Commit Graph

28 Commits

Author SHA1 Message Date
Simon Guo
eacbb218fb powerpc: Export tm_enable()/tm_disable/tm_abort() APIs
This patch exports tm_enable()/tm_disable/tm_abort() APIs, which
will be used for PR KVM transactional memory logic.

Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-24 16:04:02 +10:00
Linus Torvalds
5b0e2cb020 powerpc updates for 4.15
Non-highlights:
 
  - Five fixes for the >128T address space handling, both to fix bugs in our
    implementation and to bring the semantics exactly into line with x86.
 
 Highlights:
 
  - Support for a new OPAL call on bare metal machines which gives us a true NMI
    (ie. is not masked by MSR[EE]=0) for debugging etc.
 
  - Support for Power9 DD2 in the CXL driver.
 
  - Improvements to machine check handling so that uncorrectable errors can be
    reported into the generic memory_failure() machinery.
 
  - Some fixes and improvements for VPHN, which is used under PowerVM to notify
    the Linux partition of topology changes.
 
  - Plumbing to enable TM (transactional memory) without suspend on some Power9
    processors (PPC_FEATURE2_HTM_NO_SUSPEND).
 
  - Support for emulating vector loads form cache-inhibited memory, on some
    Power9 revisions.
 
  - Disable the fast-endian switch "syscall" by default (behind a CONFIG), we
    believe it has never had any users.
 
  - A major rework of the API drivers use when initiating and waiting for long
    running operations performed by OPAL firmware, and changes to the
    powernv_flash driver to use the new API.
 
  - Several fixes for the handling of FP/VMX/VSX while processes are using
    transactional memory.
 
  - Optimisations of TLB range flushes when using the radix MMU on Power9.
 
  - Improvements to the VAS facility used to access coprocessors on Power9, and
    related improvements to the way the NX crypto driver handles requests.
 
  - Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
 
 Thanks to:
   Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew Donnellan, Aneesh
   Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin Herrenschmidt, Breno Leitao,
   Christophe Leroy, Christophe Lombard, Cyril Bur, Frederic Barrat, Gautham R.
   Shenoy, Geert Uytterhoeven, Guilherme G. Piccoli, Gustavo Romero, Haren
   Myneni, Joel Stanley, Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami
   Hiramatsu, Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
   Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia Franco de
   Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee, Shriya, Stephen
   Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel Datwyler, Vaibhav Jain,
   Vaidyanathan Srinivasan, William A. Kennington III.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJaDXGuAAoJEFHr6jzI4aWAEqwP/0TA35KFAK6wqfkCf67z4q+O
 I+5piI4eDV4jdCakfoIN1JfjhQRULNePSoCHTccan30mu/bm30p69xtOLL2/h5xH
 Mhz/eDBAOo0lrT20nyZfYMW3FnM66wnNf++qJ0O+8L052r4WOB02J0k1uM1ST01D
 5Lb5mUoxRLRzCgKRYAYWJifn+IFPUB9NMsvMTym94krAFlIjIzMEQXhDoln+jJMr
 QmY5f1BTA/fLfXobn0zwoc/C1oa2PUtxd+rxbwGrLoZ6G843mMqUi90SMr5ybhXp
 RzepnBTj4by3vOsnk/X1mANyaZfLsunp75FwnjHdPzKrAS/TuPp8D/iSxxE/PzEq
 cLwJFBnFXSgQMefDErXxhHSDz2dAg5r14rsTpDcq2Ko8TPV4rPsuSfmbd9Txekb0
 yWHsjoJUBBMl2QcWqIHl+AlV8j1RklF6solcTBcGnH1CZJMfa05VKXV7xGEvOHa0
 RJ+/xPyR9KjoB/SUp++9Vmx/M6SwQYFOJlr3Zpg9LNtR8WpoPYu1E6eO+u1Hhzny
 eJqaNstH+i+VdY9eqszkAsEBh8o9M/+b+7Wx7TetvU+v368CbXtgFYs9qy2oZjPF
 t9sY/BHaHZ8eZ7I00an77a0fVV5B1PVASUtIz5CqkwGpMvX6Z6W2K/XUUFI61kuu
 E06HS6Ht8UPJAzrAPUMl
 =Rq81
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "A bit of a small release, I suspect in part due to me travelling for
  KS. But my backlog of patches to review is smaller than usual, so I
  think in part folks just didn't send as much this cycle.

  Non-highlights:

   - Five fixes for the >128T address space handling, both to fix bugs
     in our implementation and to bring the semantics exactly into line
     with x86.

  Highlights:

   - Support for a new OPAL call on bare metal machines which gives us a
     true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.

   - Support for Power9 DD2 in the CXL driver.

   - Improvements to machine check handling so that uncorrectable errors
     can be reported into the generic memory_failure() machinery.

   - Some fixes and improvements for VPHN, which is used under PowerVM
     to notify the Linux partition of topology changes.

   - Plumbing to enable TM (transactional memory) without suspend on
     some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).

   - Support for emulating vector loads form cache-inhibited memory, on
     some Power9 revisions.

   - Disable the fast-endian switch "syscall" by default (behind a
     CONFIG), we believe it has never had any users.

   - A major rework of the API drivers use when initiating and waiting
     for long running operations performed by OPAL firmware, and changes
     to the powernv_flash driver to use the new API.

   - Several fixes for the handling of FP/VMX/VSX while processes are
     using transactional memory.

   - Optimisations of TLB range flushes when using the radix MMU on
     Power9.

   - Improvements to the VAS facility used to access coprocessors on
     Power9, and related improvements to the way the NX crypto driver
     handles requests.

   - Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.

  Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
  Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
  Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
  Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
  Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
  Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
  Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
  Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
  Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
  Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
  Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
  Kennington III"

* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
  powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
  powerpc/64s: Fix masking of SRR1 bits on instruction fault
  powerpc/64s: mm_context.addr_limit is only used on hash
  powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
  powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
  powerpc/64s/hash: Fix fork() with 512TB process address space
  powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
  powerpc/64s/hash: Fix 512T hint detection to use >= 128T
  powerpc: Fix DABR match on hash based systems
  powerpc/signal: Properly handle return value from uprobe_deny_signal()
  powerpc/fadump: use kstrtoint to handle sysfs store
  powerpc/lib: Implement UACCESS_FLUSHCACHE API
  powerpc/lib: Implement PMEM API
  powerpc/powernv/npu: Don't explicitly flush nmmu tlb
  powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
  powerpc/powernv/idle: Round up latency and residency values
  powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
  powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
  powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
  powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
  ...
2017-11-16 12:47:46 -08:00
Cyril Bur
eb5c3f1c86 powerpc: Always save/restore checkpointed regs during treclaim/trecheckpoint
Lazy save and restore of FP/Altivec means that a userspace process can
be sent to userspace with FP or Altivec disabled and loaded only as
required (by way of an FP/Altivec unavailable exception). Transactional
Memory complicates this situation as a transaction could be started
without FP/Altivec being loaded up. This causes the hardware to
checkpoint incorrect registers. Handling FP/Altivec unavailable
exceptions while a thread is transactional requires a reclaim and
recheckpoint to ensure the CPU has correct state for both sets of
registers.

tm_reclaim() has optimisations to not always save the FP/Altivec
registers to the checkpointed save area. This was originally done
because the caller might have information that the checkpointed
registers aren't valid due to lazy save and restore. We've also been a
little vague as to how tm_reclaim() leaves the FP/Altivec state since it
doesn't necessarily always save it to the thread struct. This has lead
to an (incorrect) assumption that it leaves the checkpointed state on
the CPU.

tm_recheckpoint() has similar optimisations in reverse. It may not
always reload the checkpointed FP/Altivec registers from the thread
struct before the trecheckpoint. It is therefore quite unclear where it
expects to get the state from. This didn't help with the assumption
made about tm_reclaim().

These optimisations sit in what is by definition a slow path. If a
process has to go through a reclaim/recheckpoint then its transaction
will be doomed on returning to userspace. This mean that the process
will be unable to complete its transaction and be forced to its failure
handler. This is already an out if line case for userspace. Furthermore,
the cost of copying 64 times 128 bits from registers isn't very long[0]
(at all) on modern processors. As such it appears these optimisations
have only served to increase code complexity and are unlikely to have
had a measurable performance impact.

Our transactional memory handling has been riddled with bugs. A cause
of this has been difficulty in following the code flow, code complexity
has not been our friend here. It makes sense to remove these
optimisations in favour of a (hopefully) more stable implementation.

This patch does mean that some times the assembly will needlessly save
'junk' registers which will subsequently get overwritten with the
correct value by the C code which calls the assembly function. This
small inefficiency is far outweighed by the reduction in complexity for
general TM code, context switching paths, and transactional facility
unavailable exception handler.

0: I tried to measure it once for other work and found that it was
hiding in the noise of everything else I was working with. I find it
exceedingly likely this will be the case here.

Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-11-06 20:39:33 +11:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Michael Neuling
2bafb7ffa3 powerpc/tm: Fix comment
Update to real function name.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-06-27 12:09:09 +10:00
Cyril Bur
000ec280e3 powerpc: tm: Rename transct_(*) to ck(\1)_state
Make the structures being used for checkpointed state named
consistently with the pt_regs/ckpt_regs.

Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-10-04 20:33:16 +11:00
Cyril Bur
dc3106690b powerpc: tm: Always use fp_state and vr_state to store live registers
There is currently an inconsistency as to how the entire CPU register
state is saved and restored when a thread uses transactional memory
(TM).

Using transactional memory results in the CPU having duplicated
(almost) all of its register state. This duplication results in a set
of registers which can be considered 'live', those being currently
modified by the instructions being executed and another set that is
frozen at a point in time.

On context switch, both sets of state have to be saved and (later)
restored. These two states are often called a variety of different
things. Common terms for the state which only exists after the CPU has
entered a transaction (performed a TBEGIN instruction) in hardware are
'transactional' or 'speculative'.

Between a TBEGIN and a TEND or TABORT (or an event that causes the
hardware to abort), regardless of the use of TSUSPEND the
transactional state can be referred to as the live state.

The second state is often to referred to as the 'checkpointed' state
and is a duplication of the live state when the TBEGIN instruction is
executed. This state is kept in the hardware and will be rolled back
to on transaction failure.

Currently all the registers stored in pt_regs are ALWAYS the live
registers, that is, when a thread has transactional registers their
values are stored in pt_regs and the checkpointed state is in
ckpt_regs. A strange opposite is true for fp_state/vr_state. When a
thread is non transactional fp_state/vr_state holds the live
registers. When a thread has initiated a transaction fp_state/vr_state
holds the checkpointed state and transact_fp/transact_vr become the
structure which holds the live state (at this point it is a
transactional state).

This method creates confusion as to where the live state is, in some
circumstances it requires extra work to determine where to put the
live state and prevents the use of common functions designed (probably
before TM) to save the live state.

With this patch pt_regs, fp_state and vr_state all represent the
same thing and the other structures [pending rename] are for
checkpointed state.

Acked-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-10-04 20:33:15 +11:00
Michael Neuling
6bcb80143e powerpc/tm: Fix stack pointer corruption in __tm_recheckpoint()
At the start of __tm_recheckpoint() we save the kernel stack pointer
(r1) in SPRG SCRATCH0 (SPRG2) so that we can restore it after the
trecheckpoint.

Unfortunately, the same SPRG is used in the SLB miss handler.  If an
SLB miss is taken between the save and restore of r1 to the SPRG, the
SPRG is changed and hence r1 is also corrupted.  We can end up with
the following crash when we start using r1 again after the restore
from the SPRG:

  Oops: Bad kernel stack pointer, sig: 6 [#1]
  SMP NR_CPUS=2048 NUMA pSeries
  CPU: 658 PID: 143777 Comm: htm_demo Tainted: G            EL   X 4.4.13-0-default #1
  task: c0000b56993a7810 ti: c00000000cfec000 task.ti: c0000b56993bc000
  NIP: c00000000004f188 LR: 00000000100040b8 CTR: 0000000010002570
  REGS: c00000000cfefd40 TRAP: 0300   Tainted: G            EL   X  (4.4.13-0-default)
  MSR: 8000000300001033 <SF,ME,IR,DR,RI,LE>  CR: 02000424  XER: 20000000
  CFAR: c000000000008468 DAR: 00003ffd84e66880 DSISR: 40000000 SOFTE: 0
  PACATMSCRATCH: 00003ffbc865e680
  GPR00: fffffffcfabc4268 00003ffd84e667a0 00000000100d8c38 000000030544bb80
  GPR04: 0000000000000002 00000000100cf200 0000000000000449 00000000100cf100
  GPR08: 000000000000c350 0000000000002569 0000000000002569 00000000100d6c30
  GPR12: 00000000100d6c28 c00000000e6a6b00 00003ffd84660000 0000000000000000
  GPR16: 0000000000000003 0000000000000449 0000000010002570 0000010009684f20
  GPR20: 0000000000800000 00003ffd84e5f110 00003ffd84e5f7a0 00000000100d0f40
  GPR24: 0000000000000000 0000000000000000 0000000000000000 00003ffff0673f50
  GPR28: 00003ffd84e5e960 00000000003d0f00 00003ffd84e667a0 00003ffd84e5e680
  NIP [c00000000004f188] restore_gprs+0x110/0x17c
  LR [00000000100040b8] 0x100040b8
  Call Trace:
  Instruction dump:
  f8a1fff0 e8e700a8 38a00000 7ca10164 e8a1fff8 e821fff0 7c0007dd 7c421378
  7db142a6 7c3242a6 38800002 7c810164 <e9c100e0> e9e100e8 ea0100f0 ea2100f8

We hit this on large memory machines (> 2TB) but it can also be hit on
smaller machines when 1TB segments are disabled.

To hit this, you also need to be virtualised to ensure SLBs are
periodically removed by the hypervisor.

This patches moves the saving of r1 to the SPRG to the region where we
are guaranteed not to take any further SLB misses.

Fixes: 98ae22e15b ("powerpc: Add helper functions for transactional memory context switching")
Cc: stable@vger.kernel.org # v3.9+
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-15 15:00:18 +10:00
Michael Neuling
190ce8693c powerpc/tm: Avoid SLB faults in treclaim/trecheckpoint when RI=0
Currently we have 2 segments that are bolted for the kernel linear
mapping (ie 0xc000... addresses). This is 0 to 1TB and also the kernel
stacks. Anything accessed outside of these regions may need to be
faulted in. (In practice machines with TM always have 1T segments)

If a machine has < 2TB of memory we never fault on the kernel linear
mapping as these two segments cover all physical memory. If a machine
has > 2TB of memory, there may be structures outside of these two
segments that need to be faulted in. This faulting can occur when
running as a guest as the hypervisor may remove any SLB that's not
bolted.

When we treclaim and trecheckpoint we have a window where we need to
run with the userspace GPRs. This means that we no longer have a valid
stack pointer in r1. For this window we therefore clear MSR RI to
indicate that any exceptions taken at this point won't be able to be
handled. This means that we can't take segment misses in this RI=0
window.

In this RI=0 region, we currently access the thread_struct for the
process being context switched to or from. This thread_struct access
may cause a segment fault since it's not guaranteed to be covered by
the two bolted segment entries described above.

We've seen this with a crash when running as a guest with > 2TB of
memory on PowerVM:

  Unrecoverable exception 4100 at c00000000004f138
  Oops: Unrecoverable exception, sig: 6 [#1]
  SMP NR_CPUS=2048 NUMA pSeries
  CPU: 1280 PID: 7755 Comm: kworker/1280:1 Tainted: G                 X 4.4.13-46-default #1
  task: c000189001df4210 ti: c000189001d5c000 task.ti: c000189001d5c000
  NIP: c00000000004f138 LR: 0000000010003a24 CTR: 0000000010001b20
  REGS: c000189001d5f730 TRAP: 4100   Tainted: G                 X  (4.4.13-46-default)
  MSR: 8000000100001031 <SF,ME,IR,DR,LE>  CR: 24000048  XER: 00000000
  CFAR: c00000000004ed18 SOFTE: 0
  GPR00: ffffffffc58d7b60 c000189001d5f9b0 00000000100d7d00 000000003a738288
  GPR04: 0000000000002781 0000000000000006 0000000000000000 c0000d1f4d889620
  GPR08: 000000000000c350 00000000000008ab 00000000000008ab 00000000100d7af0
  GPR12: 00000000100d7ae8 00003ffe787e67a0 0000000000000000 0000000000000211
  GPR16: 0000000010001b20 0000000000000000 0000000000800000 00003ffe787df110
  GPR20: 0000000000000001 00000000100d1e10 0000000000000000 00003ffe787df050
  GPR24: 0000000000000003 0000000000010000 0000000000000000 00003fffe79e2e30
  GPR28: 00003fffe79e2e68 00000000003d0f00 00003ffe787e67a0 00003ffe787de680
  NIP [c00000000004f138] restore_gprs+0xd0/0x16c
  LR [0000000010003a24] 0x10003a24
  Call Trace:
  [c000189001d5f9b0] [c000189001d5f9f0] 0xc000189001d5f9f0 (unreliable)
  [c000189001d5fb90] [c00000000001583c] tm_recheckpoint+0x6c/0xa0
  [c000189001d5fbd0] [c000000000015c40] __switch_to+0x2c0/0x350
  [c000189001d5fc30] [c0000000007e647c] __schedule+0x32c/0x9c0
  [c000189001d5fcb0] [c0000000007e6b58] schedule+0x48/0xc0
  [c000189001d5fce0] [c0000000000deabc] worker_thread+0x22c/0x5b0
  [c000189001d5fd80] [c0000000000e7000] kthread+0x110/0x130
  [c000189001d5fe30] [c000000000009538] ret_from_kernel_thread+0x5c/0xa4
  Instruction dump:
  7cb103a6 7cc0e3a6 7ca222a6 78a58402 38c00800 7cc62838 08860000 7cc000a6
  38a00006 78c60022 7cc62838 0b060000 <e8c701a0> 7ccff120 e8270078 e8a70098
  ---[ end trace 602126d0a1dedd54 ]---

This fixes this by copying the required data from the thread_struct to
the stack before we clear MSR RI. Then once we clear RI, we only access
the stack, guaranteeing there's no segment miss.

We also tighten the region over which we set RI=0 on the treclaim()
path. This may have a slight performance impact since we're adding an
mtmsr instruction.

Fixes: 090b9284d7 ("powerpc/tm: Clear MSR RI in non-recoverable TM code")
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-29 16:19:25 +10:00
Anshuman Khandual
1db365258a powerpc/kernel: Rename PACA_DSCR to PACA_DSCR_DEFAULT
PACA_DSCR offset macro tracks dscr_default element in the paca
structure. Better change the name of this macro to match that of the
data element it tracks. Makes the code more readable.

Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-07 19:29:00 +10:00
Anton Blanchard
c2ce6f9f3d powerpc: Change vrX register defines to vX to match gcc and glibc
As our various loops (copy, string, crypto etc) get more complicated,
we want to share implementations between userspace (eg glibc) and
the kernel. We also want to write userspace test harnesses to put
in tools/testing/selftest.

One gratuitous difference between userspace and the kernel is the
VMX register definitions - the kernel uses vrX whereas both gcc and
glibc use vX.

Change the kernel to match userspace.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-03-16 18:32:11 +11:00
Sam bobroff
1739ea9e13 powerpc: Fix regression of per-CPU DSCR setting
Since commit "efcac65 powerpc: Per process DSCR + some fixes (try#4)"
it is no longer possible to set the DSCR on a per-CPU basis.

The old behaviour was to minipulate the DSCR SPR directly but this is no
longer sufficient: the value is quickly overwritten by context switching.

This patch stores the per-CPU DSCR value in a kernel variable rather than
directly in the SPR and it is used whenever a process has not set the DSCR
itself. The sysfs interface (/sys/devices/system/cpu/cpuN/dscr) is unchanged.

Writes to the old global default (/sys/devices/system/cpu/dscr_default)
now set all of the per-CPU values and reads return the last written value.

The new per-CPU default is added to the paca_struct and is used everywhere
outside of sysfs.c instead of the old global default.

Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-28 13:35:40 +10:00
Benjamin Herrenschmidt
f6869e7fe6 Merge remote-tracking branch 'anton/abiv2' into next
This series adds support for building the powerpc 64-bit
LE kernel using the new ABI v2. We already supported
running ABI v2 userspace programs but this adds support
for building the kernel itself using the new ABI.
2014-05-05 20:57:12 +10:00
Michael Neuling
7f06f21d40 powerpc/tm: Add checking to treclaim/trechkpt
If we do a treclaim and we are not in TM suspend mode, it results in a TM bad
thing (ie. a 0x700 program check).  Similarly if we do a trechkpt and we have
an active transaction or TEXASR Failure Summary (FS) is not set, we also take a
TM bad thing.

This should never happen, but if it does (ie. a kernel bug), the cause is
almost impossible to debug as the GPR state is mostly userspace and hence we
don't get a call chain.

This adds some checks in these cases case a BUG_ON() (in asm) in case we ever
hit these cases.  It moves the register saving around to preserve r1 till later
also.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-28 17:36:51 +10:00
Michael Neuling
ce0ac1fc32 powerpc/tm: Remove unnecessary r1 save
We save r1 to the scratch SPR and restore it from there after the trechkpt so
saving r1 to the paca is not needed.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-28 17:36:47 +10:00
Anton Blanchard
6403105bfd powerpc/tm: Fix GOT save offset for ABIv2
The r2 TOC/GOT save offset is 40 on ABIv1 and 24 on ABIv2.

Signed-off-by: Anton Blanchard <anton@samba.org>
2014-04-23 10:05:25 +10:00
Anton Blanchard
c2e31bdc12 powerpc/tm: Use STK_PARAM
Get rid of the tm specific STACK_PARAM and use STK_PARAM

Signed-off-by: Anton Blanchard <anton@samba.org>
2014-04-23 10:05:24 +10:00
Michael Neuling
e6b8fd028b powerpc/tm: Disable IRQ in tm_recheckpoint
We can't take an IRQ when we're about to do a trechkpt as our GPR state is set
to user GPR values.

We've hit this when running some IBM Java stress tests in the lab resulting in
the following dump:

  cpu 0x3f: Vector: 700 (Program Check) at [c000000007eb3d40]
      pc: c000000000050074: restore_gprs+0xc0/0x148
      lr: 00000000b52a8184
      sp: ac57d360
     msr: 8000000100201030
    current = 0xc00000002c500000
    paca    = 0xc000000007dbfc00     softe: 0     irq_happened: 0x00
      pid   = 34535, comm = Pooled Thread #
  R00 = 00000000b52a8184   R16 = 00000000b3e48fda
  R01 = 00000000ac57d360   R17 = 00000000ade79bd8
  R02 = 00000000ac586930   R18 = 000000000fac9bcc
  R03 = 00000000ade60000   R19 = 00000000ac57f930
  R04 = 00000000f6624918   R20 = 00000000ade79be8
  R05 = 00000000f663f238   R21 = 00000000ac218a54
  R06 = 0000000000000002   R22 = 000000000f956280
  R07 = 0000000000000008   R23 = 000000000000007e
  R08 = 000000000000000a   R24 = 000000000000000c
  R09 = 00000000b6e69160   R25 = 00000000b424cf00
  R10 = 0000000000000181   R26 = 00000000f66256d4
  R11 = 000000000f365ec0   R27 = 00000000b6fdcdd0
  R12 = 00000000f66400f0   R28 = 0000000000000001
  R13 = 00000000ada71900   R29 = 00000000ade5a300
  R14 = 00000000ac2185a8   R30 = 00000000f663f238
  R15 = 0000000000000004   R31 = 00000000f6624918
  pc  = c000000000050074 restore_gprs+0xc0/0x148
  cfar= c00000000004fe28 dont_restore_vec+0x1c/0x1a4
  lr  = 00000000b52a8184
  msr = 8000000100201030   cr  = 24804888
  ctr = 0000000000000000   xer = 0000000000000000   trap =  700

This moves tm_recheckpoint to a C function and moves the tm_restore_sprs into
that function.  It then adds IRQ disabling over the trechkpt critical section.
It also sets the TEXASR FS in the signals code to ensure this is never set now
that we explictly write the TM sprs in tm_recheckpoint.

Signed-off-by: Michael Neuling <mikey@neuling.org>
cc: stable@vger.kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-07 10:33:13 +10:00
Anton Blanchard
bbe30b3b57 powerpc: Use 32 bit loads and stores when operating on condition register values
The condition register (CR) is a 32 bit quantity so we should use
32 bit loads and stores.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-30 16:02:14 +11:00
Paul Mackerras
de79f7b9f6 powerpc: Put FP/VSX and VR state into structures
This creates new 'thread_fp_state' and 'thread_vr_state' structures
to store FP/VSX state (including FPSCR) and Altivec/VSX state
(including VSCR), and uses them in the thread_struct.  In the
thread_fp_state, the FPRs and VSRs are represented as u64 rather
than double, since we rarely perform floating-point computations
on the values, and this will enable the structures to be used
in KVM code as well.  Similarly FPSCR is now a u64 rather than
a structure of two 32-bit values.

This takes the offsets out of the macros such as SAVE_32FPRS,
REST_32FPRS, etc.  This enables the same macros to be used for normal
and transactional state, enabling us to delete the transactional
versions of the macros.   This also removes the unused do_load_up_fpu
and do_load_up_altivec, which were in fact buggy since they didn't
create large enough stack frames to account for the fact that
load_up_fpu and load_up_altivec are not designed to be called from C
and assume that their caller's stack frame is an interrupt frame.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-11 17:26:49 +11:00
Michael Neuling
e9bdc3d614 powerpc/tm: Switch out userspace PPR and DSCR sooner
When we do a treclaim or trecheckpoint we end up running with userspace
PPR and DSCR values.  Currently we don't do anything special to avoid
running with user values which could cause a severe performance
degradation.

This patch moves the PPR and DSCR save and restore around treclaim and
trecheckpoint so that we run with user values for a much shorter period.
More care is taken with the PPR as it's impact is greater than the DSCR.

This is similar to user exceptions, where we run HTM_MEDIUM early to
ensure that we don't run with a userspace PPR values in the kernel.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: <stable@vger.kernel.org> # 3.9+
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-03 17:25:51 +10:00
Michael Neuling
c69e63b0f1 powerpc/tm: Turn interrupts hard off in tm_reclaim()
We can't take IRQs in tm_reclaim as we might have a bogus r13 and r1.

This turns IRQs hard off in this function.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: <stable@vger.kernel.org> # 3.9+
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-10-03 17:25:44 +10:00
Benjamin Herrenschmidt
3f1f431188 Merge branch 'merge' into next
Merge stuff that already went into Linus via "merge" which
are pre-reqs for subsequent patches
2013-08-27 15:03:30 +10:00
Paul Mackerras
408a7e08b2 powerpc: Fix VRSAVE handling
Since 2002, the kernel has not saved VRSAVE on exception entry and
restored it on exit; rather, VRSAVE gets context-switched in _switch.
This means that when executing in process context in the kernel, the
userspace VRSAVE value is live in the VRSAVE register.

However, the signal code assumes that current->thread.vrsave holds
the current VRSAVE value, which is incorrect.  Therefore, this
commit changes it to use the actual VRSAVE register instead.  (It
still uses current->thread.vrsave as a temporary location to store
it in, as __get_user and __put_user can only transfer to/from a
variable, not an SPR.)

This also modifies the transactional memory code to save and restore
VRSAVE regardless of whether VMX is enabled in the MSR.  This is
because accesses to VRSAVE are not controlled by the MSR.VEC bit,
but can happen at any time.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-14 14:57:18 +10:00
Michael Neuling
28e61cc466 powerpc/tm: Fix context switching TAR, PPR and DSCR SPRs
If a transaction is rolled back, the Target Address Register (TAR), Processor
Priority Register (PPR) and Data Stream Control Register (DSCR) should be
restored to the checkpointed values before the transaction began.  Any changes
to these SPRs inside the transaction should not be visible in the abort
handler.

Currently Linux doesn't save or restore the checkpointed TAR, PPR or DSCR.  If
we preempt a processes inside a transaction which has modified any of these, on
process restore, that same transaction may be aborted we but we won't see the
checkpointed versions of these SPRs.

This adds checkpointed versions of these SPRs to the thread_struct and adds the
save/restore of these three SPRs to the treclaim/trechkpt code.

Without this if any of these SPRs are modified during a transaction, users may
incorrectly see a speculated SPR value even if the transaction is aborted.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Cc: <stable@vger.kernel.org> [v3.10]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-09 18:07:12 +10:00
Michael Neuling
090b9284d7 powerpc/tm: Clear MSR RI in non-recoverable TM code
When we treclaim and trecheckpoint there's an unavoidable period when r1
will not be a valid kernel stack pointer.

This patch clears the MSR recoverable interrupt (RI) bit over these
regions to indicate we have an invalid kernel stack pointer.

For treclaim, the region over which we clear MSR RI is larger than
required to avoid the need for an extra costly mtmsrd.

Thanks to Paulus for suggesting this change.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-06-30 15:49:43 +10:00
Michael Neuling
f110c0c192 powerpc: fix compiling CONFIG_PPC_TRANSACTIONAL_MEM when CONFIG_ALTIVEC=n
We can't compile a kernel with CONFIG_ALTIVEC=n when
CONFIG_PPC_TRANSACTIONAL_MEM=y.  We currently get:

arch/powerpc/kernel/tm.S:320: Error: unsupported relocation against THREAD_VSCR
arch/powerpc/kernel/tm.S:323: Error: unsupported relocation against THREAD_VR0
arch/powerpc/kernel/tm.S:323: Error: unsupported relocation against THREAD_VR0
etc.

The below fixes this with a sprinkling of #ifdefs.

This was found by mpe with kisskb:
  http://kisskb.ellerman.id.au/kisskb/buildresult/8539442/

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
2013-04-10 08:14:39 +10:00
Michael Neuling
98ae22e15b powerpc: Add helper functions for transactional memory context switching
Here we add the helper functions to be used when context switching.  These
allow us to fully reclaim and recheckpoint a transaction.

We introduce a new paca field called tm_scratch to help us store away register
values when doing the low level tm reclaim register save.

Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-02-15 16:58:52 +11:00