* 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mce: Use mce_sysdev_ prefix to group functions
x86, mce: Use mce_chrdev_ prefix to group functions
x86, mce: Cleanup mce_read()
x86, mce: Cleanup mce_create()/remove_device()
x86, mce: Check the result of ancient_init()
x86, mce: Introduce mce_gather_info()
x86, mce: Replace MCM_ with MCI_MISC_
x86, mce: Replace MCE_SELF_VECTOR by irq_work
x86, mce, severity: Clean up trivial coding style problems
x86, mce, severity: Cleanup severity table
x86, mce, severity: Make formatting a bit more readable
x86, mce, severity: Fix two severities table signatures
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, smpboot: Mark the names[] array in __inquire_remote_apic() as const
x86: Convert vmalloc()+memset() to vzalloc()
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, ioapic: Print IR_IO_APIC_route_entry when IR is enabled
x86, ioapic: Print IRTE when IR is enabled
x86, x2apic: Preserve high 32-bits of IA32_APIC_BASE MSR
x86, ioapic: Also print Dest field
x86, ioapic: Format clean up for IOAPIC output
x86: print APIC data a little later during boot
* 'timers-rtc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Serialize EFI time accesses on rtc_lock
x86: Serialize SMP bootup CMOS accesses on rtc_lock
rtc: stmp3xxx: Remove UIE handlers
rtc: stmp3xxx: Get rid of mach-specific accessors
rtc: stmp3xxx: Initialize drvdata before registering device
rtc: stmp3xxx: Port stmp-functions to mxs-equivalents
rtc: stmp3xxx: Restore register definitions
rtc: vt8500: Use define instead of hardcoded value for status bit
* 'timers-cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mips: Fix i8253 clockevent fallout
i8253: Cleanup outb/inb magic
arm: Footbridge: Use common i8253 clockevent
mips: Use common i8253 clockevent
x86: Use common i8253 clockevent
i8253: Create common clockevent implementation
i8253: Export i8253_lock unconditionally
pcpskr: MIPS: Make config dependencies finer grained
pcspkr: Cleanup Kconfig dependencies
i8253: Move remaining content and delete asm/i8253.h
i8253: Consolidate definitions of PIT_LATCH
x86: i8253: Consolidate definitions of global_clock_event
i8253: Alpha, PowerPC: Remove unused asm/8253pit.h
alpha: i8253: Cleanup remaining users of i8253pit.h
i8253: Remove I8253_LOCK config
i8253: Make pcsp sound driver use the shared i8253_lock
i8253: Make pcspkr input driver use the shared i8253_lock
i8253: Consolidate all kernel definitions of i8253_lock
i8253: Unify all kernel declarations of i8253_lock
i8253: Create linux/i8253.h and use it in all 8253 related files
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (123 commits)
perf: Remove the nmi parameter from the oprofile_perf backend
x86, perf: Make copy_from_user_nmi() a library function
perf: Remove perf_event_attr::type check
x86, perf: P4 PMU - Fix typos in comments and style cleanup
perf tools: Make test use the preset debugfs path
perf tools: Add automated tests for events parsing
perf tools: De-opt the parse_events function
perf script: Fix display of IP address for non-callchain path
perf tools: Fix endian conversion reading event attr from file header
perf tools: Add missing 'node' alias to the hw_cache[] array
perf probe: Support adding probes on offline kernel modules
perf probe: Add probed module in front of function
perf probe: Introduce debuginfo to encapsulate dwarf information
perf-probe: Move dwarf library routines to dwarf-aux.{c, h}
perf probe: Remove redundant dwarf functions
perf probe: Move strtailcmp to string.c
perf probe: Rename DIE_FIND_CB_FOUND to DIE_FIND_CB_END
tracing/kprobe: Update symbol reference when loading module
tracing/kprobes: Support module init function probing
kprobes: Return -ENOENT if probe point doesn't exist
...
* 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
iommu/core: Fix build with INTR_REMAP=y && CONFIG_DMAR=n
iommu/amd: Don't use MSI address range for DMA addresses
iommu/amd: Move missing parts to drivers/iommu
iommu: Move iommu Kconfig entries to submenu
x86/ia64: intel-iommu: move to drivers/iommu/
x86: amd_iommu: move to drivers/iommu/
msm: iommu: move to drivers/iommu/
drivers: iommu: move to a dedicated folder
x86/amd-iommu: Store device alias as dev_data pointer
x86/amd-iommu: Search for existind dev_data before allocting a new one
x86/amd-iommu: Allow dev_data->alias to be NULL
x86/amd-iommu: Use only dev_data in low-level domain attach/detach functions
x86/amd-iommu: Use only dev_data for dte and iotlb flushing routines
x86/amd-iommu: Store ATS state in dev_data
x86/amd-iommu: Store devid in dev_data
x86/amd-iommu: Introduce global dev_data_list
x86/amd-iommu: Remove redundant device_flush_dte() calls
iommu-api: Add missing header file
Fix up trivial conflicts (independent additions close to each other) in
drivers/Makefile and include/linux/pci.h
* 'of-pci' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
pci/of: Consolidate pci_bus_to_OF_node()
pci/of: Consolidate pci_device_to_OF_node()
x86/devicetree: Use generic PCI <-> OF matching
microblaze/pci: Move the remains of pci_32.c to pci-common.c
microblaze/pci: Remove powermac originated cruft
pci/of: Match PCI devices to OF nodes dynamically
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1287 commits)
icmp: Fix regression in nexthop resolution during replies.
net: Fix ppc64 BPF JIT dependencies.
acenic: include NET_SKB_PAD headroom to incoming skbs
ixgbe: convert to ndo_fix_features
ixgbe: only enable WoL for magic packet by default
ixgbe: remove ifdef check for non-existent define
ixgbe: Pass staterr instead of re-reading status and error bits from descriptor
ixgbe: Move interrupt related values out of ring and into q_vector
ixgbe: add structure for containing RX/TX rings to q_vector
ixgbe: inline the ixgbe_maybe_stop_tx function
ixgbe: Update ATR to use recorded TX queues instead of CPU for routing
igb: Fix for DH89xxCC near end loopback test
e1000: always call e1000_check_for_link() on e1000_ce4100 MACs.
netxen: add fw version compatibility check
be2net: request native mode each time the card is reset
ipv4: Constrain UFO fragment sizes to multiples of 8 bytes
virtio_net: Fix panic in virtnet_remove
ipv6: make fragment identifications less predictable
ipv6: unshare inetpeers
can: make function can_get_bittiming static
...
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus:
lguest: Fix in/out emulation
lguest: Fix translation count about wikipedia's cpuid page
lguest: Fix three simple typos in comments
lguest: update comments
lguest: Simplify device initialization.
lguest: don't rewrite vmcall instructions
lguest: remove remaining vmcall
lguest: use a special 1:1 linear pagetable mode until first switch.
lguest: Do not exit on non-fatal errors
* 'stable/drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/pciback: Have 'passthrough' option instead of XEN_PCIDEV_BACKEND_PASS and XEN_PCIDEV_BACKEND_VPCI
xen/pciback: Remove the DEBUG option.
xen/pciback: Drop two backends, squash and cleanup some code.
xen/pciback: Print out the MSI/MSI-X (PIRQ) values
xen/pciback: Don't setup an fake IRQ handler for SR-IOV devices.
xen: rename pciback module to xen-pciback.
xen/pciback: Fine-grain the spinlocks and fix BUG: scheduling while atomic cases.
xen/pciback: Allocate IRQ handler for device that is shared with guest.
xen/pciback: Disable MSI/MSI-X when reseting a device
xen/pciback: guest SR-IOV support for PV guest
xen/pciback: Register the owner (domain) of the PCI device.
xen/pciback: Cleanup the driver based on checkpatch warnings and errors.
xen/pciback: xen pci backend driver.
xen: tmem: self-ballooning and frontswap-selfshrinking
xen: Add module alias to autoload backend drivers
xen: Populate xenbus device attributes
xen: Add __attribute__((format(printf... where appropriate
xen: prepare tmem shim to handle frontswap
xen: allow enable use of VGA console on dom0
* 'stable/pci.cleanups.v1' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/pci: Use 'acpi_gsi_to_irq' value unconditionally.
xen/pci: Remove 'xen_allocate_pirq_gsi'.
xen/pci: Retire unnecessary #ifdef CONFIG_ACPI
xen/pci: Move the allocation of IRQs when there are no IOAPIC's to the end
xen/pci: Squash pci_xen_initial_domain and xen_setup_pirqs together.
xen/pci: Use the xen_register_pirq for HVM and initial domain users
xen/pci: In xen_register_pirq bind the GSI to the IRQ after the hypercall.
xen/pci: Provide #ifdef CONFIG_ACPI to easy code squashing.
xen/pci: Update comments and fix empty spaces.
xen/pci: Shuffle code around.
This patch moves the in-tree architectures that were using the 'generic'
delay.h over to using the header file in asm-generic.
This is not done using the generic-y mechanism as none of these arch's
have started using that mechanism yet. This is a trivial change to make
later when the arch begins using generic-y.
Note the subtle change to the avr32 and SH architectures where the argument
to __const_udelay was previously using the rounded down constant value
instead of the rounded up value.
Signed-off-by: Jonas Bonn <jonas@southpole.se>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Commit 6e8af08dfa enables pci=bfsort on
future Dell systems. But the identification string 'Dell System' matches
on already existing whitelist, which do not have SMBIOS type 0xB1,
causing pci=bfsort not being set on existing whitelist.
This patch fixes the regression by moving the type 0xB1 check beyond the
existing whitelist so that existing whitelist is walked before.
Signed-off-by: Shyam Iyer <shyam_iyer@dell.com>
Signed-off-by: Narendra K <narendra_k@dell.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
This code uses PCI_CLASS_REVISION instead of PCI_REVISION_ID, so
it wasn't converted by commit 44c10138fd ("PCI: Change all
drivers to use pci_device->revision") before being moved to arch/x86/...
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/201107111901.39281.sshtylyov@ru.mvista.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Aside of the usual motivation for constification, this function has a
history of being abused a hook for interrupt and other fixups so I turned
this function const ages ago in the MIPS code but it should be done
treewide.
Due to function pointer passing in varous places a few other functions
had to be constified as well.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
To: Anton Vorontsov <avorontsov@mvista.com>
To: Chris Metcalf <cmetcalf@tilera.com>
To: Colin Cross <ccross@android.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
To: Eric Miao <eric.y.miao@gmail.com>
To: Erik Gilling <konkers@android.com>
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
To: "H. Peter Anvin" <hpa@zytor.com>
To: Imre Kaloz <kaloz@openwrt.org>
To: Ingo Molnar <mingo@redhat.com>
To: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
To: Jesse Barnes <jbarnes@virtuousgeek.org>
To: Krzysztof Halasa <khc@pm.waw.pl>
To: Lennert Buytenhek <kernel@wantstofly.org>
To: Matt Turner <mattst88@gmail.com>
To: Nicolas Pitre <nico@fluxnic.net>
To: Olof Johansson <olof@lixom.net>
Acked-by: Paul Mundt <lethal@linux-sh.org>
To: Richard Henderson <rth@twiddle.net>
To: Russell King <linux@arm.linux.org.uk>
To: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-pci@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linux-tegra@vger.kernel.org
Cc: sparclinux@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Without this change, the majority of the raw PCI config space access
functions silently ignore a non-zero segment argument, which is
certainly wrong.
Apart from pci_direct_conf1, all other non-MMCFG access methods get
used only for non-extended accesses (i.e. assigned to raw_pci_ops
only). Consequently, with the way raw_pci_{read,write}() work, it would
be a coding error to call these functions with a non-zero segment (with
the current call flow this cannot happen afaict).
The access method 1 accessor, as it can be used for extended accesses
(on AMD systems) instead gets checks added for the passed in segment to
be zero. This would be the case when on such a system having multiple
PCI segments (don't know whether any exist in practice) MMCFG for some
reason is not usable, and method 1 gets selected for doing extended
accesses. Rather than accessing the wrong device's config space, the
function will now error out.
v2: Convert BUG_ON() to WARN_ON(), and extend description as per Ingo's
request.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Host bridge windows are top-level resources, so if we find a host bridge
window conflict, it's probably with a hard-coded legacy reservation.
Moving host bridge windows is theoretically possible, but we don't support
it; we just ignore windows with conflicts, and it's not worth making this
a user-visible error.
Reported-and-tested-by: Jools Wills <jools@oxfordinspire.co.uk>
References: https://bugzilla.kernel.org/show_bug.cgi?id=38522
Reported-by: Das <dasfox@gmail.com>
References: https://bugzilla.kernel.org/show_bug.cgi?id=16497
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Direct access is needed in mmconf mode too. There are two reasons:
1. we need it to access first 256 bytes. We have bug before that
using mmconf to access pci config space hangs system (when
resizing BARs), so we use type1 config for legacy config space.
2. when doing mmconfg bar checking, we need access ACPI _CRS,
which might access PCI config space.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
The comment is outdated, wikipedia now has six translations of the cpuid
page.
Signed-off-by: Adrian Knoth <adi@drcomp.erfurt.thur.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This patch fixes three typos I've accidentally spotted.
Signed-off-by: Adrian Knoth <adi@drcomp.erfurt.thur.de>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (one was already fixed)
We switch back from using vmcall in 091ebf07a2
because it was unreliable under kvm, but I missed one (rarely-used) place.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The Host used to create some page tables for the Guest to use at the
top of Guest memory; it would then tell the Guest where this was. In
particular, it created linear mappings for 0 and 0xC0000000 addresses
because lguest used to switch to its real page tables quite late in
boot.
However, since d50d8fe19 Linux initialized boot page tables in
head_32.S even before the "are we lguest?" boot jump. So, now we can
simplify things: the Host pagetable code assumes 1:1 linear mapping
until it first calls the LHCALL_NEW_PGTABLE hypercall, which we now do
before we reach C code.
This also means that the Host doesn't need to know anything about the
Guest's PAGE_OFFSET. (Non-Linux guests might not even have such a
thing).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The machinery for __ARCH_HAS_CLOCKSOURCE_DATA assumed a file in
asm-generic would be the default for architectures without their own
file in asm/, but that is not how it works.
Replace it with a Kconfig option instead.
Link: http://lkml.kernel.org/r/4E288AA6.7090804@zytor.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tony Luck <tony.luck@intel.com>
Yet another variant of the Dell Latitude series which requires
reboot=pci.
From the E5420 bug report by Daniel J Blueman:
> The E6420 is affected also (same platform, different casing and
> features), which provides an external confirmation of the issue; I can
> submit a patch for that later or include it if you prefer:
> http://linux.koolsolutions.com/2009/08/04/howto-fix-linux-hangfreeze-during-reboots-and-restarts/
Reported-by: Daniel J Blueman <daniel.blueman@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: <stable@kernel.org>
Rebooting on the Dell E5420 often hangs with the keyboard or ACPI
methods, but is reliable via the PCI method.
[ hpa: this was deferred because we believed for a long time that the
recent reshuffling of the boot priorities in commit
660e34cebf fixed this platform.
Unfortunately that turned out to be incorrect. ]
Signed-off-by: Daniel J Blueman <daniel.blueman@gmail.com>
Link: http://lkml.kernel.org/r/1305248699-2347-1-git-send-email-daniel.blueman@gmail.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: <stable@kernel.org>
copy_from_user_nmi() is used in oprofile and perf. Moving it to other
library functions like copy_from_user(). As this is x86 code for 32
and 64 bits, create a new file usercopy.c for unified code.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110607172413.GJ20052@erda.amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch:
- fixes typos in comments and clarifies the text
- renames obscure p4_event_alias::original and ::alter members to
::original and ::alternative as appropriate
- drops parenthesis from the return of p4_get_alias_event()
No functional changes.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Link: http://lkml.kernel.org/r/20110721160625.GX7492@sun
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All these are instances of
#define NAME value;
or
#define NAME(params_opt) value;
These of course fail to build when used in contexts like
if(foo $OP NAME)
while(bar $OP NAME)
and may silently generate the wrong code in contexts such as
foo = NAME + 1; /* foo = value; + 1; */
bar = NAME - 1; /* bar = value; - 1; */
baz = NAME & quux; /* baz = value; & quux; */
Reported on comp.lang.c,
Message-ID: <ab0d55fe-25e5-482b-811e-c475aa6065c3@c29g2000yqd.googlegroups.com>
Initial analysis of the dangers provided by Keith Thompson in that thread.
There are many more instances of more complicated macros having unnecessary
trailing semicolons, but this pile seems to be all of the cases of simple
values suffering from the problem. (Thus things that are likely to be found
in one of the contexts above, more complicated ones aren't.)
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
In kexec jump support, jump back address passed to the kexeced
kernel via function calling ABI, that is, the function call
return address is the jump back entry.
Furthermore, jump back entry == 0 should be used to signal that
the jump back or preserve context is not enabled in the original
kernel.
But in the current implementation the stack position used for
function call return address is not cleared context
preservation is disabled. The patch fixes this bug.
Reported-and-tested-by: Yin Kangkai <kangkai.yin@intel.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1310607277-25029-1-git-send-email-ying.huang@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We need to carve up the configuration between:
- MID general
- Moorestown specific
- Medfield specific
- Future devices
As a base point create an INTEL_MID configuration property. We
make the existing MRST configuration a sub-option. This means
that the rest of the kernel config can still use X86_MRST checks
without anything going backwards.
After this is merged future patches will tidy up which devices
are MID and which are X86_MRST, as well as add options for
Medfield.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/r/20110712164859.7642.84136.stgit@bob.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This code uses PCI_CLASS_REVISION instead of PCI_REVISION_ID, so
it wasn't converted by commit 44c10138fd ("PCI: Change all
drivers to use pci_device->revision") before being moved to arch/x86/...
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/201107111901.39281.sshtylyov@ru.mvista.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The EFI specification requires that callers of the time related
runtime functions serialize with other CMOS accesses in the
kernel, as the EFI time functions may choose to also use the
legacy CMOS RTC.
Besides fixing a latent bug, this is a prerequisite to safely
enable the rtc-efi driver for x86, which ought to be preferred
over rtc-cmos on all EFI platforms.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: <mjg@redhat.com>
Link: http://lkml.kernel.org/r/4E257E33020000780004E319@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Matthew Garrett <mjg@redhat.com>
With CPU hotplug, there is a theoretical race between other CMOS
(namely RTC) accesses and those done in the SMP secondary
processor bringup path.
I am unware of the problem having been noticed by anyone in practice,
but it would very likely be rather spurious and very hard to reproduce.
So to be on the safe side, acquire rtc_lock around those accesses.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/4E257AE7020000780004E2FF@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the write lock path simply subtracting RW_LOCK_BIAS there
is, on large systems, the theoretical possibility of overflowing
the 32-bit value that was used so far (namely if 128 or more
CPUs manage to do the subtraction, but don't get to do the
inverse addition in the failure path quickly enough).
A first measure is to modify RW_LOCK_BIAS itself - with the new
value chosen, it is good for up to 2048 CPUs each allowed to
nest over 2048 times on the read path without causing an issue.
Quite possibly it would even be sufficient to adjust the bias a
little further, assuming that allowing for significantly less
nesting would suffice.
However, as the original value chosen allowed for even more
nesting levels, to support more than 2048 CPUs (possible
currently only for 64-bit kernels) the lock itself gets widened
to 64 bits.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4E258E0D020000780004E3F0@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rather than having two functionally identical implementations
for 32- and 64-bit configurations, use the previously extended
assembly abstractions to fold the rwsem two implementations into
a shared one.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4E258DF3020000780004E3ED@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rather than having two functionally identical implementations
for 32- and 64-bit configurations, extend the existing assembly
abstractions enough to fold the two rwlock implementations into
a shared one.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4E258DD7020000780004E3EA@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86. reboot: Make Dell Latitude E6320 use reboot=pci
x86, doc only: Correct real-mode kernel header offset for init_size
x86: Disable AMD_NUMA for 32bit for now
Singleton calls seem to end up being pretty common, so just
directly call the hypercall rather than going via multicall.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
It's useful - and probably should be a config - but its very heavyweight,
especially with the tracing stuff to help sort out problems.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Make sure the fastpath code is inlined. Batch the page permission change
and the pin/unpin, and make sure that it can be batched with any
adjacent set_pte/pmd/etc operations.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Now that 1b3f2a72bb is in, it is very
important that the below lying comment be removed! :-)
Signed-off-by: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20110718191054.GA18359@liondog.tnic
Acked-by: Andy Lutomirski <luto@mit.edu>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fix the printk_once() so that it actually prints (didn't print before
due to a stray comma.)
[ hpa: changed to an incremental patch and adjusted the description
accordingly. ]
Signed-off-by: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1107151732480.18606@x980
Cc: <table@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
handle_signal()->set_fs() has a nice comment which explains what
set_fs() is, but it doesn't explain why it is needed and why it
depends on CONFIG_X86_64.
Afaics, the history of this confusion is:
1. I guess today nobody can explain why it was needed
in arch/i386/kernel/signal.c, perhaps it was always
wrong. This predates 2.4.0 kernel.
2. then it was copy-and-past'ed to the new x86_64 arch.
3. then it was removed from i386 (but not from x86_64)
by b93b6ca3 "i386: remove unnecessary code".
4. then it was reintroduced under CONFIG_X86_64 when x86
unified i386 and x86_64, because the patch above didn't
touch x86_64.
Remove it. ->addr_limit should be correct. Even if it was possible
that it is wrong, it is too late to fix it after setup_rt_frame().
Linus commented in:
http://lkml.kernel.org/r/alpine.LFD.0.999.0707170902570.19166@woody.linux-foundation.org
... about the equivalent bit from i386:
Heh. I think it's entirely historical.
Please realize that the whole reason that function is called "set_fs()" is
that it literally used to set the %fs segment register, not
"->addr_limit".
So I think the "set_fs(USER_DS)" is there _only_ to match the other
regs->xds = __USER_DS;
regs->xes = __USER_DS;
regs->xss = __USER_DS;
regs->xcs = __USER_CS;
things, and never mattered. And now it matters even less, and has been
copied to all other architectures where it is just totally insane.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20110710164424.GA20261@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
1. do_signal() looks at TS_RESTORE_SIGMASK and calculates the
mask which should be stored in the signal frame, then it
passes "oldset" to the callees, down to setup_rt_frame().
This is ugly, setup_rt_frame() can do this itself and nobody
else needs this sigset_t. Move this code into setup_rt_frame.
2. do_signal() also clears TS_RESTORE_SIGMASK if handle_signal()
succeeds.
We can move this to setup_rt_frame() as well, this avoids the
unnecessary checks and makes the logic more clear.
3. use set_current_blocked() instead of sigprocmask(SIG_SETMASK),
sigprocmask() should be avoided.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20110710182203.GA27979@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
sys_sigsuspend() and sys_sigreturn() change ->blocked directly.
This is not correct, see the changelog in e6fa16ab
"signal: sigprocmask() should do retarget_shared_pending()"
Change them to use set_current_blocked().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20110710192727.GA31759@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
sys32_sigsuspend() and sys32_*sigreturn() change ->blocked directly.
This is not correct, see the changelog in e6fa16ab
"signal: sigprocmask() should do retarget_shared_pending()"
Change them to use set_current_blocked().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20110710192724.GA31755@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fix a trivial typo in the name of the constant
ENERGY_PERF_BIAS_POWERSAVE. This didn't cause trouble because this
constant is not currently used for anything.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/tip-abe48b108247e9b90b4c6739662a2e5c765ed114@git.kernel.org
Instead of hw_nmi_watchdog_set_attr() weak function
and appropriate x86_pmu::hw_watchdog_set_attr() call
we introduce even alias mechanism which allow us
to drop this routines completely and isolate quirks
of Netburst architecture inside P4 PMU code only.
The main idea remains the same though -- to allow
nmi-watchdog and perf top run simultaneously.
Note the aliasing mechanism applies to generic
PERF_COUNT_HW_CPU_CYCLES event only because arbitrary
event (say passed as RAW initially) might have some
additional bits set inside ESCR register changing
the behaviour of event and we can't guarantee anymore
that alias event will give the same result.
P.S. Thanks a huge to Don and Steven for for testing
and early review.
Acked-by: Don Zickus <dzickus@redhat.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Ingo Molnar <mingo@elte.hu>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Stephane Eranian <eranian@google.com>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20110708201712.GS23657@sun
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Since 2.6.36 (23016bf0d2), Linux prints the existence of "epb" in /proc/cpuinfo,
Since 2.6.38 (d5532ee7b4), the x86_energy_perf_policy(8) utility has
been available in-tree to update MSR_IA32_ENERGY_PERF_BIAS.
However, the typical BIOS fails to initialize the MSR, presumably
because this is handled by high-volume shrink-wrap operating systems...
Linux distros, on the other hand, do not yet invoke x86_energy_perf_policy(8).
As a result, WSM-EP, SNB, and later hardware from Intel will run in its
default hardware power-on state (performance), which assumes that users
care for performance at all costs and not for energy efficiency.
While that is fine for performance benchmarks, the hardware's intended default
operating point is "normal" mode...
Initialize the MSR to the "normal" by default during kernel boot.
x86_energy_perf_policy(8) is available to change the default after boot,
should the user have a different preference.
Signed-off-by: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1107140051020.18606@x980
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@kernel.org>
This patch makes update_rq_clock() aware of steal time.
The mechanism of operation is not different from irq_time,
and follows the same principles. This lives in a CONFIG
option itself, and can be compiled out independently of
the rest of steal time reporting. The effect of disabling it
is that the scheduler will still report steal time (that cannot be
disabled), but won't use this information for cpu power adjustments.
Everytime update_rq_clock_task() is invoked, we query information
about how much time was stolen since last call, and feed it into
sched_rt_avg_update().
Although steal time reporting in account_process_tick() keeps
track of the last time we read the steal clock, in prev_steal_time,
this patch do it independently using another field,
prev_steal_time_rq. This is because otherwise, information about time
accounted in update_process_tick() would never reach us in update_rq_clock().
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch adds a function pointer in one of the many paravirt_ops
structs, to allow guests to register a steal time function. Besides
a steal time function, we also declare two jump_labels. They will be
used to allow the steal time code to be easily bypassed when not
in use.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
To implement steal time, we need the hypervisor to pass the guest
information about how much time was spent running other processes
outside the VM, while the vcpu had meaningful work to do - halt
time does not count.
This information is acquired through the run_delay field of
delayacct/schedstats infrastructure, that counts time spent in a
runqueue but not running.
Steal time is a per-cpu information, so the traditional MSR-based
infrastructure is used. A new msr, KVM_MSR_STEAL_TIME, holds the
memory area address containing information about steal time
This patch contains the hypervisor part of the steal time infrasructure,
and can be backported independently of the guest portion.
[avi, yongjie: export delayacct_on, to avoid build failures in some configs]
Signed-off-by: Glauber Costa <glommer@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Rik van Riel <riel@redhat.com>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Yongjie Ren <yongjie.ren@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The vread field was bloating struct clocksource everywhere except
x86_64, and I want to change the way this works on x86_64, so let's
split it out into per-arch data.
Cc: x86@kernel.org
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: linux-ia64@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Link: http://lkml.kernel.org/r/3ae5ec76a168eaaae63f08a2a1060b91aa0b7759.1310563276.git.luto@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Three fixes here:
- Send SIGSEGV if called from compat code or with a funny CS.
- Don't BUG on impossible addresses.
- Add a missing local_irq_disable.
This patch also removes an unused variable.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Link: http://lkml.kernel.org/r/6fb2b13ab39b743d1e4f466eef13425854912f7f.1310563276.git.luto@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
SPARSEMEM w/o VMEMMAP and DISCONTIGMEM, both used only on 32bit, use
sections array to map pfn to nid which is limited in granularity. If
NUMA nodes are laid out such that the mapping cannot be accurate, boot
will fail triggering BUG_ON() in mminit_verify_page_links().
On 32bit, it's 512MiB w/ PAE and SPARSEMEM. This seems to have been
granular enough until commit 2706a0bf7b (x86, NUMA: Enable
CONFIG_AMD_NUMA on 32bit too). Apparently, there is a machine which
aligns NUMA nodes to 128MiB and has only AMD NUMA but not SRAT. This
led to the following BUG_ON().
On node 0 totalpages: 2096615
DMA zone: 32 pages used for memmap
DMA zone: 0 pages reserved
DMA zone: 3927 pages, LIFO batch:0
Normal zone: 1740 pages used for memmap
Normal zone: 220978 pages, LIFO batch:31
HighMem zone: 16405 pages used for memmap
HighMem zone: 1853533 pages, LIFO batch:31
BUG: Int 6: CR2 (null)
EDI (null) ESI 00000002 EBP 00000002 ESP c1543ecc
EBX f2400000 EDX 00000006 ECX (null) EAX 00000001
err (null) EIP c16209aa CS 00000060 flg 00010002
Stack: f2400000 00220000 f7200800 c1620613 00220000 01000000 04400000 00238000
(null) f7200000 00000002 f7200b58 f7200800 c1620929 000375fe (null)
f7200b80 c16395f0 00200a02 f7200a80 (null) 000375fe 00000002 (null)
Pid: 0, comm: swapper Not tainted 2.6.39-rc5-00181-g2706a0b #17
Call Trace:
[<c136b1e5>] ? early_fault+0x2e/0x2e
[<c16209aa>] ? mminit_verify_page_links+0x12/0x42
[<c1620613>] ? memmap_init_zone+0xaf/0x10c
[<c1620929>] ? free_area_init_node+0x2b9/0x2e3
[<c1607e99>] ? free_area_init_nodes+0x3f2/0x451
[<c1601d80>] ? paging_init+0x112/0x118
[<c15f578d>] ? setup_arch+0x791/0x82f
[<c15f43d9>] ? start_kernel+0x6a/0x257
This patch implements node_map_pfn_alignment() which determines
maximum internode alignment and update numa_register_memblks() to
reject NUMA configuration if alignment exceeds the pfn -> nid mapping
granularity of the memory model as determined by PAGES_PER_SECTION.
This makes the problematic machine boot w/ flatmem by rejecting the
NUMA config and provides protection against crazy NUMA configurations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110712074534.GB2872@htj.dyndns.org
LKML-Reference: <20110628174613.GP478@escobedo.osrc.amd.com>
Reported-and-Tested-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Conny Seidel <conny.seidel@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
DISCONTIGMEM on x86-32 implements pfn -> nid mapping similarly to
SPARSEMEM; however, it calls each mapping unit ELEMENT instead of
SECTION. This patch renames it to SECTION so that PAGES_PER_SECTION
is valid for both DISCONTIGMEM and SPARSEMEM. This will be used by
the next patch to implement mapping granularity check.
This patch is trivial constant rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110712074422.GA2872@htj.dyndns.org
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
When "apic=debug" is used as a boot parameter, Linux prints the IOAPIC routing
entries in "dmesg". Below is output from IOAPIC whose apic_id is 8:
# dmesg | grep "routing entry"
IOAPIC[8]: Set routing entry (8-1 -> 0x31 -> IRQ 1 Mode:0 Active:0 Dest:0)
IOAPIC[8]: Set routing entry (8-2 -> 0x30 -> IRQ 0 Mode:0 Active:0 Dest:0)
IOAPIC[8]: Set routing entry (8-3 -> 0x33 -> IRQ 3 Mode:0 Active:0 Dest:0)
...
Similarly, when IR (interrupt remapping) is enabled, and the IRTE
(interrupt remapping table entry) is set up we should display it.
After the fix:
# dmesg | grep IRTE
IOAPIC[8]: Set IRTE entry (P:1 FPD:0 Dst_Mode:0 Redir_hint:1 Trig_Mode:0 Dlvry_Mode:0 Avail:0 Vector:31 Dest:00000000 SID:00F1 SQ:0 SVT:1)
IOAPIC[8]: Set IRTE entry (P:1 FPD:0 Dst_Mode:0 Redir_hint:1 Trig_Mode:0 Dlvry_Mode:0 Avail:0 Vector:30 Dest:00000000 SID:00F1 SQ:0 SVT:1)
IOAPIC[8]: Set IRTE entry (P:1 FPD:0 Dst_Mode:0 Redir_hint:1 Trig_Mode:0 Dlvry_Mode:0 Avail:0 Vector:33 Dest:00000000 SID:00F1 SQ:0 SVT:1)
...
The IRTE is defined in Sec 9.5 of the Intel VT-d Specification.
Signed-off-by: Naga Chumbalkar <nagananda.chumbalkar@hp.com>
Link: http://lkml.kernel.org/r/20110712211704.2939.71291.sendpatchset@nchumbalkar.americas.cpqcorp.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Somehow we got into a situation where the __this_cpu_xchg() operations were
not defined in the same way as this_cpu_xchg() and friends. I had some build
failures under 32 bit that were addressed by these fixes.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To implement steal time, we need the hypervisor to pass the guest information
about how much time was spent running other processes outside the VM.
This is per-vcpu, and using the kvmclock structure for that is an abuse
we decided not to make.
In this patchset, I am introducing a new msr, KVM_MSR_STEAL_TIME, that
holds the memory area address containing information about steal time
This patch contains the headers for it. I am keeping it separate to facilitate
backports to people who wants to backport the kernel part but not the
hypervisor, or the other way around.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch is simple, put in a different commit so it can be more easily
shared between guest and hypervisor. It just defines a named constant
to indicate the enable bit for KVM-specific MSRs.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The current name does not explain the meaning well. So give it a better
name "retry_walk" to show that we are trying the walk again.
This was suggested by Ingo Molnar.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Avoid two step jump to the error handling part. This eliminates the use
of the variables present and rsvd_fault.
We also use the const type qualifier to show that write/user/fetch_fault
do not change in the function.
Both of these were suggested by Ingo Molnar.
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This reverts commit bee931d31e588b8eb86b7edee32fac2d16930cd7.
TLB flush should be done lazily during guest entry, in
kvm_mmu_load().
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
kvm_set_cr0() and kvm_set_cr4(), and possible other functions,
assume that kvm_mmu_reset_context() flushes the guest TLB. However,
it does not.
Fix by flushing the tlb (and syncing the new root as well).
Signed-off-by: Avi Kivity <avi@redhat.com>
When CR0.WP=0, we sometimes map user pages as kernel pages (to allow
the kernel to write to them). Unfortunately this also allows the kernel
to fetch from these pages, even if CR4.SMEP is set.
Adjust for this by also setting NX on the spte in these circumstances.
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch exposes ERMS feature to KVM guests.
The REP MOVSB/STOSB instruction can enhance fast strings attempts to
move as much of the data with larger size load/stores as possible.
Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch exposes DRNG feature to KVM guests.
The RDRAND instruction can provide software with sequences of
random numbers generated from white noise.
Signed-off-by: Yang, Wei <wei.y.yang@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
commit 123108f1c1aafd51d6a5c79cc04d7999dd88a930 tried to fix KVMs
XSAVE valid feature scanning, but it was wrong. It was not considering
the sparse nature of this bitfield, instead reading values from
uninitialized members of the entries array.
This patch now separates subleaf indicies from KVM's array indicies
and fills the entry before querying it's value.
This fixes AVX support in KVM guests.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The nested VMX feature is supposed to fully emulate VMX for the guest. This
(theoretically) not only allows it to run its own guests, but also also
to further emulate VMX for its own guests, and allow arbitrarily deep nesting.
This patch fixes a bug (discovered by Kevin Tian) in handling a VMLAUNCH
by L2, which prevented deeper nesting.
Deeper nesting now works (I only actually tested L3), but is currently
*absurdly* slow, to the point of being unusable.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This saves a lot of pointless casts x86_emulate_ctxt and decode_cache.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The name eip conflicts with a field of the same name in x86_emulate_ctxt,
which we plan to fold decode_cache into.
The name _eip is unfortunate, but what's really needed is a refactoring
here, not a better name.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Different functions for those which take segment register operands.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In addition, replace one "goto xchg" with an em_xchg() call.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The next patch will change these to be called by opcode::execute.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We should use the local variables ctxt and c when the emulate_ctxt and
decode appears many times. At least, we need to be consistent about
how we use these in a function.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Small corrections of KVM (spelling, etc.) not directly related to nested VMX.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If the "nested" module option is enabled, add the "VMX" CPU feature to the
list of CPU features KVM advertises with the KVM_GET_SUPPORTED_CPUID ioctl.
Qemu uses this ioctl, and intersects KVM's list with its own list of desired
cpu features (depending on the -cpu option given to qemu) to determine the
final list of features presented to the guest.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In the unlikely case that L1 does not capture MSR_IA32_TSC, L0 needs to
emulate this MSR write by L2 by modifying vmcs02.tsc_offset. We also need to
set vmcs12.tsc_offset, for this change to survive the next nested entry (see
prepare_vmcs02()).
Additionally, we also need to modify vmx_adjust_tsc_offset: The semantics
of this function is that the TSC of all guests on this vcpu, L1 and possibly
several L2s, need to be adjusted. To do this, we need to adjust vmcs01's
tsc_offset (this offset will also apply to each L2s we enter). We can't set
vmcs01 now, so we have to remember this adjustment and apply it when we
later exit to L1.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM's "Lazy FPU loading" means that sometimes L0 needs to set CR0.TS, even
if a guest didn't set it. Moreover, L0 must also trap CR0.TS changes and
NM exceptions, even if we have a guest hypervisor (L1) who didn't want these
traps. And of course, conversely: If L1 wanted to trap these events, we
must let it, even if L0 is not interested in them.
This patch fixes some existing KVM code (in update_exception_bitmap(),
vmx_fpu_activate(), vmx_fpu_deactivate()) to do the correct merging of L0's
and L1's needs. Note that handle_cr() was already fixed in the above patch,
and that new code in introduced in previous patches already handles CR0
correctly (see prepare_vmcs02(), prepare_vmcs12(), and nested_vmx_vmexit()).
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When L2 tries to modify CR0 or CR4 (with mov or clts), and modifies a bit
which L1 asked to shadow (via CR[04]_GUEST_HOST_MASK), we already do the right
thing: we let L1 handle the trap (see nested_vmx_exit_handled_cr() in a
previous patch).
When L2 modifies bits that L1 doesn't care about, we let it think (via
CR[04]_READ_SHADOW) that it did these modifications, while only changing
(in GUEST_CR[04]) the bits that L0 doesn't shadow.
This is needed for corect handling of CR0.TS for lazy FPU loading: L0 may
want to leave TS on, while pretending to allow the guest to change it.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch adds correct handling of IDT_VECTORING_INFO_FIELD for the nested
case.
When a guest exits while delivering an interrupt or exception, we get this
information in IDT_VECTORING_INFO_FIELD in the VMCS. When L2 exits to L1,
there's nothing we need to do, because L1 will see this field in vmcs12, and
handle it itself. However, when L2 exits and L0 handles the exit itself and
plans to return to L2, L0 must inject this event to L2.
In the normal non-nested case, the idt_vectoring_info case is discovered after
the exit, and the decision to inject (though not the injection itself) is made
at that point. However, in the nested case a decision of whether to return
to L2 or L1 also happens during the injection phase (see the previous
patches), so in the nested case we can only decide what to do about the
idt_vectoring_info right after the injection, i.e., in the beginning of
vmx_vcpu_run, which is the first time we know for sure if we're staying in
L2.
Therefore, when we exit L2 (is_guest_mode(vcpu)), we disable the regular
vmx_complete_interrupts() code which queues the idt_vectoring_info for
injection on next entry - because such injection would not be appropriate
if we will decide to exit to L1. Rather, we just save the idt_vectoring_info
and related fields in vmcs12 (which is a convenient place to save these
fields). On the next entry in vmx_vcpu_run (*after* the injection phase,
potentially exiting to L1 to inject an event requested by user space), if
we find ourselves in L1 we don't need to do anything with those values
we saved (as explained above). But if we find that we're in L2, or rather
*still* at L2 (it's not nested_run_pending, meaning that this is the first
round of L2 running after L1 having just launched it), we need to inject
the event saved in those fields - by writing the appropriate VMCS fields.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Similar to the previous patch, but concerning injection of exceptions rather
than external interrupts.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The code in this patch correctly emulates external-interrupt injection
while a nested guest L2 is running.
Because of this code's relative un-obviousness, I include here a longer-than-
usual justification for what it does - much longer than the code itself ;-)
To understand how to correctly emulate interrupt injection while L2 is
running, let's look first at what we need to emulate: How would things look
like if the extra L0 hypervisor layer is removed, and instead of L0 injecting
an interrupt, we had hardware delivering an interrupt?
Now we have L1 running on bare metal with a guest L2, and the hardware
generates an interrupt. Assuming that L1 set PIN_BASED_EXT_INTR_MASK to 1, and
VM_EXIT_ACK_INTR_ON_EXIT to 0 (we'll revisit these assumptions below), what
happens now is this: The processor exits from L2 to L1, with an external-
interrupt exit reason but without an interrupt vector. L1 runs, with
interrupts disabled, and it doesn't yet know what the interrupt was. Soon
after, it enables interrupts and only at that moment, it gets the interrupt
from the processor. when L1 is KVM, Linux handles this interrupt.
Now we need exactly the same thing to happen when that L1->L2 system runs
on top of L0, instead of real hardware. This is how we do this:
When L0 wants to inject an interrupt, it needs to exit from L2 to L1, with
external-interrupt exit reason (with an invalid interrupt vector), and run L1.
Just like in the bare metal case, it likely can't deliver the interrupt to
L1 now because L1 is running with interrupts disabled, in which case it turns
on the interrupt window when running L1 after the exit. L1 will soon enable
interrupts, and at that point L0 will gain control again and inject the
interrupt to L1.
Finally, there is an extra complication in the code: when nested_run_pending,
we cannot return to L1 now, and must launch L2. We need to remember the
interrupt we wanted to inject (and not clear it now), and do it on the
next exit.
The above explanation shows that the relative strangeness of the nested
interrupt injection code in this patch, and the extra interrupt-window
exit incurred, are in fact necessary for accurate emulation, and are not
just an unoptimized implementation.
Let's revisit now the two assumptions made above:
If L1 turns off PIN_BASED_EXT_INTR_MASK (no hypervisor that I know
does, by the way), things are simple: L0 may inject the interrupt directly
to the L2 guest - using the normal code path that injects to any guest.
We support this case in the code below.
If L1 turns on VM_EXIT_ACK_INTR_ON_EXIT, things look very different from the
description above: L1 expects to see an exit from L2 with the interrupt vector
already filled in the exit information, and does not expect to be interrupted
again with this interrupt. The current code does not (yet) support this case,
so we do not allow the VM_EXIT_ACK_INTR_ON_EXIT exit-control to be turned on
by L1.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch contains the logic of whether an L2 exit should be handled by L0
and then L2 should be resumed, or whether L1 should be run to handle this
exit (using the nested_vmx_vmexit() function of the previous patch).
The basic idea is to let L1 handle the exit only if it actually asked to
trap this sort of event. For example, when L2 exits on a change to CR0,
we check L1's CR0_GUEST_HOST_MASK to see if L1 expressed interest in any
bit which changed; If it did, we exit to L1. But if it didn't it means that
it is we (L0) that wished to trap this event, so we handle it ourselves.
The next two patches add additional logic of what to do when an interrupt or
exception is injected: Does L0 need to do it, should we exit to L1 to do it,
or should we resume L2 and keep the exception to be injected later.
We keep a new flag, "nested_run_pending", which can override the decision of
which should run next, L1 or L2. nested_run_pending=1 means that we *must* run
L2 next, not L1. This is necessary in particular when L1 did a VMLAUNCH of L2
and therefore expects L2 to be run (and perhaps be injected with an event it
specified, etc.). Nested_run_pending is especially intended to avoid switching
to L1 in the injection decision-point described above.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch adds a bunch of tests of the validity of the vmcs12 fields,
according to what the VMX spec and our implementation allows. If fields
we cannot (or don't want to) honor are discovered, an entry failure is
emulated.
According to the spec, there are two types of entry failures: If the problem
was in vmcs12's host state or control fields, the VMLAUNCH instruction simply
fails. But a problem is found in the guest state, the behavior is more
similar to that of an exit.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch implements nested_vmx_vmexit(), called when the nested L2 guest
exits and we want to run its L1 parent and let it handle this exit.
Note that this will not necessarily be called on every L2 exit. L0 may decide
to handle a particular exit on its own, without L1's involvement; In that
case, L0 will handle the exit, and resume running L2, without running L1 and
without calling nested_vmx_vmexit(). The logic for deciding whether to handle
a particular exit in L1 or in L0, i.e., whether to call nested_vmx_vmexit(),
will appear in a separate patch below.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Before nested VMX support, the exit handler for a guest executing a VMX
instruction (vmclear, vmlaunch, vmptrld, vmptrst, vmread, vmread, vmresume,
vmwrite, vmon, vmoff), was handle_vmx_insn(). This handler simply threw a #UD
exception. Now that all these exit reasons are properly handled (and emulate
the respective VMX instruction), nothing calls this dummy handler and it can
be removed.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Implement the VMLAUNCH and VMRESUME instructions, allowing a guest
hypervisor to run its own guests.
This patch does not include some of the necessary validity checks on
vmcs12 fields before the entry. These will appear in a separate patch
below.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch contains code to prepare the VMCS which can be used to actually
run the L2 guest, vmcs02. prepare_vmcs02 appropriately merges the information
in vmcs12 (the vmcs that L1 built for L2) and in vmcs01 (our desires for our
own guests).
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Move some of the control field setup to common functions. These functions will
also be needed for running L2 guests - L0's desires (expressed in these
functions) will be appropriately merged with L1's desires.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Move the setting of constant host-state fields (fields that do not change
throughout the life of the guest) from vmx_vcpu_setup to a new common function
vmx_set_constant_host_state(). This function will also be used to set the
host state when running L2 guests.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Implement the VMREAD and VMWRITE instructions. With these instructions, L1
can read and write to the VMCS it is holding. The values are read or written
to the fields of the vmcs12 structure introduced in a previous patch.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
VMX instructions specify success or failure by setting certain RFLAGS bits.
This patch contains common functions to do this, and they will be used in
the following patches which emulate the various VMX instructions.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In this patch we add to vmcs12 (the VMCS that L1 keeps for L2) all the
standard VMCS fields.
Later patches will enable L1 to read and write these fields using VMREAD/
VMWRITE, and they will be used during a VMLAUNCH/VMRESUME in preparing vmcs02,
a hardware VMCS for running L2.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We saw in a previous patch that L1 controls its L2 guest with a vcms12.
L0 needs to create a real VMCS for running L2. We call that "vmcs02".
A later patch will contain the code, prepare_vmcs02(), for filling the vmcs02
fields. This patch only contains code for allocating vmcs02.
In this version, prepare_vmcs02() sets *all* of vmcs02's fields each time we
enter from L1 to L2, so keeping just one vmcs02 for the vcpu is enough: It can
be reused even when L1 runs multiple L2 guests. However, in future versions
we'll probably want to add an optimization where vmcs02 fields that rarely
change will not be set each time. For that, we may want to keep around several
vmcs02s of L2 guests that have recently run, so that potentially we could run
these L2s again more quickly because less vmwrites to vmcs02 will be needed.
This patch adds to each vcpu a vmcs02 pool, vmx->nested.vmcs02_pool,
which remembers the vmcs02s last used to run up to VMCS02_POOL_SIZE L2s.
As explained above, in the current version we choose VMCS02_POOL_SIZE=1,
I.e., one vmcs02 is allocated (and loaded onto the processor), and it is
reused to enter any L2 guest. In the future, when prepare_vmcs02() is
optimized not to set all fields every time, VMCS02_POOL_SIZE should be
increased.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch includes a utility function for decoding pointer operands of VMX
instructions issued by L1 (a guest hypervisor)
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When the guest can use VMX instructions (when the "nested" module option is
on), it should also be able to read and write VMX MSRs, e.g., to query about
VMX capabilities. This patch adds this support.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
An implementation of VMX needs to define a VMCS structure. This structure
is kept in guest memory, but is opaque to the guest (who can only read or
write it with VMX instructions).
This patch starts to define the VMCS structure which our nested VMX
implementation will present to L1. We call it "vmcs12", as it is the VMCS
that L1 keeps for its L2 guest. We will add more content to this structure
in later patches.
This patch also adds the notion (as required by the VMX spec) of L1's "current
VMCS", and finally includes utility functions for mapping the guest-allocated
VMCSs in host memory.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch allows the guest to enable the VMXE bit in CR4, which is a
prerequisite to running VMXON.
Whether to allow setting the VMXE bit now depends on the architecture (svm
or vmx), so its checking has moved to kvm_x86_ops->set_cr4(). This function
now returns an int: If kvm_x86_ops->set_cr4() returns 1, __kvm_set_cr4()
will also return 1, and this will cause kvm_set_cr4() will throw a #GP.
Turning on the VMXE bit is allowed only when the nested VMX feature is
enabled, and turning it off is forbidden after a vmxon.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch allows a guest to use the VMXON and VMXOFF instructions, and
emulates them accordingly. Basically this amounts to checking some
prerequisites, and then remembering whether the guest has enabled or disabled
VMX operation.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch adds to kvm_intel a module option "nested". This option controls
whether the guest can use VMX instructions, i.e., whether we allow nested
virtualization. A similar, but separate, option already exists for the
SVM module.
This option currently defaults to 0, meaning that nested VMX must be
explicitly enabled by giving nested=1. When nested VMX matures, the default
should probably be changed to enable nested VMX by default - just like
nested SVM is currently enabled by default.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
During tracing the emulator, we noticed that init_emulate_ctxt()
sometimes took a bit longer time than we expected.
This patch is for mitigating the problem by some degree.
By looking into the function, we soon notice that it clears the whole
decode_cache whose size is about 2.5K bytes now. Furthermore, most of
the bytes are taken for the two read_cache arrays, which are used only
by a few instructions.
Considering the fact that we are not assuming the cache arrays have
been cleared when we store actual data, we do not need to clear the
arrays: 2K bytes elimination. In addition, we can avoid clearing the
fetch_cache and regs arrays.
This patch changes the initialization not to clear the arrays.
On our 64-bit host, init_emulate_ctxt() becomes 0.3 to 0.5us faster with
this patch applied.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>