This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel source files need not include <linux/kconfig.h> explicitly
because the top Makefile forces to include it with:
-include $(srctree)/include/linux/kconfig.h
This commit removes explicit includes except the following:
* arch/s390/include/asm/facilities_src.h
* tools/testing/radix-tree/linux/kernel.h
These two are used for host programs.
Link: http://lkml.kernel.org/r/1473656164-11929-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull MIPS updates from Ralf Baechle:
"This is the main pull request for MIPS for 4.8. Also includes is a
minor SSB cleanup as SSB code traditionally is merged through the MIPS
tree:
ATH25:
- MIPS: Add default configuration for ath25
Boot:
- For zboot, copy appended dtb to the end of the kernel
- store the appended dtb address in a variable
BPF:
- Fix off by one error in offset allocation
Cobalt code:
- Fix typos
Core code:
- debugfs_create_file returns NULL on error, so don't use IS_ERR for
testing for errors.
- Fix double locking issue in RM7000 S-cache code. This would only
affect RM7000 ARC systems on reboot.
- Fix page table corruption on THP permission changes.
- Use compat_sys_keyctl for 32 bit userspace on 64 bit kernels.
David says, there are no compatibility issues raised by this fix.
- Move some signal code around.
- Rewrite r4k count/compare clockevent device registration such that
min_delta_ticks/max_delta_ticks files are guaranteed to be
initialized.
- Only register r4k count/compare as clockevent device if we can
assume the clock to be constant.
- Fix MSA asm warnings in control reg accessors
- uasm and tlbex fixes and tweaking.
- Print segment physical address when EU=1.
- Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO.
- CP: Allow booting by VP other than VP 0
- Cache handling fixes and optimizations for r4k class caches
- Add hotplug support for R6 processors
- Cleanup hotplug bits in kconfig
- traps: return correct si code for accessing nonmapped addresses
- Remove cpu_has_safe_index_cacheops
Lantiq:
- Register IRQ handler for virtual IRQ number
- Fix EIU interrupt loading code
- Use the real EXIN count
- Fix build error.
Loongson 3:
- Increase HPET_MIN_PROG_DELTA and decrease HPET_MIN_CYCLES
Octeon:
- Delete built-in DTB pruning code for D-Link DSR-1000N.
- Clean up GPIO definitions in dlink_dsr-1000n.dts.
- Add more LEDs to the DSR-100n DTS
- Fix off by one in octeon_irq_gpio_map()
- Typo fixes
- Enable SATA by default in cavium_octeon_defconfig
- Support readq/writeq()
- Remove forced mappings of USB interrupts.
- Ensure DMA descriptors are always in the low 4GB
- Improve USB reset code for OCTEON II.
Pistachio:
- Add maintainers entry for pistachio SoC Support
- Remove plat_setup_iocoherency
Ralink:
- Fix pwm UART in spis group pinmux.
SSB:
- Change bare unsigned to unsigned int to suit coding style
Tools:
- Fix reloc tool compiler warnings.
Other:
- Delete use of ARCH_WANT_OPTIONAL_GPIOLIB"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (61 commits)
MIPS: mm: Fix definition of R6 cache instruction
MIPS: tools: Fix relocs tool compiler warnings
MIPS: Cobalt: Fix typo
MIPS: Octeon: Fix typo
MIPS: Lantiq: Fix build failure
MIPS: Use CPHYSADDR to implement mips32 __pa
MIPS: Octeon: Dlink_dsr-1000n.dts: add more leds.
MIPS: Octeon: Clean up GPIO definitions in dlink_dsr-1000n.dts.
MIPS: Octeon: Delete built-in DTB pruning code for D-Link DSR-1000N.
MIPS: store the appended dtb address in a variable
MIPS: ZBOOT: copy appended dtb to the end of the kernel
MIPS: ralink: fix spis group pinmux
MIPS: Factor o32 specific code into signal_o32.c
MIPS: non-exec stack & heap when non-exec PT_GNU_STACK is present
MIPS: Use per-mm page to execute branch delay slot instructions
MIPS: Modify error handling
MIPS: c-r4k: Use SMP calls for CM indexed cache ops
MIPS: c-r4k: Avoid small flush_icache_range SMP calls
MIPS: c-r4k: Local flush_icache_range cache op override
MIPS: c-r4k: Split r4k_flush_kernel_vmap_range()
...
The use of config_enabled() against config options is ambiguous. In
practical terms, config_enabled() is equivalent to IS_BUILTIN(), but the
author might have used it for the meaning of IS_ENABLED(). Using
IS_ENABLED(), IS_BUILTIN(), IS_MODULE() etc. makes the intention
clearer.
This commit replaces config_enabled() with IS_ENABLED() where possible.
This commit is only touching bool config options.
I noticed two cases where config_enabled() is used against a tristate
option:
- config_enabled(CONFIG_HWMON)
[ drivers/net/wireless/ath/ath10k/thermal.c ]
- config_enabled(CONFIG_BACKLIGHT_CLASS_DEVICE)
[ drivers/gpu/drm/gma500/opregion.c ]
I did not touch them because they should be converted to IS_BUILTIN()
in order to keep the logic, but I was not sure it was the authors'
intention.
Link: http://lkml.kernel.org/r/1465215656-20569-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Stas Sergeev <stsp@list.ru>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: Joshua Kinard <kumba@gentoo.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Markos Chandras <markos.chandras@imgtec.com>
Cc: "Dmitry V. Levin" <ldv@altlinux.org>
Cc: yu-cheng yu <yu-cheng.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Will Drewry <wad@chromium.org>
Cc: Nikolay Martynov <mar.kolya@gmail.com>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Cc: Rafal Milecki <zajec5@gmail.com>
Cc: James Cowgill <James.Cowgill@imgtec.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Alex Smith <alex.smith@imgtec.com>
Cc: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Qais Yousef <qais.yousef@imgtec.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Mikko Rapeli <mikko.rapeli@iki.fi>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: "Luis R. Rodriguez" <mcgrof@do-not-panic.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Kalle Valo <kvalo@qca.qualcomm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Tony Wu <tung7970@gmail.com>
Cc: Huaitong Han <huaitong.han@intel.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Gelmini <andrea.gelmini@gelma.net>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Rabin Vincent <rabin@rab.in>
Cc: "Maciej W. Rozycki" <macro@imgtec.com>
Cc: David Daney <david.daney@cavium.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases the kernel needs to execute an instruction from the delay
slot of an emulated branch instruction. These cases include:
- Emulated floating point branch instructions (bc1[ft]l?) for systems
which don't include an FPU, or upon which the kernel is run with the
"nofpu" parameter.
- MIPSr6 systems running binaries targeting older revisions of the
architecture, which may include branch instructions whose encodings
are no longer valid in MIPSr6.
Executing instructions from such delay slots is done by writing the
instruction to memory followed by a trap, as part of an "emuframe", and
executing it. This avoids the requirement of an emulator for the entire
MIPS instruction set. Prior to this patch such emuframes are written to
the user stack and executed from there.
This patch moves FP branch delay emuframes off of the user stack and
into a per-mm page. Allocating a page per-mm leaves userland with access
to only what it had access to previously, and compared to other
solutions is relatively simple.
When a thread requires a delay slot emulation, it is allocated a frame.
A thread may only have one frame allocated at any one time, since it may
only ever be executing one instruction at any one time. In order to
ensure that we can free up allocated frame later, its index is recorded
in struct thread_struct. In the typical case, after executing the delay
slot instruction we'll execute a break instruction with the BRK_MEMU
code. This traps back to the kernel & leads to a call to do_dsemulret
which frees the allocated frame & moves the user PC back to the
instruction that would have executed following the emulated branch.
In some cases the delay slot instruction may be invalid, such as a
branch, or may trigger an exception. In these cases the BRK_MEMU break
instruction will not be hit. In order to ensure that frames are freed
this patch introduces dsemul_thread_cleanup() and calls it to free any
allocated frame upon thread exit. If the instruction generated an
exception & leads to a signal being delivered to the thread, or indeed
if a signal simply happens to be delivered to the thread whilst it is
executing from the struct emuframe, then we need to take care to exit
the frame appropriately. This is done by either rolling back the user PC
to the branch or advancing it to the continuation PC prior to signal
delivery, using dsemul_thread_rollback(). If this were not done then a
sigreturn would return to the struct emuframe, and if that frame had
meanwhile been used in response to an emulated branch instruction within
the signal handler then we would execute the wrong user code.
Whilst a user could theoretically place something like a compact branch
to self in a delay slot and cause their thread to become stuck in an
infinite loop with the frame never being deallocated, this would:
- Only affect the users single process.
- Be architecturally invalid since there would be a branch in the
delay slot, which is forbidden.
- Be extremely unlikely to happen by mistake, and provide a program
with no more ability to harm the system than a simple infinite loop
would.
If a thread requires a delay slot emulation & no frame is available to
it (ie. the process has enough other threads that all frames are
currently in use) then the thread joins a waitqueue. It will sleep until
a frame is freed by another thread in the process.
Since we now know whether a thread has an allocated frame due to our
tracking of its index, the cookie field of struct emuframe is removed as
we can be more certain whether we have a valid frame. Since a thread may
only ever have a single frame at any given time, the epc field of struct
emuframe is also removed & the PC to continue from is instead stored in
struct thread_struct. Together these changes simplify & shrink struct
emuframe somewhat, allowing twice as many frames to fit into the page
allocated for them.
The primary benefit of this patch is that we are now free to mark the
user stack non-executable where that is possible.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com>
Cc: Maciej Rozycki <maciej.rozycki@imgtec.com>
Cc: Faraz Shahbazker <faraz.shahbazker@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: Matthew Fortune <matthew.fortune@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/13764/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The opcodes currently defined in inst.h as cbcond0_op & cbcond1_op are
actually defined in the MIPS base instruction set manuals as pop10 &
pop30 respectively. Rename them as such, for consistency with the
documentation.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The opcodes currently defined in inst.h as beqzcjic_op & bnezcjialc_op
are actually defined in the MIPS base instruction set manuals as pop66 &
pop76 respectively. Rename them as such, for consistency with the
documentation.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating a jalr instruction with rd == $0, the code in
isBranchInstr was incorrectly writing to GPR $0 which should actually
always remain zeroed. This would lead to any further instructions
emulated which use $0 operating on a bogus value until the task is next
context switched, at which point the value of $0 in the task context
would be restored to the correct zero by a store in SAVE_SOME. Fix this
by not writing to rd if it is $0.
Fixes: 102cedc32a ("MIPS: microMIPS: Floating point support.")
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: Maciej W. Rozycki <macro@imgtec.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Cc: stable <stable@vger.kernel.org> # v3.10
Patchwork: https://patchwork.linux-mips.org/patch/13160/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Add support for emulating the MIPSr6 sel.fmt instruction, which was
previously missing from the FPU emulation code. This instruction selects
its result from 2 possible source registers, based upon bit 0 of the
destination register, and is valid only for S (single) & D (double) data
types.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: Maciej W. Rozycki <macro@imgtec.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13153/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The conditions for branching when emulating the BC1EQZ & BC1NEZ
instructions were backwards, leading to each of those instructions being
treated as the other. Fix this by reversing the conditions, and clear up
the code a little for readability & checkpatch.
Fixes: c909ca718e ("MIPS: math-emu: Emulate missing BC1{EQ,NE}Z instructions")
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Maciej W. Rozycki <macro@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13150/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Fix an issue introduced with commit 9ab4471c9f ("MIPS: math-emu:
Correct delay-slot exception propagation") where the emulation of a NOP
instruction signals the need to terminate the emulation loop. This in
turn, if the PC has not changed from the entry to the loop, will cause
the kernel to terminate the program with SIGILL.
Consider this program:
static double div(double d)
{
do
d /= 2.0;
while (d > .5);
return d;
}
int main(int argc, char **argv)
{
return div(argc);
}
which gets compiled to the following binary code:
00400490 <main>:
400490: 44840000 mtc1 a0,$f0
400494: 3c020040 lui v0,0x40
400498: d44207f8 ldc1 $f2,2040(v0)
40049c: 46800021 cvt.d.w $f0,$f0
4004a0: 46220002 mul.d $f0,$f0,$f2
4004a4: 4620103c c.lt.d $f2,$f0
4004a8: 4501fffd bc1t 4004a0 <main+0x10>
4004ac: 00000000 nop
4004b0: 4620000d trunc.w.d $f0,$f0
4004b4: 03e00008 jr ra
4004b8: 44020000 mfc1 v0,$f0
4004bc: 00000000 nop
Where the FPU emulator is used, depending on the number of command-line
arguments this code will either run to completion or terminate with
SIGILL.
If no arguments are specified, then BC1T will not be taken, NOP will not
be emulated and code will complete successfully.
If one argument is specified, then BC1T will be taken once and NOP will
be emulated. At this point the entry PC value will be 0x400498 and the
new PC value, set by `mips_dsemul' will be 0x4004a0, the target of BC1T.
The emulation loop will terminate, but SIGILL will not be issued,
because the PC has changed. The FPU emulator will be entered again and
on the second execution BC1T will not be taken, NOP will not be emulated
and code will complete successfully.
If two or more arguments are specified, then the first execution of BC1T
will proceed as above. Upon reentering the FPU emulator the emulation
loop will continue to BC1T, at which point the branch will be taken and
NOP emulated again. At this point however the entry PC value will be
0x4004a0, the same as the target of BC1T. This will make the emulator
conclude that execution has not advanced and therefore an unsupported
FPU instruction has been encountered, and SIGILL will be sent to the
process.
Fix the problem by extending the internal API of `mips_dsemul', making
it return -1 if no delay slot emulation frame has been made, the
instruction has been handled and execution of the emulation loop needs
to continue as if nothing happened. Remove code from `mips_dsemul' to
reproduce steps made by the emulation loop at the conclusion of each
iteration, as those will be reached normally now. Adjust call sites
accordingly. Document the API.
Signed-off-by: Maciej W. Rozycki <macro@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/12172/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R6 introduced the following instruction:
Scalar Floating-Point Maximum and
Scalar Floating-Point argument with Maximum Absolute Value
MAX.fmt writes the maximum value of the inputs fs and ft to the
destination fd.
MAXA.fmt takes input arguments fs and ft and writes the argument with
the maximum absolute value to the destination fd.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10961/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R6 introduced the following instruction:
Scalar Floating-Point Minimum and
Scalar Floating-Point argument with Minimum Absolute Value
MIN.fmt writes the minimum value of the inputs fs and ft to the
destination fd.
MINA.fmt takes input arguments fs and ft and writes the argument with
the minimum absolute value to the destination fd.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10960/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R6 introduced the following instruction:
Stores in fd a bit mask reflecting the floating-point class of the
floating point scalar value fs.
CLASS.fmt: FPR[fd] = class(FPR[fs])
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10959/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R6 introduced the following instruction:
Floating-Point Round to Integral
Scalar floating-point round to integral floating point value.
RINT.fmt: FPR[fd] = round_int(FPR[fs])
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10958/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R6 introduced the following instruction:
SELNEZ.fmt: FPR[fd] FPR[ft].bit0 ? FPR[fs] : 0
Add support for emulating the single and double precision
formats of the said instruction.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10955/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R6 introduced the following instruction:
SELEQZ.fmt: FPR[fd] FPR[ft].bit0 ? 0 : FPR[fs]
Add support for emulating the single and double precision formats
of the said instruction.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10954/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Add support for emulating the new CMP.condn.fmt R6 instructions and
return SIGILL for the old C.cond.fmt if R2 emulation is not enabled
since it's not supported by R6.
The functionality of the new CMP.condn.fmt is the following one:
If the comparison specified by the condn field of the instruction
is true for the operand values, the result is true; otherwise, the
result is false. If no exception is taken, the result is written into
FPR fd; true is all 1s and false is all 0s repeated the operand width
of fmt. All other bits beyond the operand width fmt are UNPREDICTABLE.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10953/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Commit c8a34581ec ("MIPS: Emulate the BC1{EQ,NE}Z FPU instructions")
added support for emulating the new R6 BC1{EQ,NE}Z branches but it missed
the case where the instruction that caused the exception was not on a DS.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Fixes: c8a34581ec ("MIPS: Emulate the BC1{EQ,NE}Z FPU instructions")
Cc: <stable@vger.kernel.org> # 4.0+
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10738/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The mfhc/mthc instructions are supported on MIPS R6 so emulate
them if needed.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: <stable@vger.kernel.org> # 4.0+
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10737/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The double format (d_fmt) case uses an opening bracket which then
closes at the end of the word format (w_fmt). This can be rather confusing
so add the closing bracket at the end of the d_fmt case and use another one
for the w_fmt one.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10733/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Commit 5f9f41c474 ("MIPS: kernel: Prepare
the JR instruction for emulation on MIPS R6") added support for
emulating the JR instruction on MIPS R6 cores but that introduced a bug
which could be triggered when hitting a JALR opcode because the code used
the wrong field in the 'r_format' struct to determine the instruction
opcode. This lead to crashes because an emulated JALR instruction was
treated as a JR one when the R6 emulator was turned off.
Fixes: 5f9f41c474 ("MIPS: kernel: Prepare the JR instruction for emulation on MIPS R6")
Cc: <stable@vger.kernel.org> # 4.0+
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/10583/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Commits f1b44067c1 ("MIPS: Emulate the
new MIPS R6 B{L,G}T{Z,}{AL,}C instructions") and commit
a8ff66f52d ("MIPS: Emulate the new MIPS
R6 B{L,G}E{Z,}{AL,}C instructions") added support for emulating various
branch compact instructions. However, it missed the case for those which
use the old BLEZL and BGTZL opcodes leading to random crashes when the R6
emulator is disabled. We fix this by ensuring that the 'rt' field is not
zero which is always true for these branch compact instructions.
Fixes: f1b44067c1 ("MIPS: Emulate the new MIPS R6 B{L,G}T{Z,}{AL,}C instructions")
Fixes: a8ff66f52d ("MIPS: Emulate the new MIPS R6 B{L,G}E{Z,}{AL,}C instructions")
Cc: <stable@vger.kernel.org> # 4.0+
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Markos Chandras <markos.chandras@imgtec.com>
Patchwork: https://patchwork.linux-mips.org/patch/10582/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Fix "BUG: using smp_processor_id() in preemptible" reported in accesses
to thread's FPU defaults: the value to initialise FSCR to at program
startup, the FCSR r/w mask and the contents of FIR in full FPU
emulation, removing a regression introduced with 9b26616c [MIPS: Respect
the ISA level in FCSR handling] and f6843626 [MIPS: math-emu: Set FIR
feature flags for full emulation].
Use `boot_cpu_data' to obtain the data from, following the approach that
`cpu_has_*' macros take and avoiding the call to `smp_processor_id' made
in the reference to `current_cpu_data'. The contents of FSCR have to be
consistent across processors in an SMP system, the settings there must
not change as a thread is migrated across processors. And the contents
of FIR are guaranteed to be consistent in FPU emulation, by definition.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Tested-by: Ezequiel Garcia <ezequiel.garcia@imgtec.com>
Tested-by: Paul Martin <paul.martin@codethink.co.uk>
Cc: Markos Chandras <Markos.Chandras@imgtec.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/10030/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Define the central place the default FCSR value is set from, initialised
in `cpu_probe'. Determine the FCSR mask applied to values written to
the register with CTC1 in the full emulation mode and via ptrace(2),
according to the ISA level of processor hardware or the writability of
bits 31:18 if actual FPU hardware is used.
Software may rely on FCSR bits whose functions our emulator does not
implement, so it should not allow them to be set or software may get
confused. For ptrace(2) it's just sanity.
[ralf@linux-mips.org: Fixed double inclusion of <asm/current.h>.]
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9711/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Define IEEE 754-2008 feature control bits: FIR.HAS2008, FCSR.ABS2008 and
FCSR.NAN2008, and update the `_ieee754_csr' structure accordingly.
For completeness define FIR.UFRP too.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9709/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Implement the FCCR, FEXR and FENR "shadow" FPU registers for the
architecture levels that include them, for the CFC1 and CTC1
instructions in the full emulation mode.
For completeness add macros for the CP1 UFR and UNFR registers too, no
actual implementation though.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9708/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Implement FIR feature flags in the FPU emulator according to features
supported and architecture level requirements. The W, L and F64 bits
have only been added at level #2 even though the features they refer to
were also included with the MIPS64r1 ISA and the W fixed-point format
also with the MIPS32r1 ISA.
This is only relevant for the full emulation mode and the emulated CFC1
instruction as well as ptrace(2) accesses.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9707/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Restore EPC at the branch whose delay slot is emulated if the delay-slot
instruction signals. This is so that code in `fpu_emulator_cop1Handler'
does not see EPC having advanced and mistakenly successfully resume
userland execution from the location at the branch target in that case.
Restoring EPC guarantees an immediate exit from the emulation loop and
if EPC hasn't advanced at all since entering the loop, also issuing the
signal reported by the delay-slot instruction.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9701/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Correct ISA requirements for floating-point instructions:
* the CU3 exception signifies a real COP3 instruction in MIPS I & II,
* the BC1FL and BC1TL instructions are not supported in MIPS I,
* the SQRT.fmt instructions are indeed supported in MIPS II,
* the LDC1 and SDC1 instructions are indeed supported in MIPS32r1,
* the CEIL.W.fmt, FLOOR.W.fmt, ROUND.W.fmt and TRUNC.W.fmt instructions
are indeed supported in MIPS32,
* the CVT.L.fmt and CVT.fmt.L instructions are indeed supported in
MIPS32r2 and MIPS32r6,
* the CEIL.L.fmt, FLOOR.L.fmt, ROUND.L.fmt and TRUNC.L.fmt instructions
are indeed supported in MIPS32r2 and MIPS32r6,
* the RSQRT.fmt and RECIP.fmt instructions are indeed supported in
MIPS64r1,
Also simplify conditionals for MIPS III and MIPS IV FPU instructions and
the handling of the MOVCI minor opcode.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9700/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Move CFC1/CTC1 emulation code to separate functions to avoid excessive
indentation in forthcoming changes. Adjust formatting in a minor way
and remove extraneous round brackets.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9682/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Commit 56a64733 [MIPS: math-emu: Switch to using the MIPS rounding
modes.] removed the distinction between hardware and emulator rounding
mode encodings, the hardware encoding is now used in emulation as well.
Complement the change and remove the `modeindex' macro previously used
for indexing into encoding translation tables, it now does nothing and
only obfuscates code by reinserting the value extracted from FCSR.
Adjust comments accordingly.
Signed-off-by: Maciej W. Rozycki <macro@linux-mips.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/9680/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
MIPS R2 FPU instructions are also present in MIPS R6 so amend the
preprocessor definitions to take MIPS R6 into consideration.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
MIPS R6 removed quite a few R2 instructions. However, there
is plenty of <R6 userland code so we add an in-kernel emulator
so we can still be able to execute all R2 userland out there.
The emulator comes with a handy debugfs under /mips/ directory
(r2-emul-stats) to provide some basic statistics of the
instructions that are being emulated.
Below are some statistics from booting a minimal buildroot image:
Instruction Total BDslot
------------------------------
movs 236969 0
hilo 56686 0
muls 55279 0
divs 10941 0
dsps 0 0
bops 1 0
traps 0 0
fpus 0 0
loads 214981 17
stores 103364 0
llsc 56898 0
dsemul 150418 0
jr 370158
bltzl 43
bgezl 1594
bltzll 0
bgezll 0
bltzal 39
bgezal 39
beql 14503
bnel 138741
blezl 0
bgtzl 3988
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
MIPS R6 added the following four instructions which share the
BGTZ and BGTZL opcode:
BLTZALC: Compact branch-and-link if GPR rt is < to zero
BGTZALC: Compact branch-and-link if GPR rt is > to zero
BLTZL : Compact branch if GPR rt is < to zero
BGTZL : Compact branch if GPR rt is > to zero
BLTC : Compact branch if GPR rs is less than GPR rt
BLTUC : Similar to BLTC but unsigned
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
MIPS R6 added the following four instructions which share the
BLEZ and BLEZL opcodes:
BLEZALC: Compact branch-and-link if GPR rt is <= to zero
BGEZALC: Compact branch-and-link if GPR rt is >= to zero
BLEZC : Compact branch if GPR rt is <= to zero
BGEZC : Compact branch if GPR rt is >= to zero
BGEC : Compact branch if GPR rs is less than or equal to GPR rt
BGEUC : Similar to BGEC but unsigned.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
MIPS R6 introduced the following two branch instructions for COP1:
BC1EQZ: Branch if Cop1 (FPR) Register Bit 0 is Equal to Zero
BC1NEZ: Branch if Cop1 (FPR) Register Bit 0 is Not Equal to Zero
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
MIPS R6 removed the BLTZL, BGEZL, BLTZAL, BGEZAL, BEQL, BNEL, BLEZL,
BGTZL branch likely instructions so we must not try to emulate them on
MIPS R6 if the R2-to-R6 emulator is not present.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
The MIPS R6 JR instruction is an alias to the JALR one, so it may
need emulation for non-R6 userlands.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Hybrid FPRs is a scheme where scalar FP registers are 64b wide, but
accesses to odd indexed single registers use bits 63:32 of the
preceeding even indexed 64b register. In this mode all FP code
except that built for the plain FP64 ABI can execute correctly. Most
notably a combination of FP64A & FP32 code can execute correctly,
allowing for existing FP32 binaries to be linked with new FP64A binaries
that can make use of 64 bit FP & MSA.
Hybrid FPRs are implemented by setting both the FR & FRE bits, trapping
& emulating single precision FP instructions (via Reserved Instruction
exceptions) whilst allowing others to execute natively. It therefore has
a penalty in terms of execution speed, and should only be used when no
fully native mode can be. As more binaries are recompiled to use either
the FPXX or FP64(A) ABIs, the need for hybrid FPRs should diminish.
However in the short to mid term it allows for a gradual transition
towards that world, rather than a complete ABI break which is not
feasible for some users & not desirable for many.
A task will be executed using the hybrid FPR scheme when its
TIF_HYBRID_FPREGS flag is set & TIF_32BIT_FPREGS is clear. A further
patch will set the flags as necessary, this patch simply adds the
infrastructure necessary for the hybrid FPR mode to work.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/7683/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Starting with version 2.24.51.20140728 MIPS binutils complain loudly
about mixing soft-float and hard-float object files, leading to this
build failure since GCC is invoked with "-msoft-float" on MIPS:
{standard input}: Warning: .gnu_attribute 4,3 requires `softfloat'
LD arch/mips/alchemy/common/built-in.o
mipsel-softfloat-linux-gnu-ld: Warning: arch/mips/alchemy/common/built-in.o
uses -msoft-float (set by arch/mips/alchemy/common/prom.o),
arch/mips/alchemy/common/sleeper.o uses -mhard-float
To fix this, we detect if GAS is new enough to support "-msoft-float" command
option, and if it does, we can let GCC pass it to GAS; but then we also need
to sprinkle the files which make use of floating point registers with the
necessary ".set hardfloat" directives.
Signed-off-by: Manuel Lauss <manuel.lauss@gmail.com>
Cc: Linux-MIPS <linux-mips@linux-mips.org>
Cc: Matthew Fortune <Matthew.Fortune@imgtec.com>
Cc: Markos Chandras <Markos.Chandras@imgtec.com>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/8355/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>