For a long time, if a guest accessed memory outside of a memslot using
any of the load/store instructions in the architecture which doesn't
supply decoding information in the ESR_EL2 (the ISV bit is not set), the
kernel would print the following message and terminate the VM as a
result of returning -ENOSYS to userspace:
load/store instruction decoding not implemented
The reason behind this message is that KVM assumes that all accesses
outside a memslot is an MMIO access which should be handled by
userspace, and we originally expected to eventually implement some sort
of decoding of load/store instructions where the ISV bit was not set.
However, it turns out that many of the instructions which don't provide
decoding information on abort are not safe to use for MMIO accesses, and
the remaining few that would potentially make sense to use on MMIO
accesses, such as those with register writeback, are not used in
practice. It also turns out that fetching an instruction from guest
memory can be a pretty horrible affair, involving stopping all CPUs on
SMP systems, handling multiple corner cases of address translation in
software, and more. It doesn't appear likely that we'll ever implement
this in the kernel.
What is much more common is that a user has misconfigured his/her guest
and is actually not accessing an MMIO region, but just hitting some
random hole in the IPA space. In this scenario, the error message above
is almost misleading and has led to a great deal of confusion over the
years.
It is, nevertheless, ABI to userspace, and we therefore need to
introduce a new capability that userspace explicitly enables to change
behavior.
This patch introduces KVM_CAP_ARM_NISV_TO_USER (NISV meaning Non-ISV)
which does exactly that, and introduces a new exit reason to report the
event to userspace. User space can then emulate an exception to the
guest, restart the guest, suspend the guest, or take any other
appropriate action as per the policy of the running system.
Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
If after an MMIO exit to userspace a VCPU is immediately run with an
immediate_exit request, such as when a signal is delivered or an MMIO
emulation completion is needed, then the VCPU completes the MMIO
emulation and immediately returns to userspace. As the exit_reason
does not get changed from KVM_EXIT_MMIO in these cases we have to
be careful not to complete the MMIO emulation again, when the VCPU is
eventually run again, because the emulation does an instruction skip
(and doing too many skips would be a waste of guest code :-) We need
to use additional VCPU state to track if the emulation is complete.
As luck would have it, we already have 'mmio_needed', which even
appears to be used in this way by other architectures already.
Fixes: 0d640732db ("arm64: KVM: Skip MMIO insn after emulation")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation 51 franklin street fifth floor boston ma 02110
1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 67 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When we emulate an MMIO instruction, we advance the CPU state within
decode_hsr(), before emulating the instruction effects.
Having this logic in decode_hsr() is opaque, and advancing the state
before emulation is problematic. It gets in the way of applying
consistent single-step logic, and it prevents us from being able to fail
an MMIO instruction with a synchronous exception.
Clean this up by only advancing the CPU state *after* the effects of the
instruction are emulated.
Cc: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reported by syzkaller:
BUG: KASAN: stack-out-of-bounds in write_mmio+0x11e/0x270 [kvm]
Read of size 8 at addr ffff8803259df7f8 by task syz-executor/32298
CPU: 6 PID: 32298 Comm: syz-executor Tainted: G OE 4.15.0-rc2+ #18
Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
Call Trace:
dump_stack+0xab/0xe1
print_address_description+0x6b/0x290
kasan_report+0x28a/0x370
write_mmio+0x11e/0x270 [kvm]
emulator_read_write_onepage+0x311/0x600 [kvm]
emulator_read_write+0xef/0x240 [kvm]
emulator_fix_hypercall+0x105/0x150 [kvm]
em_hypercall+0x2b/0x80 [kvm]
x86_emulate_insn+0x2b1/0x1640 [kvm]
x86_emulate_instruction+0x39a/0xb90 [kvm]
handle_exception+0x1b4/0x4d0 [kvm_intel]
vcpu_enter_guest+0x15a0/0x2640 [kvm]
kvm_arch_vcpu_ioctl_run+0x549/0x7d0 [kvm]
kvm_vcpu_ioctl+0x479/0x880 [kvm]
do_vfs_ioctl+0x142/0x9a0
SyS_ioctl+0x74/0x80
entry_SYSCALL_64_fastpath+0x23/0x9a
The path of patched vmmcall will patch 3 bytes opcode 0F 01 C1(vmcall)
to the guest memory, however, write_mmio tracepoint always prints 8 bytes
through *(u64 *)val since kvm splits the mmio access into 8 bytes. This
leaks 5 bytes from the kernel stack (CVE-2017-17741). This patch fixes
it by just accessing the bytes which we operate on.
Before patch:
syz-executor-5567 [007] .... 51370.561696: kvm_mmio: mmio write len 3 gpa 0x10 val 0x1ffff10077c1010f
After patch:
syz-executor-13416 [002] .... 51302.299573: kvm_mmio: mmio write len 3 gpa 0x10 val 0xc1010f
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>