdog: BUG: soft lockup - CPU#22 stuck for 22s! [perf_fuzzer:5816] ... RIP: 0010:[<ffffffff81159232>] [<ffffffff81159232>] smp_call_function_single+0xe2/0x140 ... Call Trace: ? trace_hardirqs_on_caller+0xf5/0x1b0 ? perf_cgroup_attach+0x70/0x70 perf_install_in_context+0x199/0x1b0 ? ctx_resched+0x90/0x90 SYSC_perf_event_open+0x641/0xf90 SyS_perf_event_open+0x9/0x10 do_syscall_64+0x6c/0x1f0 entry_SYSCALL64_slow_path+0x25/0x25 Add perf_event_account_interrupt() which does the interrupt and frequency checks and call it from intel_pmu_drain_pebs_nhm()'s error path. We keep the pending_kill and pending_wakeup logic only in the __perf_event_overflow() path, because they make sense only if there's any data to deliver. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vince@deater.net> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1482931866-6018-2-git-send-email-jolsa@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jiri Olsa
|
5aab90ce1e |
perf/powerpc: Don't call perf_event_disable() from atomic context
The trinity syscall fuzzer triggered following WARN() on powerpc: WARNING: CPU: 9 PID: 2998 at arch/powerpc/kernel/hw_breakpoint.c:278 ... NIP [c00000000093aedc] .hw_breakpoint_handler+0x28c/0x2b0 LR [c00000000093aed8] .hw_breakpoint_handler+0x288/0x2b0 Call Trace: [c0000002f7933580] [c00000000093aed8] .hw_breakpoint_handler+0x288/0x2b0 (unreliable) [c0000002f7933630] [c0000000000f671c] .notifier_call_chain+0x7c/0xf0 [c0000002f79336d0] [c0000000000f6abc] .__atomic_notifier_call_chain+0xbc/0x1c0 [c0000002f7933780] [c0000000000f6c40] .notify_die+0x70/0xd0 [c0000002f7933820] [c00000000001a74c] .do_break+0x4c/0x100 [c0000002f7933920] [c0000000000089fc] handle_dabr_fault+0x14/0x48 Followed by a lockdep warning: =============================== [ INFO: suspicious RCU usage. ] 4.8.0-rc5+ #7 Tainted: G W ------------------------------- ./include/linux/rcupdate.h:556 Illegal context switch in RCU read-side critical section! other info that might help us debug this: rcu_scheduler_active = 1, debug_locks = 0 2 locks held by ls/2998: #0: (rcu_read_lock){......}, at: [<c0000000000f6a00>] .__atomic_notifier_call_chain+0x0/0x1c0 #1: (rcu_read_lock){......}, at: [<c00000000093ac50>] .hw_breakpoint_handler+0x0/0x2b0 stack backtrace: CPU: 9 PID: 2998 Comm: ls Tainted: G W 4.8.0-rc5+ #7 Call Trace: [c0000002f7933150] [c00000000094b1f8] .dump_stack+0xe0/0x14c (unreliable) [c0000002f79331e0] [c00000000013c468] .lockdep_rcu_suspicious+0x138/0x180 [c0000002f7933270] [c0000000001005d8] .___might_sleep+0x278/0x2e0 [c0000002f7933300] [c000000000935584] .mutex_lock_nested+0x64/0x5a0 [c0000002f7933410] [c00000000023084c] .perf_event_ctx_lock_nested+0x16c/0x380 [c0000002f7933500] [c000000000230a80] .perf_event_disable+0x20/0x60 [c0000002f7933580] [c00000000093aeec] .hw_breakpoint_handler+0x29c/0x2b0 [c0000002f7933630] [c0000000000f671c] .notifier_call_chain+0x7c/0xf0 [c0000002f79336d0] [c0000000000f6abc] .__atomic_notifier_call_chain+0xbc/0x1c0 [c0000002f7933780] [c0000000000f6c40] .notify_die+0x70/0xd0 [c0000002f7933820] [c00000000001a74c] .do_break+0x4c/0x100 [c0000002f7933920] [c0000000000089fc] handle_dabr_fault+0x14/0x48 While it looks like the first WARN() is probably valid, the other one is triggered by disabling event via perf_event_disable() from atomic context. The event is disabled here in case we were not able to emulate the instruction that hit the breakpoint. By disabling the event we unschedule the event and make sure it's not scheduled back. But we can't call perf_event_disable() from atomic context, instead we need to use the event's pending_disable irq_work method to disable it. Reported-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Neuling <mikey@neuling.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161026094824.GA21397@krava Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
687ee0ad4e |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller: 1) BBR TCP congestion control, from Neal Cardwell, Yuchung Cheng and co. at Google. https://lwn.net/Articles/701165/ 2) Do TCP Small Queues for retransmits, from Eric Dumazet. 3) Support collect_md mode for all IPV4 and IPV6 tunnels, from Alexei Starovoitov. 4) Allow cls_flower to classify packets in ip tunnels, from Amir Vadai. 5) Support DSA tagging in older mv88e6xxx switches, from Andrew Lunn. 6) Support GMAC protocol in iwlwifi mwm, from Ayala Beker. 7) Support ndo_poll_controller in mlx5, from Calvin Owens. 8) Move VRF processing to an output hook and allow l3mdev to be loopback, from David Ahern. 9) Support SOCK_DESTROY for UDP sockets. Also from David Ahern. 10) Congestion control in RXRPC, from David Howells. 11) Support geneve RX offload in ixgbe, from Emil Tantilov. 12) When hitting pressure for new incoming TCP data SKBs, perform a partial rathern than a full purge of the OFO queue (which could be huge). From Eric Dumazet. 13) Convert XFRM state and policy lookups to RCU, from Florian Westphal. 14) Support RX network flow classification to igb, from Gangfeng Huang. 15) Hardware offloading of eBPF in nfp driver, from Jakub Kicinski. 16) New skbmod packet action, from Jamal Hadi Salim. 17) Remove some inefficiencies in snmp proc output, from Jia He. 18) Add FIB notifications to properly propagate route changes to hardware which is doing forwarding offloading. From Jiri Pirko. 19) New dsa driver for qca8xxx chips, from John Crispin. 20) Implement RFC7559 ipv6 router solicitation backoff, from Maciej Żenczykowski. 21) Add L3 mode to ipvlan, from Mahesh Bandewar. 22) Support 802.1ad in mlx4, from Moshe Shemesh. 23) Support hardware LRO in mediatek driver, from Nelson Chang. 24) Add TC offloading to mlx5, from Or Gerlitz. 25) Convert various drivers to ethtool ksettings interfaces, from Philippe Reynes. 26) TX max rate limiting for cxgb4, from Rahul Lakkireddy. 27) NAPI support for ath10k, from Rajkumar Manoharan. 28) Support XDP in mlx5, from Rana Shahout and Saeed Mahameed. 29) UDP replicast support in TIPC, from Richard Alpe. 30) Per-queue statistics for qed driver, from Sudarsana Reddy Kalluru. 31) Support BQL in thunderx driver, from Sunil Goutham. 32) TSO support in alx driver, from Tobias Regnery. 33) Add stream parser engine and use it in kcm. 34) Support async DHCP replies in ipconfig module, from Uwe Kleine-König. 35) DSA port fast aging for mv88e6xxx driver, from Vivien Didelot. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1715 commits) mlxsw: switchx2: Fix misuse of hard_header_len mlxsw: spectrum: Fix misuse of hard_header_len net/faraday: Stop NCSI device on shutdown net/ncsi: Introduce ncsi_stop_dev() net/ncsi: Rework the channel monitoring net/ncsi: Allow to extend NCSI request properties net/ncsi: Rework request index allocation net/ncsi: Don't probe on the reserved channel ID (0x1f) net/ncsi: Introduce NCSI_RESERVED_CHANNEL net/ncsi: Avoid unused-value build warning from ia64-linux-gcc net: Add netdev all_adj_list refcnt propagation to fix panic net: phy: Add Edge-rate driver for Microsemi PHYs. vmxnet3: Wake queue from reset work i40e: avoid NULL pointer dereference and recursive errors on early PCI error qed: Add RoCE ll2 & GSI support qed: Add support for memory registeration verbs qed: Add support for QP verbs qed: PD,PKEY and CQ verb support qed: Add support for RoCE hw init qede: Add qedr framework ... |
||
Alexei Starovoitov
|
aa6a5f3cb2 |
perf, bpf: add perf events core support for BPF_PROG_TYPE_PERF_EVENT programs
Allow attaching BPF_PROG_TYPE_PERF_EVENT programs to sw and hw perf events via overflow_handler mechanism. When program is attached the overflow_handlers become stacked. The program acts as a filter. Returning zero from the program means that the normal perf_event_output handler will not be called and sampling event won't be stored in the ring buffer. The overflow_handler_context==NULL is an additional safety check to make sure programs are not attached to hw breakpoints and watchdog in case other checks (that prevent that now anyway) get accidentally relaxed in the future. The program refcnt is incremented in case perf_events are inhereted when target task is forked. Similar to kprobe and tracepoint programs there is no ioctl to detach the program or swap already attached program. The user space expected to close(perf_event_fd) like it does right now for kprobe+bpf. That restriction simplifies the code quite a bit. The invocation of overflow_handler in __perf_event_overflow() is now done via READ_ONCE, since that pointer can be replaced when the program is attached while perf_event itself could have been active already. There is no need to do similar treatment for event->prog, since it's assigned only once before it's accessed. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Alexei Starovoitov
|
0515e5999a |
bpf: introduce BPF_PROG_TYPE_PERF_EVENT program type
Introduce BPF_PROG_TYPE_PERF_EVENT programs that can be attached to HW and SW perf events (PERF_TYPE_HARDWARE and PERF_TYPE_SOFTWARE correspondingly in uapi/linux/perf_event.h) The program visible context meta structure is struct bpf_perf_event_data { struct pt_regs regs; __u64 sample_period; }; which is accessible directly from the program: int bpf_prog(struct bpf_perf_event_data *ctx) { ... ctx->sample_period ... ... ctx->regs.ip ... } The bpf verifier rewrites the accesses into kernel internal struct bpf_perf_event_data_kern which allows changing struct perf_sample_data without affecting bpf programs. New fields can be added to the end of struct bpf_perf_event_data in the future. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
David Carrillo-Cisneros
|
d6a2f9035b |
perf/core: Introduce PMU_EV_CAP_READ_ACTIVE_PKG
Introduce the flag PMU_EV_CAP_READ_ACTIVE_PKG, useful for uncore events, that allows a PMU to signal the generic perf code that an event is readable in the current CPU if the event is active in a CPU in the same package as the current CPU. This is an optimization that avoids a unnecessary IPI for the common case where uncore events are run and read in the same package but in different CPUs. As an example, the IPI removal speeds up perf_read() in my Haswell system as follows: - For event UNC_C_LLC_LOOKUP: From 260 us to 31 us. - For event RAPL's power/energy-cores/: From to 255 us to 27 us. For the optimization to work, all events in the group must have it (similarly to PERF_EV_CAP_SOFTWARE). Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Carrillo-Cisneros <davidcc@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1471467307-61171-4-git-send-email-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
David Carrillo-Cisneros
|
4ff6a8debf |
perf/core: Generalize event->group_flags
Currently, PERF_GROUP_SOFTWARE is used in the group_flags field of a group's leader to indicate that is_software_event(event) is true for all events in a group. This is the only usage of event->group_flags. This pattern of setting a group level flags when all events in the group share a property is useful for the flag introduced in the next patch and for future CQM/CMT flags. So this patches generalizes group_flags to work as an aggregate of event level flags. PERF_GROUP_SOFTWARE denotes an inmutable event's property. All other flags that I intend to add are also determinable at event initialization. To better convey the above, this patch renames event's group_flags to group_caps and PERF_GROUP_SOFTWARE to PERF_EV_CAP_SOFTWARE. Individual event flags are stored in the new event->event_caps. Since the cap flags do not change after event initialization, there is no need to serialize event_caps. This new field is used when events are added to a context, similarly to how PERF_GROUP_SOFTWARE and is_software_event() worked. Lastly, for consistency, updates is_software_event() to rely in event_cap instead of the context index. Signed-off-by: David Carrillo-Cisneros <davidcc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1471467307-61171-3-git-send-email-davidcc@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
e48c178814 |
perf/core: Optimize perf_pmu_sched_task()
For perf record -b, which requires the pmu::sched_task callback the current code is rather expensive: 7.68% sched-pipe [kernel.vmlinux] [k] perf_pmu_sched_task 5.95% sched-pipe [kernel.vmlinux] [k] __switch_to 5.20% sched-pipe [kernel.vmlinux] [k] __intel_pmu_disable_all 3.95% sched-pipe perf [.] worker_thread The problem is that it will iterate all registered PMUs, most of which will not have anything to do. Avoid this by keeping an explicit list of PMUs that have requested the callback. The perf_sched_cb_{inc,dec}() functions already takes the required pmu argument, and now that these functions are no longer called from NMI context we can use them to manage a list. With this patch applied the function doesn't show up in the top 4 anymore (it dropped to 18th place). 6.67% sched-pipe [kernel.vmlinux] [k] __switch_to 6.18% sched-pipe [kernel.vmlinux] [k] __intel_pmu_disable_all 3.92% sched-pipe [kernel.vmlinux] [k] switch_mm_irqs_off 3.71% sched-pipe perf [.] worker_thread Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
David Carrillo-Cisneros
|
db4a835601 |
perf/core: Set cgroup in CPU contexts for new cgroup events
There's a perf stat bug easy to observer on a machine with only one cgroup:
$ perf stat -e cycles -I 1000 -C 0 -G /
# time counts unit events
1.000161699 <not counted> cycles /
2.000355591 <not counted> cycles /
3.000565154 <not counted> cycles /
4.000951350 <not counted> cycles /
We'd expect some output there.
The underlying problem is that there is an optimization in
perf_cgroup_sched_{in,out}() that skips the switch of cgroup events
if the old and new cgroups in a task switch are the same.
This optimization interacts with the current code in two ways
that cause a CPU context's cgroup (cpuctx->cgrp) to be NULL even if a
cgroup event matches the current task. These are:
1. On creation of the first cgroup event in a CPU: In current code,
cpuctx->cpu is only set in perf_cgroup_sched_in, but due to the
aforesaid optimization, perf_cgroup_sched_in will run until the next
cgroup switches in that CPU. This may happen late or never happen,
depending on system's number of cgroups, CPU load, etc.
2. On deletion of the last cgroup event in a cpuctx: In list_del_event,
cpuctx->cgrp is set NULL. Any new cgroup event will not be sched in
because cpuctx->cgrp == NULL until a cgroup switch occurs and
perf_cgroup_sched_in is executed (updating cpuctx->cgrp).
This patch fixes both problems by setting cpuctx->cgrp in list_add_event,
mirroring what list_del_event does when removing a cgroup event from CPU
context, as introduced in:
commit
|
||
Linus Torvalds
|
a6408f6cb6 |
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner: "This is the next part of the hotplug rework. - Convert all notifiers with a priority assigned - Convert all CPU_STARTING/DYING notifiers The final removal of the STARTING/DYING infrastructure will happen when the merge window closes. Another 700 hundred line of unpenetrable maze gone :)" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits) timers/core: Correct callback order during CPU hot plug leds/trigger/cpu: Move from CPU_STARTING to ONLINE level powerpc/numa: Convert to hotplug state machine arm/perf: Fix hotplug state machine conversion irqchip/armada: Avoid unused function warnings ARC/time: Convert to hotplug state machine clocksource/atlas7: Convert to hotplug state machine clocksource/armada-370-xp: Convert to hotplug state machine clocksource/exynos_mct: Convert to hotplug state machine clocksource/arm_global_timer: Convert to hotplug state machine rcu: Convert rcutree to hotplug state machine KVM/arm/arm64/vgic-new: Convert to hotplug state machine smp/cfd: Convert core to hotplug state machine x86/x2apic: Convert to CPU hotplug state machine profile: Convert to hotplug state machine timers/core: Convert to hotplug state machine hrtimer: Convert to hotplug state machine x86/tboot: Convert to hotplug state machine arm64/armv8 deprecated: Convert to hotplug state machine hwtracing/coresight-etm4x: Convert to hotplug state machine ... |
||
Linus Torvalds
|
468fc7ed55 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller: 1) Unified UDP encapsulation offload methods for drivers, from Alexander Duyck. 2) Make DSA binding more sane, from Andrew Lunn. 3) Support QCA9888 chips in ath10k, from Anilkumar Kolli. 4) Several workqueue usage cleanups, from Bhaktipriya Shridhar. 5) Add XDP (eXpress Data Path), essentially running BPF programs on RX packets as soon as the device sees them, with the option to mirror the packet on TX via the same interface. From Brenden Blanco and others. 6) Allow qdisc/class stats dumps to run lockless, from Eric Dumazet. 7) Add VLAN support to b53 and bcm_sf2, from Florian Fainelli. 8) Simplify netlink conntrack entry layout, from Florian Westphal. 9) Add ipv4 forwarding support to mlxsw spectrum driver, from Ido Schimmel, Yotam Gigi, and Jiri Pirko. 10) Add SKB array infrastructure and convert tun and macvtap over to it. From Michael S Tsirkin and Jason Wang. 11) Support qdisc packet injection in pktgen, from John Fastabend. 12) Add neighbour monitoring framework to TIPC, from Jon Paul Maloy. 13) Add NV congestion control support to TCP, from Lawrence Brakmo. 14) Add GSO support to SCTP, from Marcelo Ricardo Leitner. 15) Allow GRO and RPS to function on macsec devices, from Paolo Abeni. 16) Support MPLS over IPV4, from Simon Horman. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits) xgene: Fix build warning with ACPI disabled. be2net: perform temperature query in adapter regardless of its interface state l2tp: Correctly return -EBADF from pppol2tp_getname. net/mlx5_core/health: Remove deprecated create_singlethread_workqueue net: ipmr/ip6mr: update lastuse on entry change macsec: ensure rx_sa is set when validation is disabled tipc: dump monitor attributes tipc: add a function to get the bearer name tipc: get monitor threshold for the cluster tipc: make cluster size threshold for monitoring configurable tipc: introduce constants for tipc address validation net: neigh: disallow transition to NUD_STALE if lladdr is unchanged in neigh_update() MAINTAINERS: xgene: Add driver and documentation path Documentation: dtb: xgene: Add MDIO node dtb: xgene: Add MDIO node drivers: net: xgene: ethtool: Use phy_ethtool_gset and sset drivers: net: xgene: Use exported functions drivers: net: xgene: Enable MDIO driver drivers: net: xgene: Add backward compatibility drivers: net: phy: xgene: Add MDIO driver ... |
||
Daniel Borkmann
|
aa7145c16d |
bpf, events: fix offset in skb copy handler
This patch fixes the __output_custom() routine we currently use with bpf_skb_copy(). I missed that when len is larger than the size of the current handle, we can issue multiple invocations of copy_func, and __output_custom() advances destination but also source buffer by the written amount of bytes. When we have __output_custom(), this is actually wrong since in that case the source buffer points to a non-linear object, in our case an skb, which the copy_func helper is supposed to walk. Therefore, since this is non-linear we thus need to pass the offset into the helper, so that copy_func can use it for extracting the data from the source object. Therefore, adjust the callback signatures properly and pass offset into the skb_header_pointer() invoked from bpf_skb_copy() callback. The __DEFINE_OUTPUT_COPY_BODY() is adjusted to accommodate for two things: i) to pass in whether we should advance source buffer or not; this is a compile-time constant condition, ii) to pass in the offset for __output_custom(), which we do with help of __VA_ARGS__, so everything can stay inlined as is currently. Both changes allow for adapting the __output_* fast-path helpers w/o extra overhead. Fixes: |
||
Daniel Borkmann
|
7e3f977edd |
perf, events: add non-linear data support for raw records
This patch adds support for non-linear data on raw records. It extends raw records to have one or multiple fragments that will be written linearly into the ring slot, where each fragment can optionally have a custom callback handler to walk and extract complex, possibly non-linear data. If a callback handler is provided for a fragment, then the new __output_custom() will be used instead of __output_copy() for the perf_output_sample() part. perf_prepare_sample() does all the size calculation only once, so perf_output_sample() doesn't need to redo the same work anymore, meaning real_size and padding will be cached in the raw record. The raw record becomes 32 bytes in size without holes; to not increase it further and to avoid doing unnecessary recalculations in fast-path, we can reuse next pointer of the last fragment, idea here is borrowed from ZERO_OR_NULL_PTR(), which should keep the perf_output_sample() path for PERF_SAMPLE_RAW minimal. This facility is needed for BPF's event output helper as a first user that will, in a follow-up, add an additional perf_raw_frag to its perf_raw_record in order to be able to more efficiently dump skb context after a linear head meta data related to it. skbs can be non-linear and thus need a custom output function to dump buffers. Currently, the skb data needs to be copied twice; with the help of __output_custom() this work only needs to be done once. Future users could be things like XDP/BPF programs that work on different context though and would thus also have a different callback function. The few users of raw records are adapted to initialize their frag data from the raw record itself, no change in behavior for them. The code is based upon a PoC diff provided by Peter Zijlstra [1]. [1] http://thread.gmane.org/gmane.linux.network/421294 Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Thomas Gleixner
|
89ab9cb169 |
perf/core: Remove perf CPU notifier code
All users converted to state machine callbacks. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: rt@linutronix.de Link: http://lkml.kernel.org/r/20160713153335.115333381@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
00e16c3d68 |
perf/core: Convert to hotplug state machine
Actually a nice symmetric startup/teardown pair which fits properly into the state machine concept. In the long run we should be able to invoke the startup callback for the boot CPU via the state machine and get rid of the init function which invokes it on the boot CPU. Note: This comes actually before the perf hardware callbacks. In the notifier model the hardware callbacks have a higher priority than the core callback. But that's solely for CPU offline so that hardware migration of events happens before the core is notified about the outgoing CPU. With the symetric state array model we have the following ordering: UP: core -> hardware DOWN: hardware -> core Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Reviewed-by: Sebastian Siewior <bigeasy@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: rt@linutronix.de Link: http://lkml.kernel.org/r/20160713153333.587514098@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
616d1c1b98 |
Merge branch 'linus' into perf/core, to refresh the branch
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andi Kleen
|
fc07e9f983 |
perf/x86: Support sysfs files depending on SMT status
Add a way to show different sysfs events attributes depending on HyperThreading is on or off. This is difficult to determine early at boot, so we just do it dynamically when the sysfs attribute is read. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: acme@kernel.org Cc: jolsa@kernel.org Link: http://lkml.kernel.org/r/1463703002-19686-3-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kan Liang
|
f2fb6bef92 |
perf/core: Optimize side-band event delivery
The perf_event_aux() function iterates all PMUs and all events in their respective per-CPU contexts to find the events to deliver side-band records to. For example, the brk test case in lkp triggers many mmap() operations, which, if we're also running perf, results in many perf_event_aux() invocations. If we enable uncore PMU support (even when uncore events are not used), dozens of uncore PMUs will be iterated, which can significantly decrease brk_test's throughput. For example, the brk throughput: without uncore PMUs: 2647573 ops_per_sec with uncore PMUs: 1768444 ops_per_sec ... a 33% reduction. To get at the per-CPU events that need side-band records, this patch puts these events on a per-CPU list, this avoids iterating the PMUs and any events that do not need side-band records. Per task events are unchanged to avoid extra overhead on the context switch paths. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reported-by: Huang, Ying <ying.huang@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1458757477-3781-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Arnaldo Carvalho de Melo
|
97c79a38cd |
perf core: Per event callchain limit
Additionally to being able to control the system wide maximum depth via /proc/sys/kernel/perf_event_max_stack, now we are able to ask for different depths per event, using perf_event_attr.sample_max_stack for that. This uses an u16 hole at the end of perf_event_attr, that, when perf_event_attr.sample_type has the PERF_SAMPLE_CALLCHAIN, if sample_max_stack is zero, means use perf_event_max_stack, otherwise it'll be bounds checked under callchain_mutex. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Milian Wolff <milian.wolff@kdab.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wang Nan <wangnan0@huawei.com> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/n/tip-kolmn1yo40p7jhswxwrc7rrd@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Linus Torvalds
|
bdc6b758e4 |
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar: "Mostly tooling and PMU driver fixes, but also a number of late updates such as the reworking of the call-chain size limiting logic to make call-graph recording more robust, plus tooling side changes for the new 'backwards ring-buffer' extension to the perf ring-buffer" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) perf record: Read from backward ring buffer perf record: Rename variable to make code clear perf record: Prevent reading invalid data in record__mmap_read perf evlist: Add API to pause/resume perf trace: Use the ptr->name beautifier as default for "filename" args perf trace: Use the fd->name beautifier as default for "fd" args perf report: Add srcline_from/to branch sort keys perf evsel: Record fd into perf_mmap perf evsel: Add overwrite attribute and check write_backward perf tools: Set buildid dir under symfs when --symfs is provided perf trace: Only auto set call-graph to "dwarf" when syscalls are being traced perf annotate: Sort list of recognised instructions perf annotate: Fix identification of ARM blt and bls instructions perf tools: Fix usage of max_stack sysctl perf callchain: Stop validating callchains by the max_stack sysctl perf trace: Fix exit_group() formatting perf top: Use machine->kptr_restrict_warned perf trace: Warn when trying to resolve kernel addresses with kptr_restrict=1 perf machine: Do not bail out if not managing to read ref reloc symbol perf/x86/intel/p4: Trival indentation fix, remove space ... |
||
Linus Torvalds
|
a7fd20d1c4 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller: "Highlights: 1) Support SPI based w5100 devices, from Akinobu Mita. 2) Partial Segmentation Offload, from Alexander Duyck. 3) Add GMAC4 support to stmmac driver, from Alexandre TORGUE. 4) Allow cls_flower stats offload, from Amir Vadai. 5) Implement bpf blinding, from Daniel Borkmann. 6) Optimize _ASYNC_ bit twiddling on sockets, unless the socket is actually using FASYNC these atomics are superfluous. From Eric Dumazet. 7) Run TCP more preemptibly, also from Eric Dumazet. 8) Support LED blinking, EEPROM dumps, and rxvlan offloading in mlx5e driver, from Gal Pressman. 9) Allow creating ppp devices via rtnetlink, from Guillaume Nault. 10) Improve BPF usage documentation, from Jesper Dangaard Brouer. 11) Support tunneling offloads in qed, from Manish Chopra. 12) aRFS offloading in mlx5e, from Maor Gottlieb. 13) Add RFS and RPS support to SCTP protocol, from Marcelo Ricardo Leitner. 14) Add MSG_EOR support to TCP, this allows controlling packet coalescing on application record boundaries for more accurate socket timestamp sampling. From Martin KaFai Lau. 15) Fix alignment of 64-bit netlink attributes across the board, from Nicolas Dichtel. 16) Per-vlan stats in bridging, from Nikolay Aleksandrov. 17) Several conversions of drivers to ethtool ksettings, from Philippe Reynes. 18) Checksum neutral ILA in ipv6, from Tom Herbert. 19) Factorize all of the various marvell dsa drivers into one, from Vivien Didelot 20) Add VF support to qed driver, from Yuval Mintz" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1649 commits) Revert "phy dp83867: Fix compilation with CONFIG_OF_MDIO=m" Revert "phy dp83867: Make rgmii parameters optional" r8169: default to 64-bit DMA on recent PCIe chips phy dp83867: Make rgmii parameters optional phy dp83867: Fix compilation with CONFIG_OF_MDIO=m bpf: arm64: remove callee-save registers use for tmp registers asix: Fix offset calculation in asix_rx_fixup() causing slow transmissions switchdev: pass pointer to fib_info instead of copy net_sched: close another race condition in tcf_mirred_release() tipc: fix nametable publication field in nl compat drivers: net: Don't print unpopulated net_device name qed: add support for dcbx. ravb: Add missing free_irq() calls to ravb_close() qed: Remove a stray tab net: ethernet: fec-mpc52xx: use phy_ethtool_{get|set}_link_ksettings net: ethernet: fec-mpc52xx: use phydev from struct net_device bpf, doc: fix typo on bpf_asm descriptions stmmac: hardware TX COE doesn't work when force_thresh_dma_mode is set net: ethernet: fs-enet: use phy_ethtool_{get|set}_link_ksettings net: ethernet: fs-enet: use phydev from struct net_device ... |
||
Arnaldo Carvalho de Melo
|
c85b033496 |
perf core: Separate accounting of contexts and real addresses in a stack trace
The perf_sample->ip_callchain->nr value includes all the entries in the ip_callchain->ip[] array, real addresses and PERF_CONTEXT_{KERNEL,USER,etc}, while what the user expects is that what is in the kernel.perf_event_max_stack sysctl or in the upcoming per event perf_event_attr.sample_max_stack knob be honoured in terms of IP addresses in the stack trace. So allocate a bunch of extra entries for contexts, and do the accounting via perf_callchain_entry_ctx struct members. A new sysctl, kernel.perf_event_max_contexts_per_stack is also introduced for investigating possible bugs in the callchain implementation by some arch. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Milian Wolff <milian.wolff@kdab.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wang Nan <wangnan0@huawei.com> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/n/tip-3b4wnqk340c4sg4gwkfdi9yk@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
3e4de4ec4c |
perf core: Add perf_callchain_store_context() helper
We need have different helpers to account how many contexts we have in the sample and for real addresses, so do it now as a prep patch, to ease review. Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-q964tnyuqrxw5gld18vizs3c@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
3b1fff0803 |
perf core: Add a 'nr' field to perf_event_callchain_context
We will use it to count how many addresses are in the entry->ip[] array, excluding PERF_CONTEXT_{KERNEL,USER,etc} entries, so that we can really return the number of entries specified by the user via the relevant sysctl, kernel.perf_event_max_contexts, or via the per event perf_event_attr.sample_max_stack knob. This way we keep the perf_sample->ip_callchain->nr meaning, that is the number of entries, be it real addresses or PERF_CONTEXT_ entries, while honouring the max_stack knobs, i.e. the end result will be max_stack entries if we have at least that many entries in a given stack trace. Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-s8teto51tdqvlfhefndtat9r@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
cfbcf46845 |
perf core: Pass max stack as a perf_callchain_entry context
This makes perf_callchain_{user,kernel}() receive the max stack as context for the perf_callchain_entry, instead of accessing the global sysctl_perf_event_max_stack. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Milian Wolff <milian.wolff@kdab.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wang Nan <wangnan0@huawei.com> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/n/tip-kolmn1yo40p7jhswxwrc7rrd@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Mark Rutland
|
5101ef20f0 |
perf/arm: Special-case hetereogeneous CPUs
Commit: |
||
Alexander Shishkin
|
375637bc52 |
perf/core: Introduce address range filtering
Many instruction tracing PMUs out there support address range-based filtering, which would, for example, generate trace data only for a given range of instruction addresses, which is useful for tracing individual functions, modules or libraries. Other PMUs may also utilize this functionality to allow filtering to or filtering out code at certain address ranges. This patch introduces the interface for userspace to specify these filters and for the PMU drivers to apply these filters to hardware configuration. The user interface is an ASCII string that is passed via an ioctl() and specifies (in the form of an ASCII string) address ranges within certain object files or within kernel. There is no special treatment for kernel modules yet, but it might be a worthy pursuit. The PMU driver interface basically adds two extra callbacks to the PMU driver structure, one of which validates the filter configuration proposed by the user against what the hardware is actually capable of doing and the other one translates hardware-independent filter configuration into something that can be programmed into the hardware. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: vince@deater.net Link: http://lkml.kernel.org/r/1461771888-10409-6-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Arnaldo Carvalho de Melo
|
c5dfd78eb7 |
perf core: Allow setting up max frame stack depth via sysctl
The default remains 127, which is good for most cases, and not even hit most of the time, but then for some cases, as reported by Brendan, 1024+ deep frames are appearing on the radar for things like groovy, ruby. And in some workloads putting a _lower_ cap on this may make sense. One that is per event still needs to be put in place tho. The new file is: # cat /proc/sys/kernel/perf_event_max_stack 127 Chaging it: # echo 256 > /proc/sys/kernel/perf_event_max_stack # cat /proc/sys/kernel/perf_event_max_stack 256 But as soon as there is some event using callchains we get: # echo 512 > /proc/sys/kernel/perf_event_max_stack -bash: echo: write error: Device or resource busy # Because we only allocate the callchain percpu data structures when there is a user, which allows for changing the max easily, its just a matter of having no callchain users at that point. Reported-and-Tested-by: Brendan Gregg <brendan.d.gregg@gmail.com> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: David Ahern <dsahern@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Milian Wolff <milian.wolff@kdab.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wang Nan <wangnan0@huawei.com> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/r/20160426002928.GB16708@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Wang Nan
|
9ecda41acb |
perf/core: Add ::write_backward attribute to perf event
This patch introduces 'write_backward' bit to perf_event_attr, which controls the direction of a ring buffer. After set, the corresponding ring buffer is written from end to beginning. This feature is design to support reading from overwritable ring buffer. Ring buffer can be created by mapping a perf event fd. Kernel puts event records into ring buffer, user tooling like perf fetch them from address returned by mmap(). To prevent racing between kernel and tooling, they communicate to each other through 'head' and 'tail' pointers. Kernel maintains 'head' pointer, points it to the next free area (tail of the last record). Tooling maintains 'tail' pointer, points it to the tail of last consumed record (record has already been fetched). Kernel determines the available space in a ring buffer using these two pointers to avoid overwrite unfetched records. By mapping without 'PROT_WRITE', an overwritable ring buffer is created. Different from normal ring buffer, tooling is unable to maintain 'tail' pointer because writing is forbidden. Therefore, for this type of ring buffers, kernel overwrite old records unconditionally, works like flight recorder. This feature would be useful if reading from overwritable ring buffer were as easy as reading from normal ring buffer. However, there's an obscure problem. The following figure demonstrates a full overwritable ring buffer. In this figure, the 'head' pointer points to the end of last record, and a long record 'E' is pending. For a normal ring buffer, a 'tail' pointer would have pointed to position (X), so kernel knows there's no more space in the ring buffer. However, for an overwritable ring buffer, kernel ignore the 'tail' pointer. (X) head . | . V +------+-------+----------+------+---+ |A....A|B.....B|C........C|D....D| | +------+-------+----------+------+---+ Record 'A' is overwritten by event 'E': head | V +--+---+-------+----------+------+---+ |.E|..A|B.....B|C........C|D....D|E..| +--+---+-------+----------+------+---+ Now tooling decides to read from this ring buffer. However, none of these two natural positions, 'head' and the start of this ring buffer, are pointing to the head of a record. Even the full ring buffer can be accessed by tooling, it is unable to find a position to start decoding. The first attempt tries to solve this problem AFAIK can be found from [1]. It makes kernel to maintain 'tail' pointer: updates it when ring buffer is half full. However, this approach introduces overhead to fast path. Test result shows a 1% overhead [2]. In addition, this method utilizes no more tham 50% records. Another attempt can be found from [3], which allows putting the size of an event at the end of each record. This approach allows tooling to find records in a backward manner from 'head' pointer by reading size of a record from its tail. However, because of alignment requirement, it needs 8 bytes to record the size of a record, which is a huge waste. Its performance is also not good, because more data need to be written. This approach also introduces some extra branch instructions to fast path. 'write_backward' is a better solution to this problem. Following figure demonstrates the state of the overwritable ring buffer when 'write_backward' is set before overwriting: head | V +---+------+----------+-------+------+ | |D....D|C........C|B.....B|A....A| +---+------+----------+-------+------+ and after overwriting: head | V +---+------+----------+-------+---+--+ |..E|D....D|C........C|B.....B|A..|E.| +---+------+----------+-------+---+--+ In each situation, 'head' points to the beginning of the newest record. From this record, tooling can iterate over the full ring buffer and fetch records one by one. The only limitation that needs to be considered is back-to-back reading. Due to the non-deterministic of user programs, it is impossible to ensure the ring buffer keeps stable during reading. Consider an extreme situation: tooling is scheduled out after reading record 'D', then a burst of events come, eat up the whole ring buffer (one or multiple rounds). When the tooling process comes back, reading after 'D' is incorrect now. To prevent this problem, we need to find a way to ensure the ring buffer is stable during reading. ioctl(PERF_EVENT_IOC_PAUSE_OUTPUT) is suggested because its overhead is lower than ioctl(PERF_EVENT_IOC_ENABLE). By carefully verifying 'header' pointer, reader can avoid pausing the ring-buffer. For example: /* A union of all possible events */ union perf_event event; p = head = perf_mmap__read_head(); while (true) { /* copy header of next event */ fetch(&event.header, p, sizeof(event.header)); /* read 'head' pointer */ head = perf_mmap__read_head(); /* check overwritten: is the header good? */ if (!verify(sizeof(event.header), p, head)) break; /* copy the whole event */ fetch(&event, p, event.header.size); /* read 'head' pointer again */ head = perf_mmap__read_head(); /* is the whole event good? */ if (!verify(event.header.size, p, head)) break; p += event.header.size; } However, the overhead is high because: a) In-place decoding is not safe. Copying-verifying-decoding is required. b) Fetching 'head' pointer requires additional synchronization. (From Alexei Starovoitov: Even when this trick works, pause is needed for more than stability of reading. When we collect the events into overwrite buffer we're waiting for some other trigger (like all cpu utilization spike or just one cpu running and all others are idle) and when it happens the buffer has valuable info from the past. At this point new events are no longer interesting and buffer should be paused, events read and unpaused until next trigger comes.) This patch utilizes event's default overflow_handler introduced previously. perf_event_output_backward() is created as the default overflow handler for backward ring buffers. To avoid extra overhead to fast path, original perf_event_output() becomes __perf_event_output() and marked '__always_inline'. In theory, there's no extra overhead introduced to fast path. Performance testing: Calling 3000000 times of 'close(-1)', use gettimeofday() to check duration. Use 'perf record -o /dev/null -e raw_syscalls:*' to capture system calls. In ns. Testing environment: CPU : Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz Kernel : v4.5.0 MEAN STDVAR BASE 800214.950 2853.083 PRE1 2253846.700 9997.014 PRE2 2257495.540 8516.293 POST 2250896.100 8933.921 Where 'BASE' is pure performance without capturing. 'PRE1' is test result of pure 'v4.5.0' kernel. 'PRE2' is test result before this patch. 'POST' is test result after this patch. See [4] for the detailed experimental setup. Considering the stdvar, this patch doesn't introduce performance overhead to the fast path. [1] http://lkml.iu.edu/hypermail/linux/kernel/1304.1/04584.html [2] http://lkml.iu.edu/hypermail/linux/kernel/1307.1/00535.html [3] http://lkml.iu.edu/hypermail/linux/kernel/1512.0/01265.html [4] http://lkml.kernel.org/g/56F89DCD.1040202@huawei.com Signed-off-by: Wang Nan <wangnan0@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: <acme@kernel.org> Cc: <pi3orama@163.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/r/1459865478-53413-1-git-send-email-wangnan0@huawei.com [ Fixed the changelog some more. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
889fac6d67 |
Linux 4.6-rc3
-----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJXCva8AAoJEHm+PkMAQRiGXBoIAIkrjxdbuT2nS9A3tHwkiFXa 6/Th1UjbNaoLuZ+MckQHayAD9NcWY9lVjOUmFsSiSWMCQK/rTWDl8x5ITputrY2V VuhrJCwI7huEtu6GpRaJaUgwtdOjhIHz1Ue2MCdNIbKX3l+LjVyyJ9Vo8rruvZcR fC7kiivH04fYX58oQ+SHymCg54ny3qJEPT8i4+g26686m11hvZLI3UAs2PAn6ut+ atCjxdQ4yLN3DWsbjuA7wYGWhTgFloxL4TIoisuOUc3FXnSi/ivIbXZvu4lUfisz LA2JBhfII3AEMBWG9xfGbXPijJTT4q7yNlTD0oYcnMtAt/Roh2F04asqB1LetEY= =bri6 -----END PGP SIGNATURE----- Merge tag 'v4.6-rc3' into perf/core, to refresh the tree Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexei Starovoitov
|
1e1dcd93b4 |
perf: split perf_trace_buf_prepare into alloc and update parts
split allows to move expensive update of 'struct trace_entry' to later phase. Repurpose unused 1st argument of perf_tp_event() to indicate event type. While splitting use temp variable 'rctx' instead of '*rctx' to avoid unnecessary loads done by the compiler due to -fno-strict-aliasing Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Alexei Starovoitov
|
ec5e099d6e |
perf: optimize perf_fetch_caller_regs
avoid memset in perf_fetch_caller_regs, since it's the critical path of all tracepoints. It's called from perf_sw_event_sched, perf_event_task_sched_in and all of perf_trace_##call with this_cpu_ptr(&__perf_regs[..]) which are zero initialized by perpcu init logic and subsequent call to perf_arch_fetch_caller_regs initializes the same fields on all archs, so we can safely drop memset from all of the above cases and move it into perf_ftrace_function_call that calls it with stack allocated pt_regs. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Wang Nan
|
1879445dfa |
perf/core: Set event's default ::overflow_handler()
Set a default event->overflow_handler in perf_event_alloc() so don't need to check event->overflow_handler in __perf_event_overflow(). Following commits can give a different default overflow_handler. Initial idea comes from Peter: http://lkml.kernel.org/r/20130708121557.GA17211@twins.programming.kicks-ass.net Since the default value of event->overflow_handler is not NULL, existing 'if (!overflow_handler)' checks need to be changed. is_default_overflow_handler() is introduced for this. No extra performance overhead is introduced into the hot path because in the original code we still need to read this handler from memory. A conditional branch is avoided so actually we remove some instructions. Signed-off-by: Wang Nan <wangnan0@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <pi3orama@163.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Zefan Li <lizefan@huawei.com> Link: http://lkml.kernel.org/r/1459147292-239310-3-git-send-email-wangnan0@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
3fa2fe2ce0 |
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar: "This tree contains various perf fixes on the kernel side, plus three hw/event-enablement late additions: - Intel Memory Bandwidth Monitoring events and handling - the AMD Accumulated Power Mechanism reporting facility - more IOMMU events ... and a final round of perf tooling updates/fixes" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) perf llvm: Use strerror_r instead of the thread unsafe strerror one perf llvm: Use realpath to canonicalize paths perf tools: Unexport some methods unused outside strbuf.c perf probe: No need to use formatting strbuf method perf help: Use asprintf instead of adhoc equivalents perf tools: Remove unused perf_pathdup, xstrdup functions perf tools: Do not include stringify.h from the kernel sources tools include: Copy linux/stringify.h from the kernel tools lib traceevent: Remove redundant CPU output perf tools: Remove needless 'extern' from function prototypes perf tools: Simplify die() mechanism perf tools: Remove unused DIE_IF macro perf script: Remove lots of unused arguments perf thread: Rename perf_event__preprocess_sample_addr to thread__resolve perf machine: Rename perf_event__preprocess_sample to machine__resolve perf tools: Add cpumode to struct perf_sample perf tests: Forward the perf_sample in the dwarf unwind test perf tools: Remove misplaced __maybe_unused perf list: Fix documentation of :ppp perf bench numa: Fix assertion for nodes bitfield ... |
||
Huang Rui
|
c7ab62bfbe |
perf/x86/amd/power: Add AMD accumulated power reporting mechanism
Introduce an AMD accumlated power reporting mechanism for the Family 15h, Model 60h processor that can be used to calculate the average power consumed by a processor during a measurement interval. The feature support is indicated by CPUID Fn8000_0007_EDX[12]. This feature will be implemented both in hwmon and perf. The current design provides one event to report per package/processor power consumption by counting each compute unit power value. Here the gory details of how the computation is done: * Tsample: compute unit power accumulator sample period * Tref: the PTSC counter period (PTSC: performance timestamp counter) * N: the ratio of compute unit power accumulator sample period to the PTSC period * Jmax: max compute unit accumulated power which is indicated by MSR_C001007b[MaxCpuSwPwrAcc] * Jx/Jy: compute unit accumulated power which is indicated by MSR_C001007a[CpuSwPwrAcc] * Tx/Ty: the value of performance timestamp counter which is indicated by CU_PTSC MSR_C0010280[PTSC] * PwrCPUave: CPU average power i. Determine the ratio of Tsample to Tref by executing CPUID Fn8000_0007. N = value of CPUID Fn8000_0007_ECX[CpuPwrSampleTimeRatio[15:0]]. ii. Read the full range of the cumulative energy value from the new MSR MaxCpuSwPwrAcc. Jmax = value returned. iii. At time x, software reads CpuSwPwrAcc and samples the PTSC. Jx = value read from CpuSwPwrAcc and Tx = value read from PTSC. iv. At time y, software reads CpuSwPwrAcc and samples the PTSC. Jy = value read from CpuSwPwrAcc and Ty = value read from PTSC. v. Calculate the average power consumption for a compute unit over time period (y-x). Unit of result is uWatt: if (Jy < Jx) // Rollover has occurred Jdelta = (Jy + Jmax) - Jx else Jdelta = Jy - Jx PwrCPUave = N * Jdelta * 1000 / (Ty - Tx) Simple example: root@hr-zp:/home/ray/tip# ./tools/perf/perf stat -a -e 'power/power-pkg/' make -j4 CHK include/config/kernel.release CHK include/generated/uapi/linux/version.h CHK include/generated/utsrelease.h CHK include/generated/timeconst.h CHK include/generated/bounds.h CHK include/generated/asm-offsets.h CALL scripts/checksyscalls.sh CHK include/generated/compile.h SKIPPED include/generated/compile.h Building modules, stage 2. Kernel: arch/x86/boot/bzImage is ready (#40) MODPOST 4225 modules Performance counter stats for 'system wide': 183.44 mWatts power/power-pkg/ 341.837270111 seconds time elapsed root@hr-zp:/home/ray/tip# ./tools/perf/perf stat -a -e 'power/power-pkg/' sleep 10 Performance counter stats for 'system wide': 0.18 mWatts power/power-pkg/ 10.012551815 seconds time elapsed Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Ingo Molnar <mingo@kernel.org> Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: jacob.w.shin@gmail.com Link: http://lkml.kernel.org/r/1457502306-2559-1-git-send-email-ray.huang@amd.com [ Fixed the modular build. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vikas Shivappa
|
a223c1c7ab |
perf/x86/cqm: Fix CQM handling of grouping events into a cache_group
Currently CQM (cache quality of service monitoring) is grouping all events belonging to same PID to use one RMID. However its not counting all of these different events. Hence we end up with a count of zero for all events other than the group leader. The patch tries to address the issue by keeping a flag in the perf_event.hw which has other CQM related fields. The field is updated at event creation and during grouping. Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com> [peterz: Changed hw_perf_event::is_group_event to an int] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Ahern <dsahern@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: fenghua.yu@intel.com Cc: h.peter.anvin@intel.com Cc: ravi.v.shankar@intel.com Cc: vikas.shivappa@intel.com Link: http://lkml.kernel.org/r/1457652732-4499-2-git-send-email-vikas.shivappa@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
1200b6809d |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller: "Highlights: 1) Support more Realtek wireless chips, from Jes Sorenson. 2) New BPF types for per-cpu hash and arrap maps, from Alexei Starovoitov. 3) Make several TCP sysctls per-namespace, from Nikolay Borisov. 4) Allow the use of SO_REUSEPORT in order to do per-thread processing of incoming TCP/UDP connections. The muxing can be done using a BPF program which hashes the incoming packet. From Craig Gallek. 5) Add a multiplexer for TCP streams, to provide a messaged based interface. BPF programs can be used to determine the message boundaries. From Tom Herbert. 6) Add 802.1AE MACSEC support, from Sabrina Dubroca. 7) Avoid factorial complexity when taking down an inetdev interface with lots of configured addresses. We were doing things like traversing the entire address less for each address removed, and flushing the entire netfilter conntrack table for every address as well. 8) Add and use SKB bulk free infrastructure, from Jesper Brouer. 9) Allow offloading u32 classifiers to hardware, and implement for ixgbe, from John Fastabend. 10) Allow configuring IRQ coalescing parameters on a per-queue basis, from Kan Liang. 11) Extend ethtool so that larger link mode masks can be supported. From David Decotigny. 12) Introduce devlink, which can be used to configure port link types (ethernet vs Infiniband, etc.), port splitting, and switch device level attributes as a whole. From Jiri Pirko. 13) Hardware offload support for flower classifiers, from Amir Vadai. 14) Add "Local Checksum Offload". Basically, for a tunneled packet the checksum of the outer header is 'constant' (because with the checksum field filled into the inner protocol header, the payload of the outer frame checksums to 'zero'), and we can take advantage of that in various ways. From Edward Cree" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits) bonding: fix bond_get_stats() net: bcmgenet: fix dma api length mismatch net/mlx4_core: Fix backward compatibility on VFs phy: mdio-thunder: Fix some Kconfig typos lan78xx: add ndo_get_stats64 lan78xx: handle statistics counter rollover RDS: TCP: Remove unused constant RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket net: smc911x: convert pxa dma to dmaengine team: remove duplicate set of flag IFF_MULTICAST bonding: remove duplicate set of flag IFF_MULTICAST net: fix a comment typo ethernet: micrel: fix some error codes ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it bpf, dst: add and use dst_tclassid helper bpf: make skb->tc_classid also readable net: mvneta: bm: clarify dependencies cls_bpf: reset class and reuse major in da ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c ldmvsw: Add ldmvsw.c driver code ... |
||
Linus Torvalds
|
e23604edac |
Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull NOHZ updates from Ingo Molnar: "NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors the NOHZ 'can the tick be stopped?' infrastructure and related code to be data driven, and harmonizes the naming and handling of all the various properties" [ This makes the ugly "fetch_or()" macro that the scheduler used internally a new generic helper, and does a bad job at it. I'm pulling it, but I've asked Ingo and Frederic to get this fixed up ] * 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched-clock: Migrate to use new tick dependency mask model posix-cpu-timers: Migrate to use new tick dependency mask model sched: Migrate sched to use new tick dependency mask model sched: Account rr tasks perf: Migrate perf to use new tick dependency mask model nohz: Use enum code for tick stop failure tracing message nohz: New tick dependency mask nohz: Implement wide kick on top of irq work atomic: Export fetch_or() |
||
David S. Miller
|
810813c47a |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Several cases of overlapping changes, as well as one instance (vxlan) of a bug fix in 'net' overlapping with code movement in 'net-next'. Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Ingo Molnar
|
1f25184656 |
Merge branch 'timers/core-v9' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into timers/nohz
Pull nohz enhancements from Frederic Weisbecker: "Currently in nohz full configs, the tick dependency is checked asynchronously by nohz code from interrupt and context switch for each concerned subsystem with a set of function provided by these. Such functions are made of many conditions and details that can be heavyweight as they are called on fastpath: sched_can_stop_tick(), posix_cpu_timer_can_stop_tick(), perf_event_can_stop_tick()... Thomas suggested a few months ago to make that tick dependency check synchronous. Instead of checking subsystems details from each interrupt to guess if the tick can be stopped, every subsystem that may have a tick dependency should set itself a flag specifying the state of that dependency. This way we can verify if we can stop the tick with a single lightweight mask check on fast path. This conversion from a pull to a push model to implement tick dependency is the core feature of this patchset that is split into: * Nohz wide kick simplification * Improve nohz tracing * Introduce tick dependency mask * Migrate scheduler, posix timers, perf events and sched clock tick dependencies to the tick dependency mask." Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Frederic Weisbecker
|
555e0c1ef7 |
perf: Migrate perf to use new tick dependency mask model
Instead of providing asynchronous checks for the nohz subsystem to verify perf event tick dependency, migrate perf to the new mask. Perf needs the tick for two situations: 1) Freq events. We could set the tick dependency when those are installed on a CPU context. But setting a global dependency on top of the global freq events accounting is much easier. If people want that to be optimized, we can still refine that on the per-CPU tick dependency level. This patch dooesn't change the current behaviour anyway. 2) Throttled events: this is a per-cpu dependency. Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> |
||
Thomas Gleixner
|
54d751d4ad |
perf: Allow storage of PMU private data in event
For PMUs which are not per CPU, but e.g. per package/socket, we want to be able to store a reference to the underlying per package/socket facility in the event at init time so we can avoid magic storage constructs in the PMU driver. This allows us to get rid of the per CPU dance in the intel uncore and RAPL drivers and avoids a lookup of the per package data in the perf hotpath. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Harish Chegondi <harish.chegondi@intel.com> Cc: Jacob Pan <jacob.jun.pan@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20160222221011.364140369@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
9107c89e26 |
perf: Fix race between event install and jump_labels
perf_install_in_context() relies upon the context switch hooks to have scheduled in events when the IPI misses its target -- after all, if the task has moved from the CPU (or wasn't running at all), it will have to context switch to run elsewhere. This however doesn't appear to be happening. It is possible for the IPI to not happen (task wasn't running) only to later observe the task running with an inactive context. The only possible explanation is that the context switch hooks are not called. Therefore put in a sync_sched() after toggling the jump_label to guarantee all CPUs will have them enabled before we install an event. A simple if (0->1) sync_sched() will not in fact work, because any further increment can race and complete before the sync_sched(). Therefore we must jump through some hoops. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dvyukov@google.com Cc: eranian@google.com Cc: oleg@redhat.com Cc: panand@redhat.com Cc: sasha.levin@oracle.com Cc: vince@deater.net Link: http://lkml.kernel.org/r/20160224174947.980211985@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
a69b0ca4ac |
perf: Fix cloning
Alexander reported that when the 'original' context gets destroyed, no
new clones happen.
This can happen irrespective of the ctx switch optimization, any task
can die, even the parent, and we want to continue monitoring the task
hierarchy until we either close the event or no tasks are left in the
hierarchy.
perf_event_init_context() will attempt to pin the 'parent' context
during clone(). At that point current is the parent, and since current
cannot have exited while executing clone(), its context cannot have
passed through perf_event_exit_task_context(). Therefore
perf_pin_task_context() cannot observe ctx->task == TASK_TOMBSTONE.
However, since inherit_event() does:
if (parent_event->parent)
parent_event = parent_event->parent;
it looks at the 'original' event when it does: is_orphaned_event().
This can return true if the context that contains the this event has
passed through perf_event_exit_task_context(). And thus we'll fail to
clone the perf context.
Fix this by adding a new state: STATE_DEAD, which is set by
perf_release() to indicate that the filedesc (or kernel reference) is
dead and there are no observers for our data left.
Only for STATE_DEAD will is_orphaned_event() be true and inhibit
cloning.
STATE_EXIT is otherwise preserved such that is_event_hup() remains
functional and will report when the observed task hierarchy becomes
empty.
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dvyukov@google.com
Cc: eranian@google.com
Cc: oleg@redhat.com
Cc: panand@redhat.com
Cc: sasha.levin@oracle.com
Cc: vince@deater.net
Fixes:
|
||
Alexei Starovoitov
|
568b329a02 |
perf: generalize perf_callchain
. avoid walking the stack when there is no room left in the buffer . generalize get_perf_callchain() to be called from bpf helper Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Peter Zijlstra
|
c6e5b73242 |
perf: Synchronously clean up child events
The orphan cleanup workqueue doesn't always catch orphans, for example, if they never schedule after they are orphaned. IOW, the event leak is still very real. It also wouldn't work for kernel counters. Doing it synchonously is a little hairy due to lock inversion issues, but is made to work. Patch based on work by Alexander Shishkin. Suggested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: vince@deater.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexei Starovoitov
|
e03e7ee34f |
perf/bpf: Convert perf_event_array to use struct file
Robustify refcounting. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Wang Nan <wangnan0@huawei.com> Cc: vince@deater.net Link: http://lkml.kernel.org/r/20160126045947.GA40151@ast-mbp.thefacebook.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
fae3fde651 |
perf: Collapse and fix event_function_call() users
There is one common bug left in all the event_function_call() users, between loading ctx->task and getting to the remote_function(), ctx->task can already have been changed. Therefore we need to double check and retry if ctx->task != current. Insert another trampoline specific to event_function_call() that checks for this and further validates state. This also allows getting rid of the active/inactive functions. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Stephane Eranian
|
614e4c4ebc |
perf/core: Robustify the perf_cgroup_from_task() RCU checks
This patch reinforces the lockdep checks performed by perf_cgroup_from_tsk() by passing the perf_event_context whenever possible. It is okay to not hold the RCU read lock when we know we hold the ctx->lock. This patch makes sure this property holds. In some functions, such as perf_cgroup_sched_in(), we do not pass the context because we are sure we are holding the RCU read lock. Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: edumazet@google.com Link: http://lkml.kernel.org/r/1447322404-10920-3-git-send-email-eranian@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Sukadev Bhattiprolu
|
8f3e5684d3 |
perf/core: Drop PERF_EVENT_TXN
We currently use PERF_EVENT_TXN flag to determine if we are in the middle of a transaction. If in a transaction, we defer the schedulability checks from pmu->add() operation to the pmu->commit() operation. Now that we have "transaction types" (PERF_PMU_TXN_ADD, PERF_PMU_TXN_READ) we can use the type to determine if we are in a transaction and drop the PERF_EVENT_TXN flag. When PERF_EVENT_TXN is dropped, the cpuhw->group_flag on some architectures becomes unused, so drop that field as well. This is an extension of the Powerpc patch from Peter Zijlstra to s390, Sparc and x86 architectures. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1441336073-22750-11-git-send-email-sukadev@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Sukadev Bhattiprolu
|
4a00c16e55 |
perf/core: Define PERF_PMU_TXN_READ interface
Define a new PERF_PMU_TXN_READ interface to read a group of counters at once. pmu->start_txn() // Initialize before first event for each event in group pmu->read(event); // Queue each event to be read rc = pmu->commit_txn() // Read/update all queued counters Note that we use this interface with all PMUs. PMUs that implement this interface use the ->read() operation to _queue_ the counters to be read and use ->commit_txn() to actually read all the queued counters at once. PMUs that don't implement PERF_PMU_TXN_READ ignore ->start_txn() and ->commit_txn() and continue to read counters one at a time. Thanks to input from Peter Zijlstra. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1441336073-22750-9-git-send-email-sukadev@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Sukadev Bhattiprolu
|
fbbe070115 |
perf/core: Add a 'flags' parameter to the PMU transactional interfaces
Currently, the PMU interface allows reading only one counter at a time. But some PMUs like the 24x7 counters in Power, support reading several counters at once. To leveage this functionality, extend the transaction interface to support a "transaction type". The first type, PERF_PMU_TXN_ADD, refers to the existing transactions, i.e. used to _schedule_ all the events on the PMU as a group. A second transaction type, PERF_PMU_TXN_READ, will be used in a follow-on patch, by the 24x7 counters to read several counters at once. Extend the transaction interfaces to the PMU to accept a 'txn_flags' parameter and use this parameter to ignore any transactions that are not of type PERF_PMU_TXN_ADD. Thanks to Peter Zijlstra for his input. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> [peterz: s390 compile fix] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/1441336073-22750-3-git-send-email-sukadev@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
b0e8787594 |
perf/abi: Document some more aspects of the perf ABI
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kaixu Xia
|
ffe8690c85 |
perf: add the necessary core perf APIs when accessing events counters in eBPF programs
This patch add three core perf APIs: - perf_event_attrs(): export the struct perf_event_attr from struct perf_event; - perf_event_get(): get the struct perf_event from the given fd; - perf_event_read_local(): read the events counters active on the current CPU; These APIs are needed when accessing events counters in eBPF programs. The API perf_event_read_local() comes from Peter and I add the corresponding SOB. Signed-off-by: Kaixu Xia <xiakaixu@huawei.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Linus Torvalds
|
e382608254 |
This patch series contains several clean ups and even a new trace clock
"monitonic raw". Also some enhancements to make the ring buffer even faster. But the biggest and most noticeable change is the renaming of the ftrace* files, structures and variables that have to deal with trace events. Over the years I've had several developers tell me about their confusion with what ftrace is compared to events. Technically, "ftrace" is the infrastructure to do the function hooks, which include tracing and also helps with live kernel patching. But the trace events are a separate entity altogether, and the files that affect the trace events should not be named "ftrace". These include: include/trace/ftrace.h -> include/trace/trace_events.h include/linux/ftrace_event.h -> include/linux/trace_events.h Also, functions that are specific for trace events have also been renamed: ftrace_print_*() -> trace_print_*() (un)register_ftrace_event() -> (un)register_trace_event() ftrace_event_name() -> trace_event_name() ftrace_trigger_soft_disabled()-> trace_trigger_soft_disabled() ftrace_define_fields_##call() -> trace_define_fields_##call() ftrace_get_offsets_##call() -> trace_get_offsets_##call() Structures have been renamed: ftrace_event_file -> trace_event_file ftrace_event_{call,class} -> trace_event_{call,class} ftrace_event_buffer -> trace_event_buffer ftrace_subsystem_dir -> trace_subsystem_dir ftrace_event_raw_##call -> trace_event_raw_##call ftrace_event_data_offset_##call-> trace_event_data_offset_##call ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call And a few various variables and flags have also been updated. This has been sitting in linux-next for some time, and I have not heard a single complaint about this rename breaking anything. Mostly because these functions, variables and structures are mostly internal to the tracing system and are seldom (if ever) used by anything external to that. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJViYhVAAoJEEjnJuOKh9ldcJ0IAI+mytwoMAN/CWDE8pXrTrgs aHlcr1zorSzZ0Lq6lKsWP+V0VGVhP8KWO16vl35HaM5ZB9U+cDzWiGobI8JTHi/3 eeTAPTjQdgrr/L+ZO1ApzS1jYPhN3Xi5L7xublcYMJjKfzU+bcYXg/x8gRt0QbG3 S9QN/kBt0JIIjT7McN64m5JVk2OiU36LxXxwHgCqJvVCPHUrriAdIX7Z5KRpEv13 zxgCN4d7Jiec/FsMW8dkO0vRlVAvudZWLL7oDmdsvNhnLy8nE79UOeHos2c1qifQ LV4DeQ+2Hlu7w9wxixHuoOgNXDUEiQPJXzPc/CuCahiTL9N/urQSGQDoOVMltR4= =hkdz -----END PGP SIGNATURE----- Merge tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "This patch series contains several clean ups and even a new trace clock "monitonic raw". Also some enhancements to make the ring buffer even faster. But the biggest and most noticeable change is the renaming of the ftrace* files, structures and variables that have to deal with trace events. Over the years I've had several developers tell me about their confusion with what ftrace is compared to events. Technically, "ftrace" is the infrastructure to do the function hooks, which include tracing and also helps with live kernel patching. But the trace events are a separate entity altogether, and the files that affect the trace events should not be named "ftrace". These include: include/trace/ftrace.h -> include/trace/trace_events.h include/linux/ftrace_event.h -> include/linux/trace_events.h Also, functions that are specific for trace events have also been renamed: ftrace_print_*() -> trace_print_*() (un)register_ftrace_event() -> (un)register_trace_event() ftrace_event_name() -> trace_event_name() ftrace_trigger_soft_disabled() -> trace_trigger_soft_disabled() ftrace_define_fields_##call() -> trace_define_fields_##call() ftrace_get_offsets_##call() -> trace_get_offsets_##call() Structures have been renamed: ftrace_event_file -> trace_event_file ftrace_event_{call,class} -> trace_event_{call,class} ftrace_event_buffer -> trace_event_buffer ftrace_subsystem_dir -> trace_subsystem_dir ftrace_event_raw_##call -> trace_event_raw_##call ftrace_event_data_offset_##call-> trace_event_data_offset_##call ftrace_event_type_funcs_##call -> trace_event_type_funcs_##call And a few various variables and flags have also been updated. This has been sitting in linux-next for some time, and I have not heard a single complaint about this rename breaking anything. Mostly because these functions, variables and structures are mostly internal to the tracing system and are seldom (if ever) used by anything external to that" * tag 'trace-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits) ring_buffer: Allow to exit the ring buffer benchmark immediately ring-buffer-benchmark: Fix the wrong type ring-buffer-benchmark: Fix the wrong param in module_param ring-buffer: Add enum names for the context levels ring-buffer: Remove useless unused tracing_off_permanent() ring-buffer: Give NMIs a chance to lock the reader_lock ring-buffer: Add trace_recursive checks to ring_buffer_write() ring-buffer: Allways do the trace_recursive checks ring-buffer: Move recursive check to per_cpu descriptor ring-buffer: Add unlikelys to make fast path the default tracing: Rename ftrace_get_offsets_##call() to trace_event_get_offsets_##call() tracing: Rename ftrace_define_fields_##call() to trace_event_define_fields_##call() tracing: Rename ftrace_event_type_funcs_##call to trace_event_type_funcs_##call tracing: Rename ftrace_data_offset_##call to trace_event_data_offset_##call tracing: Rename ftrace_raw_##call event structures to trace_event_raw_##call tracing: Rename ftrace_trigger_soft_disabled() to trace_trigger_soft_disabled() tracing: Rename FTRACE_EVENT_FL_* flags to EVENT_FILE_FL_* tracing: Rename struct ftrace_subsystem_dir to trace_subsystem_dir tracing: Rename ftrace_event_name() to trace_event_name() tracing: Rename FTRACE_MAX_EVENT to TRACE_EVENT_TYPE_MAX ... |
||
Linus Torvalds
|
e8a0b37d28 |
Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King: "Bigger items included in this update are: - A series of updates from Arnd for ARM randconfig build failures - Updates from Dmitry for StrongARM SA-1100 to move IRQ handling to drivers/irqchip/ - Move ARMs SP804 timer to drivers/clocksource/ - Perf updates from Mark Rutland in preparation to move the ARM perf code into drivers/ so it can be shared with ARM64. - MCPM updates from Nicolas - Add support for taking platform serial number from DT - Re-implement Keystone2 physical address space switch to conform to architecture requirements - Clean up ARMv7 LPAE code, which goes in hand with the Keystone2 changes. - L2C cleanups to avoid unlocking caches if we're prevented by the secure support to unlock. - Avoid cleaning a potentially dirty cache containing stale data on CPU initialisation - Add ARM-only entry point for secondary startup (for machines that can only call into a Thumb kernel in ARM mode). Same thing is also done for the resume entry point. - Provide arch_irqs_disabled via asm-generic - Enlarge ARMv7M vector table - Always use BFD linker for VDSO, as gold doesn't accept some of the options we need. - Fix an incorrect BSYM (for Thumb symbols) usage, and convert all BSYM compiler macros to a "badr" (for branch address). - Shut up compiler warnings provoked by our cmpxchg() implementation. - Ensure bad xchg sizes fail to link" * 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (75 commits) ARM: Fix build if CLKDEV_LOOKUP is not configured ARM: fix new BSYM() usage introduced via for-arm-soc branch ARM: 8383/1: nommu: avoid deprecated source register on mov ARM: 8391/1: l2c: add options to overwrite prefetching behavior ARM: 8390/1: irqflags: Get arch_irqs_disabled from asm-generic ARM: 8387/1: arm/mm/dma-mapping.c: Add arm_coherent_dma_mmap ARM: 8388/1: tcm: Don't crash when TCM banks are protected by TrustZone ARM: 8384/1: VDSO: force use of BFD linker ARM: 8385/1: VDSO: group link options ARM: cmpxchg: avoid warnings from macro-ized cmpxchg() implementations ARM: remove __bad_xchg definition ARM: 8369/1: ARMv7M: define size of vector table for Vybrid ARM: 8382/1: clocksource: make ARM_TIMER_SP804 depend on GENERIC_SCHED_CLOCK ARM: 8366/1: move Dual-Timer SP804 driver to drivers/clocksource ARM: 8365/1: introduce sp804_timer_disable and remove arm_timer.h inclusion ARM: 8364/1: fix BE32 module loading ARM: 8360/1: add secondary_startup_arm prototype in header file ARM: 8359/1: correct secondary_startup_arm mode ARM: proc-v7: sanitise and document registers around errata ARM: proc-v7: clean up MIDR access ... |
||
Linus Torvalds
|
43224b96af |
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner: "A rather largish update for everything time and timer related: - Cache footprint optimizations for both hrtimers and timer wheel - Lower the NOHZ impact on systems which have NOHZ or timer migration disabled at runtime. - Optimize run time overhead of hrtimer interrupt by making the clock offset updates smarter - hrtimer cleanups and removal of restrictions to tackle some problems in sched/perf - Some more leap second tweaks - Another round of changes addressing the 2038 problem - First step to change the internals of clock event devices by introducing the necessary infrastructure - Allow constant folding for usecs/msecs_to_jiffies() - The usual pile of clockevent/clocksource driver updates The hrtimer changes contain updates to sched, perf and x86 as they depend on them plus changes all over the tree to cleanup API changes and redundant code, which got copied all over the place. The y2038 changes touch s390 to remove the last non 2038 safe code related to boot/persistant clock" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits) clocksource: Increase dependencies of timer-stm32 to limit build wreckage timer: Minimize nohz off overhead timer: Reduce timer migration overhead if disabled timer: Stats: Simplify the flags handling timer: Replace timer base by a cpu index timer: Use hlist for the timer wheel hash buckets timer: Remove FIFO "guarantee" timers: Sanitize catchup_timer_jiffies() usage hrtimer: Allow hrtimer::function() to free the timer seqcount: Introduce raw_write_seqcount_barrier() seqcount: Rename write_seqcount_barrier() hrtimer: Fix hrtimer_is_queued() hole hrtimer: Remove HRTIMER_STATE_MIGRATE selftest: Timers: Avoid signal deadlock in leap-a-day timekeeping: Copy the shadow-timekeeper over the real timekeeper last clockevents: Check state instead of mode in suspend/resume path selftests: timers: Add leap-second timer edge testing to leap-a-day.c ntp: Do leapsecond adjustment in adjtimex read path time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge ntp: Introduce and use SECS_PER_DAY macro instead of 86400 ... |
||
Kan Liang
|
f38b0dbb49 |
perf/x86/intel: Introduce PERF_RECORD_LOST_SAMPLES
After enlarging the PEBS interrupt threshold, there may be some mixed up PEBS samples which are discarded by the kernel. This patch makes the kernel emit a PERF_RECORD_LOST_SAMPLES record with the number of possible discarded records when it is impossible to demux the samples. It makes sure the user is not left in the dark about such discards. Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: eranian@google.com Link: http://lkml.kernel.org/r/1431285195-14269-8-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Yan, Zheng
|
21509084f9 |
perf/x86/intel: Handle multiple records in the PEBS buffer
When the PEBS interrupt threshold is larger than one record and the machine supports multiple PEBS events, the records of these events are mixed up and we need to demultiplex them. Demuxing the records is hard because the hardware is deficient. The hardware has two issues that, when combined, create impossible scenarios to demux. The first issue is that the 'status' field of the PEBS record is a copy of the GLOBAL_STATUS MSR at PEBS assist time. To see why this is a problem let us first describe the regular PEBS cycle: A) the CTRn value reaches 0: - the corresponding bit in GLOBAL_STATUS gets set - we start arming the hardware assist < some unspecified amount of time later -- this could cover multiple events of interest > B) the hardware assist is armed, any next event will trigger it C) a matching event happens: - the hardware assist triggers and generates a PEBS record this includes a copy of GLOBAL_STATUS at this moment - if we auto-reload we (re)set CTRn - we clear the relevant bit in GLOBAL_STATUS Now consider the following chain of events: A0, B0, A1, C0 The event generated for counter 0 will include a status with counter 1 set, even though its not at all related to the record. A similar thing can happen with a !PEBS event if it just happens to overflow at the right moment. The second issue is that the hardware will only emit one record for two or more counters if the event that triggers the assist is 'close'. The 'close' can be several cycles. In some cases even the complete assist, if the event is something that doesn't need retirement. For instance, consider this chain of events: A0, B0, A1, B1, C01 Where C01 is an event that triggers both hardware assists, we will generate but a single record, but again with both counters listed in the status field. This time the record pertains to both events. Note that these two cases are different but undistinguishable with the data as generated. Therefore demuxing records with multiple PEBS bits (we can safely ignore status bits for !PEBS counters) is impossible. Furthermore we cannot emit the record to both events because that might cause a data leak -- the events might not have the same privileges -- so what this patch does is discard such events. The assumption/hope is that such discards will be rare. Here lists some possible ways you may get high discard rate. - when you count the same thing multiple times. But it is not a useful configuration. - you can be unfortunate if you measure with a userspace only PEBS event along with either a kernel or unrestricted PEBS event. Imagine the event triggering and setting the overflow flag right before entering the kernel. Then all kernel side events will end up with multiple bits set. Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> [ Changelog improvements. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: eranian@google.com Link: http://lkml.kernel.org/r/1430940834-8964-4-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mark Rutland
|
66eb579e66 |
perf: allow for PMU-specific event filtering
In certain circumstances it may not be possible to schedule particular events due to constraints other than a lack of hardware counters (e.g. on big.LITTLE systems where CPUs support different events). The core perf event code does not distinguish these cases and pessimistically assumes that any failure to schedule an event means that it is not worth attempting to schedule later events, even if some hardware counters are still unused. When an event a pmu cannot schedule exists in a flexible group list it can unnecessarily prevent event groups following it in the list from being scheduled (until it is rotated to the end of the list). This means some events are scheduled for only a portion of the time they could be, and for short running programs no events may be scheduled if the list is initially sorted in an unfortunate order. This patch adds a new (optional) filter_match function pointer to struct pmu which a pmu driver can use to tell perf core when an event matches pmu-specific scheduling requirements. This plugs into the existing event_filter_match logic, and makes it possible to avoid the scheduling problem described above. When no filter is provided by the PMU, the existing behaviour is retained. Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
||
Thomas Gleixner
|
b3df4ec442 |
perf/x86/intel/cqm: Use proper data types
'int' is really not a proper data type for an MSR. Use u32 to make it clear that we are dealing with a 32-bit unsigned hardware value. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Matt Fleming <matt.fleming@intel.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Cc: Will Auld <will.auld@intel.com> Link: http://lkml.kernel.org/r/20150518235149.919350144@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
8d12ded3dd |
Merge branch 'perf/urgent' into perf/core, before applying dependent patches
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
b371b59431 |
perf/x86: Fix event/group validation
Commit |
||
Peter Zijlstra
|
4cfafd3082 |
sched,perf: Fix periodic timers
In the below two commits (see Fixes) we have periodic timers that can stop themselves when they're no longer required, but need to be (re)-started when their idle condition changes. Further complications is that we want the timer handler to always do the forward such that it will always correctly deal with the overruns, and we do not want to race such that the handler has already decided to stop, but the (external) restart sees the timer still active and we end up with a 'lost' timer. The problem with the current code is that the re-start can come before the callback does the forward, at which point the forward from the callback will WARN about forwarding an enqueued timer. Now, conceptually its easy to detect if you're before or after the fwd by comparing the expiration time against the current time. Of course, that's expensive (and racy) because we don't have the current time. Alternatively one could cache this state inside the timer, but then everybody pays the overhead of maintaining this extra state, and that is undesired. The only other option that I could see is the external timer_active variable, which I tried to kill before. I would love a nicer interface for this seemingly simple 'problem' but alas. Fixes: |
||
Steven Rostedt (Red Hat)
|
2425bcb924 |
tracing: Rename ftrace_event_{call,class} to trace_event_{call,class}
The name "ftrace" really refers to the function hook infrastructure. It is not about the trace_events. The structures ftrace_event_call and ftrace_event_class have nothing to do with the function hooks, and are really trace_event structures. Rename ftrace_event_* to trace_event_*. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> |
||
Peter Zijlstra
|
ff303e66c2 |
perf: Fix software migrate events
Stephane asked about PERF_COUNT_SW_CPU_MIGRATIONS and I realized it was borken: > The problem is that the task isn't actually scheduled while its being > migrated (obviously), and if its not scheduled, the counters aren't > scheduled either, so there's no observing of the fact. > > A further problem with migrations is that many migrations happen from > softirq context, which is nested inside the 'random' task context of > whoemever happens to run at that time, similarly for the wakeup > migrations triggered from (soft)irq context. All those end up being > accounted in the task that's currently running, eg. your 'ls'. The below cures this by marking a task as migrated and accounting it on the subsequent sched_in(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Shishkin
|
ec0d7729bb |
perf: Add ITRACE_START record to indicate that tracing has started
For counters that generate AUX data that is bound to the context of a running task, such as instruction tracing, the decoder needs to know exactly which task is running when the event is first scheduled in, before the first sched_switch. The decoder's need to know this stems from the fact that instruction flow trace decoding will almost always require program's object code in order to reconstruct said flow and for that we need at least its pid/tid in the perf stream. To single out such instruction tracing pmus, this patch introduces ITRACE PMU capability. The reason this is not part of RECORD_AUX record is that not all pmus capable of generating AUX data need this, and the opposite is *probably* also true. While sched_switch covers for most cases, there are two problems with it: the consumer will need to process events out of order (that is, having found RECORD_AUX, it will have to skip forward to the nearest sched_switch to figure out which task it was, then go back to the actual trace to decode it) and it completely misses the case when the tracing is enabled and disabled before sched_switch, for example, via PERF_EVENT_IOC_DISABLE. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-15-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Shishkin
|
fdc2670666 |
perf: Add API for PMUs to write to the AUX area
For pmus that wish to write data to ring buffer's AUX area, provide perf_aux_output_{begin,end}() calls to initiate/commit data writes, similarly to perf_output_{begin,end}. These also use the same output handle structure. Also, similarly to software counterparts, these will direct inherited events' output to parents' ring buffers. After the perf_aux_output_begin() returns successfully, handle->size is set to the maximum amount of data that can be written wrt aux_tail pointer, so that no data that the user hasn't seen will be overwritten, therefore this should always be called before hardware writing is enabled. On success, this will return the pointer to pmu driver's private structure allocated for this aux area by pmu::setup_aux. Same pointer can also be retrieved using perf_get_aux() while hardware writing is enabled. PMU driver should pass the actual amount of data written as a parameter to perf_aux_output_end(). All hardware writes should be completed and visible before this one is called. Additionally, perf_aux_output_skip() will adjust output handle and aux_head in case some part of the buffer has to be skipped over to maintain hardware's alignment constraints. Nested writers are forbidden and guards are in place to catch such attempts. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-8-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Shishkin
|
bed5b25ad9 |
perf: Add a pmu capability for "exclusive" events
Usually, pmus that do, for example, instruction tracing, would only ever be able to have one event per task per cpu (or per perf_event_context). For such pmus it makes sense to disallow creating conflicting events early on, so as to provide consistent behavior for the user. This patch adds a pmu capability that indicates such constraint on event creation. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1422613866-113186-1-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Shishkin
|
6a27923039 |
perf: Add a capability for AUX_NO_SG pmus to do software double buffering
For pmus that don't support scatter-gather for AUX data in hardware, it might still make sense to implement software double buffering to avoid losing data while the user is reading data out. For this purpose, add a pmu capability that guarantees multiple high-order chunks for AUX buffer, so that the pmu driver can do switchover tricks. To make use of this feature, add PERF_PMU_CAP_AUX_SW_DOUBLEBUF to your pmu's capability mask. This will make the ring buffer AUX allocation code ensure that the biggest high order allocation for the aux buffer pages is no bigger than half of the total requested buffer size, thus making sure that the buffer has at least two high order allocations. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-5-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexander Shishkin
|
0a4e38e64f |
perf: Support high-order allocations for AUX space
Some pmus (such as BTS or Intel PT without multiple-entry ToPA capability) don't support scatter-gather and will prefer larger contiguous areas for their output regions. This patch adds a new pmu capability to request higher order allocations. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-4-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
45bfb2e504 |
perf: Add AUX area to ring buffer for raw data streams
This patch introduces "AUX space" in the perf mmap buffer, intended for exporting high bandwidth data streams to userspace, such as instruction flow traces. AUX space is a ring buffer, defined by aux_{offset,size} fields in the user_page structure, and read/write pointers aux_{head,tail}, which abide by the same rules as data_* counterparts of the main perf buffer. In order to allocate/mmap AUX, userspace needs to set up aux_offset to such an offset that will be greater than data_offset+data_size and aux_size to be the desired buffer size. Both need to be page aligned. Then, same aux_offset and aux_size should be passed to mmap() call and if everything adds up, you should have an AUX buffer as a result. Pages that are mapped into this buffer also come out of user's mlock rlimit plus perf_event_mlock_kb allowance. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kaixu Xia <kaixu.xia@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Robert Richter <rric@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@infradead.org Cc: adrian.hunter@intel.com Cc: kan.liang@intel.com Cc: markus.t.metzger@intel.com Cc: mathieu.poirier@linaro.org Link: http://lkml.kernel.org/r/1421237903-181015-3-git-send-email-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
34f439278c |
perf: Add per event clockid support
While thinking on the whole clock discussion it occurred to me we have two distinct uses of time: 1) the tracking of event/ctx/cgroup enabled/running/stopped times which includes the self-monitoring support in struct perf_event_mmap_page. 2) the actual timestamps visible in the data records. And we've been conflating them. The first is all about tracking time deltas, nobody should really care in what time base that happens, its all relative information, as long as its internally consistent it works. The second however is what people are worried about when having to merge their data with external sources. And here we have the discussion on MONOTONIC vs MONOTONIC_RAW etc.. Where MONOTONIC is good for correlating between machines (static offset), MONOTNIC_RAW is required for correlating against a fixed rate hardware clock. This means configurability; now 1) makes that hard because it needs to be internally consistent across groups of unrelated events; which is why we had to have a global perf_clock(). However, for 2) it doesn't really matter, perf itself doesn't care what it writes into the buffer. The below patch makes the distinction between these two cases by adding perf_event_clock() which is used for the second case. It further makes this configurable on a per-event basis, but adds a few sanity checks such that we cannot combine events with different clocks in confusing ways. And since we then have per-event configurability we might as well retain the 'legacy' behaviour as a default. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
936c663aed |
Merge branch 'perf/x86' into perf/core, because it's ready
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
50f16a8bf9 |
perf: Remove type specific target pointers
The only reason CQM had to use a hard-coded pmu type was so it could use cqm_target in hw_perf_event. Do away with the {tp,bp,cqm}_target pointers and provide a non type specific one. This allows us to do away with that silly pmu type as well. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Vince Weaver <vince@deater.net> Cc: acme@kernel.org Cc: acme@redhat.com Cc: hpa@zytor.com Cc: jolsa@redhat.com Cc: kanaka.d.juvva@intel.com Cc: matt.fleming@intel.com Cc: tglx@linutronix.de Cc: torvalds@linux-foundation.org Cc: vikas.shivappa@linux.intel.com Link: http://lkml.kernel.org/r/20150305211019.GU21418@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
e9e4e44309 |
Linux 34.0-rc1
-----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJU6pFJAAoJEHm+PkMAQRiG2OwH/24nDK+l9zkaRs0xJsVh+qiW 8A2N1od0ickz43iMk48jfeWGkFOkd4izyvan/daJshJOE1Y5lCdSs7jq/OXVOv9L G0+KQUoC5NL0hqYKn1XJPFluNQ1yqMvrDwQt99grDGzruNGBbwHuBhAQmgzpj1nU do8KrGjr7ft1Rzm4mOAdET/ExWiF+mRSJSxxOv598HbsIRdM5wgn0hHjPlqDxmLN KH4r3YYEm0cHyjf4Krse0+YdhqdamRGJlmYxJgEsYNwCoMwkmHlLTc71diseUhrg r/VYIYQvpAA6Yvgw8rJ0N5gk/sJJig+WyyPhfQuc2bD5sbL9eO7mPnz2UP7z7ss= =vXB6 -----END PGP SIGNATURE----- Merge tag 'v4.0-rc1' into perf/core, to refresh the tree Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Matt Fleming
|
bfe1fcd268 |
perf/x86/intel: Support task events with Intel CQM
Add support for task events as well as system-wide events. This change has a big impact on the way that we gather LLC occupancy values in intel_cqm_event_read(). Currently, for system-wide (per-cpu) events we defer processing to userspace which knows how to discard all but one cpu result per package. Things aren't so simple for task events because we need to do the value aggregation ourselves. To do this, we defer updating the LLC occupancy value in event->count from intel_cqm_event_read() and do an SMP cross-call to read values for all packages in intel_cqm_event_count(). We need to ensure that we only do this for one task event per cache group, otherwise we'll report duplicate values. If we're a system-wide event we want to fallback to the default perf_event_count() implementation. Refactor this into a common function so that we don't duplicate the code. Also, introduce PERF_TYPE_INTEL_CQM, since we need a way to track an event's task (if the event isn't per-cpu) inside of the Intel CQM PMU driver. This task information is only availble in the upper layers of the perf infrastructure. Other perf backends stash the target task in event->hw.*target so we need to do something similar. The task is used to determine whether events should share a cache group and an RMID. Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/1422038748-21397-8-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Matt Fleming
|
4afbb24ce5 |
perf/x86/intel: Add Intel Cache QoS Monitoring support
Future Intel Xeon processors support a Cache QoS Monitoring feature that allows tracking of the LLC occupancy for a task or task group, i.e. the amount of data in pulled into the LLC for the task (group). Currently the PMU only supports per-cpu events. We create an event for each cpu and read out all the LLC occupancy values. Because this results in duplicate values being written out to userspace, we also export a .per-pkg event file so that the perf tools only accumulate values for one cpu per package. Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-6-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Matt Fleming
|
eacd3ecc34 |
perf: Add ->count() function to read per-package counters
For PMU drivers that record per-package counters, the ->count variable cannot be used to record an accurate aggregated value, since it's not possible to perform SMP cross-calls to cpus on other packages from the context in which we update ->count. Introduce a new optional ->count() accessor function that can be used to customize how values are collected. If a PMU driver doesn't provide a ->count() function, we fallback to the existing code. There is necessarily a window of staleness with this approach because the task that generated the counter value may not have been scheduled by the cpu recently. An alternative and more complex approach would be to use a hrtimer to periodically refresh the values from a more permissive scheduling context. So, we're trading off complexity for accuracy. Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Link: http://lkml.kernel.org/r/1422038748-21397-3-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |