u64 is "unsigned long long" on all architectures now, so there's no need to
cast it when formatting it using the "ll" length modifier.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We want this for btrfs_extent_same. Basically readpage and friends do their
own extent locking but for the purposes of dedupe, we want to have both
files locked down across a set of readpage operations (so that we can
compare data). Introduce this variant and a flag which can be set for
extent_read_full_page() to indicate that we are already locked.
Partial credit for this patch goes to Gabriel de Perthuis <g2p.code@gmail.com>
as I have included a fix from him to the original patch which avoids a
deadlock on compressed extents.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We'll want to merge writes so they can fill a full RAID[56] stripe, but
not necessarily reads.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
With the addition of the device replace procedure, it is possible
for btrfs_map_bio(READ) to report an error. This happens when the
specific mirror is requested which is located on the target disk,
and the copy operation has not yet copied this block. Hence the
block cannot be read and this error state is indicated by
returning EIO.
Some background information follows now. A new mirror is added
while the device replace procedure is running.
btrfs_get_num_copies() returns one more, and
btrfs_map_bio(GET_READ_MIRROR) adds one more mirror if a disk
location is involved that was already handled by the device
replace copy operation. The assigned mirror num is the highest
mirror number, e.g. the value 3 in case of RAID1.
If btrfs_map_bio() is invoked with mirror_num == 0 (i.e., select
any mirror), the copy on the target drive is never selected
because that disk shall be able to perform the write requests as
quickly as possible. The parallel execution of read requests would
only slow down the disk copy procedure. Second case is that
btrfs_map_bio() is called with mirror_num > 0. This is done from
the repair code only. In this case, the highest mirror num is
assigned to the target disk, since it is used last. And when this
mirror is not available because the copy procedure has not yet
handled this area, an error is returned. Everywhere in the code
the handling of such errors is added now.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We were freeing non-existent pages which was causing a panic for a user who
was suffering from ENOMEM. This patch fixes the problem. Thanks,
Reported-by: Jérôme Poulin <jeromepoulin@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We need a barrir before calling waitqueue_active otherwise we will miss
wakeups. So in places that do atomic_dec(); then atomic_read() use
atomic_dec_return() which imply a memory barrier (see memory-barriers.txt)
and then add an explicit memory barrier everywhere else that need them.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull the minimal btrfs branch from Chris Mason:
"We have a use-after-free in there, along with errors when mount -o
discard is enabled, and a BUG_ON(we should compile with UP more
often)."
* 'for-linus-min' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use commit root when loading free space cache
Btrfs: fix use-after-free in __btrfs_end_transaction
Btrfs: check return value of bio_alloc() properly
Btrfs: remove lock assert from get_restripe_target()
Btrfs: fix eof while discarding extents
Btrfs: fix uninit variable in repair_eb_io_failure
Revert "Btrfs: increase the global block reserve estimates"
bio_alloc() has the possibility of returning NULL.
So, it is necessary to check the return value.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Pull btrfs fixes and features from Chris Mason:
"We've merged in the error handling patches from SuSE. These are
already shipping in the sles kernel, and they give btrfs the ability
to abort transactions and go readonly on errors. It involves a lot of
churn as they clarify BUG_ONs, and remove the ones we now properly
deal with.
Josef reworked the way our metadata interacts with the page cache.
page->private now points to the btrfs extent_buffer object, which
makes everything faster. He changed it so we write an whole extent
buffer at a time instead of allowing individual pages to go down,,
which will be important for the raid5/6 code (for the 3.5 merge
window ;)
Josef also made us more aggressive about dropping pages for metadata
blocks that were freed due to COW. Overall, our metadata caching is
much faster now.
We've integrated my patch for metadata bigger than the page size.
This allows metadata blocks up to 64KB in size. In practice 16K and
32K seem to work best. For workloads with lots of metadata, this cuts
down the size of the extent allocation tree dramatically and fragments
much less.
Scrub was updated to support the larger block sizes, which ended up
being a fairly large change (thanks Stefan Behrens).
We also have an assortment of fixes and updates, especially to the
balancing code (Ilya Dryomov), the back ref walker (Jan Schmidt) and
the defragging code (Liu Bo)."
Fixed up trivial conflicts in fs/btrfs/scrub.c that were just due to
removal of the second argument to k[un]map_atomic() in commit
7ac687d9e0.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (75 commits)
Btrfs: update the checks for mixed block groups with big metadata blocks
Btrfs: update to the right index of defragment
Btrfs: do not bother to defrag an extent if it is a big real extent
Btrfs: add a check to decide if we should defrag the range
Btrfs: fix recursive defragment with autodefrag option
Btrfs: fix the mismatch of page->mapping
Btrfs: fix race between direct io and autodefrag
Btrfs: fix deadlock during allocating chunks
Btrfs: show useful info in space reservation tracepoint
Btrfs: don't use crc items bigger than 4KB
Btrfs: flush out and clean up any block device pages during mount
btrfs: disallow unequal data/metadata blocksize for mixed block groups
Btrfs: enhance superblock sanity checks
Btrfs: change scrub to support big blocks
Btrfs: minor cleanup in scrub
Btrfs: introduce common define for max number of mirrors
Btrfs: fix infinite loop in btrfs_shrink_device()
Btrfs: fix memory leak in resolver code
Btrfs: allow dup for data chunks in mixed mode
Btrfs: validate target profiles only if we are going to use them
...
btrfs currently handles most errors with BUG_ON. This patch is a work-in-
progress but aims to handle most errors other than internal logic
errors and ENOMEM more gracefully.
This iteration prevents most crashes but can run into lockups with
the page lock on occasion when the timing "works out."
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
lock_extent and unlock_extent are always called with GFP_NOFS, drop the
argument and use GFP_NOFS consistently.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
fs_info has now ~9kb, more than fits into one page. This will cause
mount failure when memory is too fragmented. Top space consumers are
super block structures super_copy and super_for_commit, ~2.8kb each.
Allocate them dynamically. fs_info will be ~3.5kb. (measured on x86_64)
Add a wrapper for freeing fs_info and all of it's dynamically allocated
members.
Signed-off-by: David Sterba <dsterba@suse.cz>
If mounting with nodatasum option, we won't csum file data for
general write or direct-io write, and this rule should also be
applied when writing compressed files.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There's a potential problem in 32bit system when we exhaust 32bit inode
numbers and start to allocate big inode numbers, because btrfs uses
inode->i_ino in many places.
So here we always use BTRFS_I(inode)->location.objectid, which is an
u64 variable.
There are 2 exceptions that BTRFS_I(inode)->location.objectid !=
inode->i_ino: the btree inode (0 vs 1) and empty subvol dirs (256 vs 2),
and inode->i_ino will be used in those cases.
Another reason to make this change is I'm going to use a special inode
to save free ino cache, and the inode number must be > (u64)-256.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Adding the check on the return value of btrfs_alloc_path() to several places.
And, some of callers are modified by this change.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
To make Btrfs code more robust, several return value checks where memory
allocation can fail are introduced. I use BUG_ON where I don't know how
to handle the error properly, which increases the number of using the
notorious BUG_ON, though.
Signed-off-by: Yoshinori Sano <yoshinori.sano@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
As this function is called in some error paths while not
removing the module, the __exit attribute prevents the kernel
image from linking when btrfs is compiled in statically.
Signed-off-by: Alexey Charkov <alchark@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_submit_compressed_read() is lack of memory allocation checks and
corresponding error route.
After this fix, if it comes to "no memory" case, errno will be returned
to userland step by step, and tell users this operation cannot go on.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Lzo is a much faster compression algorithm than gzib, so would allow
more users to enable transparent compression, and some users can
choose from compression ratio and speed for different applications
Usage:
# mount -t btrfs -o compress[=<zlib,lzo>] dev /mnt
or
# mount -t btrfs -o compress-force[=<zlib,lzo>] dev /mnt
"-o compress" without argument is still allowed for compatability.
Compatibility:
If we mount a filesystem with lzo compression, it will not be able be
mounted in old kernels. One reason is, otherwise btrfs will directly
dump compressed data, which sits in inline extent, to user.
Performance:
The test copied a linux source tarball (~400M) from an ext4 partition
to the btrfs partition, and then extracted it.
(time in second)
lzo zlib nocompress
copy: 10.6 21.7 14.9
extract: 70.1 94.4 66.6
(data size in MB)
lzo zlib nocompress
copy: 185.87 108.69 394.49
extract: 193.80 132.36 381.21
Changelog:
v1 -> v2:
- Select LZO_COMPRESS and LZO_DECOMPRESS in btrfs Kconfig.
- Add incompability flag.
- Fix error handling in compress code.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Make the code aware of compression type, instead of always assuming
zlib compression.
Also make the zlib workspace function as common code for all
compression types.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
extent_bio_alloc() and compressed_bio_alloc() are similar, cleanup
similar source code.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
These are all the cases where a variable is set, but not read which are
not bugs as far as I can see, but simply leftovers.
Still needs more review.
Found by gcc 4.6's new warnings
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: add check for changed leaves in setup_leaf_for_split
Btrfs: create snapshot references in same commit as snapshot
Btrfs: fix small race with delalloc flushing waitqueue's
Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
Btrfs: fix chunk allocate size calculation
Btrfs: kill max_extent mount option
Btrfs: fail to mount if we have problems reading the block groups
Btrfs: check btrfs_get_extent return for IS_ERR()
Btrfs: handle kmalloc() failure in inode lookup ioctl
Btrfs: dereferencing freed memory
Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
Btrfs: add NULL check for do_walk_down()
Btrfs: remove duplicate include in ioctl.c
Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
Pagecache pages should be allocated with __page_cache_alloc, so they
obey pagecache memory policies.
add_to_page_cache_lru is exported, so it should be used. Benefits over
using a private pagevec: neater code, 128 bytes fewer stack used, percpu
lru ordering is preserved, and finally don't need to flush pagevec
before returning so batching may be shared with other LRU insertions.
Signed-off-by: Nick Piggin <npiggin@suse.de>:
Signed-off-by: Chris Mason <chris.mason@oracle.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
There are two main users of the extent_map tree. The
first is regular file inodes, where it is evenly spread
between readers and writers.
The second is the chunk allocation tree, which maps blocks from
logical addresses to phyiscal ones, and it is 99.99% reads.
The mapping tree is a point of lock contention during heavy IO
workloads, so this commit switches things to a rw lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Remove smp_lock.h from files which don't need it (including some headers!)
* Add smp_lock.h to files which do need it
* Make smp_lock.h include conditional in hardirq.h
It's needed only for one kernel_locked() usage which is under CONFIG_PREEMPT
This will make hardirq.h inclusion cheaper for every PREEMPT=n config
(which includes allmodconfig/allyesconfig, BTW)
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for the standard attributes set via chattr and read via
lsattr. Currently we store the attributes in the flags value in
the btrfs inode, but I wonder whether we should split it into two so
that we don't have to keep converting between the two formats.
Remove the btrfs_clear_flag/btrfs_set_flag/btrfs_test_flag macros
as they were confusing the existing code and got in the way of the
new additions.
Also add the FS_IOC_GETVERSION ioctl for getting i_generation as it's
trivial.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Checksums on data can be disabled by mount option, so it's
possible some data extents don't have checksums or have
invalid checksums. This causes trouble for data relocation.
This patch contains following things to make data relocation
work.
1) make nodatasum/nodatacow mount option only affects new
files. Checksums and COW on data are only controlled by the
inode flags.
2) check the existence of checksum in the nodatacow checker.
If checksums exist, force COW the data extent. This ensure that
checksum for a given block is either valid or does not exist.
3) update data relocation code to properly handle the case
of checksum missing.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Btrfs stores checksums for each data block. Until now, they have
been stored in the subvolume trees, indexed by the inode that is
referencing the data block. This means that when we read the inode,
we've probably read in at least some checksums as well.
But, this has a few problems:
* The checksums are indexed by logical offset in the file. When
compression is on, this means we have to do the expensive checksumming
on the uncompressed data. It would be faster if we could checksum
the compressed data instead.
* If we implement encryption, we'll be checksumming the plain text and
storing that on disk. This is significantly less secure.
* For either compression or encryption, we have to get the plain text
back before we can verify the checksum as correct. This makes the raid
layer balancing and extent moving much more expensive.
* It makes the front end caching code more complex, as we have touch
the subvolume and inodes as we cache extents.
* There is potentitally one copy of the checksum in each subvolume
referencing an extent.
The solution used here is to store the extent checksums in a dedicated
tree. This allows us to index the checksums by phyiscal extent
start and length. It means:
* The checksum is against the data stored on disk, after any compression
or encryption is done.
* The checksum is stored in a central location, and can be verified without
following back references, or reading inodes.
This makes compression significantly faster by reducing the amount of
data that needs to be checksummed. It will also allow much faster
raid management code in general.
The checksums are indexed by a key with a fixed objectid (a magic value
in ctree.h) and offset set to the starting byte of the extent. This
allows us to copy the checksum items into the fsync log tree directly (or
any other tree), without having to invent a second format for them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs git kernel trees is used to build a standalone tree for
compiling against older kernels. This commit makes the standalone tree
work with 2.6.27
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* open/close_bdev_excl -> open/close_bdev_exclusive
* blkdev_issue_discard takes a GFP mask now
* Fix blkdev_issue_discard usage now that it is enabled
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Yan's fix to use the correct file offset during compressed reads used the
extent_map struct pointer after it had been freed. This saves the
fields we want for later use instead.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The decompress code doesn't take the logical offset in extent
pointer into account. If the logical offset isn't zero, data
will be decompressed into wrong pages.
The solution used here is to record the starting offset of the extent
in the file separately from the logical start of the extent_map struct.
This allows us to avoid problems inserting overlapping extents.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
When writing a compressed extent, a number of bios are created that
point to a single struct compressed_bio. At end_io time an atomic counter in
the compressed_bio struct makes sure that all of the bios have finished
before final end_io processing is done.
But when multiple bios are needed to write a compressed extent, the
counter was being incremented after the first bio was sent to submit_bio.
It is possible the bio will complete before the counter is incremented,
making the end_io handler free the compressed_bio struct before
processing is finished.
The fix is to increment the atomic counter before bio submission,
both for compressed reads and writes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When reading compressed extents, try to put pages into the page cache
for any pages covered by the compressed extent that readpages didn't already
preload.
Add an async work queue to handle transformations at delayed allocation processing
time. Right now this is just compression. The workflow is:
1) Find offsets in the file marked for delayed allocation
2) Lock the pages
3) Lock the state bits
4) Call the async delalloc code
The async delalloc code clears the state lock bits and delalloc bits. It is
important this happens before the range goes into the work queue because
otherwise it might deadlock with other work queue items that try to lock
those extent bits.
The file pages are compressed, and if the compression doesn't work the
pages are written back directly.
An ordered work queue is used to make sure the inodes are written in the same
order that pdflush or writepages sent them down.
This changes extent_write_cache_pages to let the writepage function
update the wbc nr_written count.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Make sure we keep page->mapping NULL on the pages we're getting
via alloc_page. It gets set so a few of the callbacks can do the right
thing, but in general these pages don't have a mapping.
Don't try to truncate compressed inline items in btrfs_drop_extents.
The whole compressed item must be preserved.
Don't try to create multipage inline compressed items. When we try to
overwrite just the first page of the file, we would have to read in and recow
all the pages after it in the same compressed inline items. For now, only
create single page inline items.
Make sure we lock pages in the correct order during delalloc. The
search into the state tree for delalloc bytes can return bytes before
the page we already have locked.
Signed-off-by: Chris Mason <chris.mason@oracle.com>